代谢组学与中药研究中复杂体系的解析方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学计量学方法与仪器联用技术的结合与快速发展,使人们对复杂多组分体系的分析能力有了很大的提高,不仅可以解决传统分析化学难以处理的化学问题,同时也使分析化学由单纯的提供数据上升为从分析数据中获取有用信息和知识。本论文针对代谢组学与中药等复杂多组分体系分析过程中所遇到的一系列问题展开研究,发展相关化学计量学方法,从复杂的分析数据中挖掘有用信息,实现复杂多组分分析体系的定性定量分析及信息提取与知识总结。本论文的工作主要包括以下五个方面的内容:
     一、将计算机领域最新发展的模式识别方法——非相关线性判别分析法引入到代谢组学的研究中。该方法通过最大化不同类样本之间的分离度,提取出具有最大判别能力的判别矢量;同时,所得到的判别矢量相互之间非相关,使得信息冗余最小。通过对模拟数据与人体血浆游离脂肪酸含量数据的分析表明,该方法所建立的判别模型明显优于PLS-DA与PCA模型,同时还筛选得到对分类起重要贡献的特征生物标记物。
     二、首次提出了模糊系统分析法并将其用于1型糖尿病人血清代谢组NMR谱的聚类分析。该方法基于模糊理论,结合了模糊聚类分析、模糊聚类载荷模型以及目标投影选择比值法,将分析数据的聚类分析、结果解释及特征生物标记物筛选集为一体,为代谢组学研究提供了一个完整的数据分析平台。通过对613例1型糖尿病患者的血清代谢组NMR图谱分析,发现了死亡高危人群的聚类,并分析了NMR图谱中与该类别密切相关的谱峰,发现了一系列与1型糖尿病死亡高风险相关的代谢物。
     三、针对模式识别过程中的变量选择与特征标记物筛选的问题,提出了一种新的变量选择方法。该方法综合了蒙特卡洛交叉效验、无信息变量筛选与偏最小二乘线性判别分析的优点,不仅可以筛选出合适的变量建立一个效果较好的判别模型,还可以给出所筛选变量的重要性排序。利用该方法和常用的UVE-PLSR法对实验模拟混合样本色谱指纹图谱数据及中药材葛根样本的色谱指纹图谱数据进行分析。结果表明,该方法在一定程度上优于UVE-PLSR,筛选得到的变量所建立的模型能很好地对样本的抗氧化活性高低进行判别,找出与抗氧化活性密切相关的物质,同时还确认了相关物质抗氧化活性的强弱。
     四、针对复杂体系分析中物质定性的难题,提出利用保留时间预测模型辅助色谱联用仪器定性。对如何建立一个好的物质结构-保留时间关系模型的方法进行了有关的基础研究,提出了一种新的建模方法——子空间正交投影建模法。该方法利用了分子结构描述子的特点,提出块变量概念,将一个分子描述子家族中的多个变量看成一个整体,即作为一个块变量;并利用子空间正交投影法消除块变量之间的信息重叠与共线性,从每个子空间提取一个最佳的回归方向并建立较好的保留时间预测模型。与常用的PLSR与PCR相比,该方法所得模型的预测精度更好,模型复杂度更低。同时,还提出利用马氏距离定义模型的有效预测空间,为模型的实际应用提供指导。
     五、应用交替移动窗口因子分析法解决代谢组学研究中包埋峰物质定性的问题。交替移动窗口因子分析法通过交替地对两个不同的分析体系进行扫描和分析,从两个体系中获得选择性信息;然后利用所得选择性信息对两个体系进行解析,获得其中组分的纯色谱与纯波谱,实现复杂体系甚至是包埋峰体系的定性分析。由于该方法对色谱峰形状没有任何限制,因此使用范围更广。通过模拟数据与真实数据展示了该方法的分析过程与特点。结果表明,该方法是一种有效的代谢组学复杂数据分析手段。
The development of chemometric methods and modern hyphenated apparatus provides more powerful tools for us to explore the comprehensive chemical systems opposed to traditional analytical methods. At the same time, the analytical chemistry is promoted to the information, even knowledge provider, not just a data supplier anymore. The primary goal of this study is to develop some novel chemometric methods to deal with the problems encountered in investigation of complex multi-components system and to extract the information hidden in the obtained analytical data. The five parts were included in this thesis as follows.
     1. A novel pattern recognition method, named uncorrelated linear discriminant analysis (ULDA), were introduced and applied to analyse the concentration data obtained from metabonomics study. ULDA aims to maximize the separation between different classes to find out the discriminant vectors with best classification ability. At the same time, the obtained discriminant vectors are uncorrelated with each other to eliminate the informative overlap of these vectors. The results of investigations on simulative dataset and real plasma fatty acids dataset have shown that ULDA provided a better discriminant model than PCA and PLS. Furthermore, ULDA has successfully screened the feature variables as potential biomarkers.
     2. Based on fuzzy theory, fuzzy system analysis (FSA) method was developed for the data analysis of metabonomics. This novel and unsupervised method integrates the advantages of fuzzy clustering analysis, fuzzy cluster loading model and target projection-selective ratio methods. This method provided a complete data analysis strategy for metabonomics researches, including exploration of data with clustering method, interpretation of clustering results and identification of biomarkers. The NMR spectra of 613 diabetes patients were investigated by the proposed method. The cluster with high risk of death was found and then the relationship between this cluster and the peaks of NMR spectra were disclosed. Several chemical compounds in serum of diabetes patients were identified as potential biomarkers.
     3. A new method for variable selection in discriminant analysis was proposed to deal with the problems of variable selection and biomarker screen in pattern recognition. This method combined the methods of Monte-Carlo cross-validation (MCCV), uninformative variables elimination (UVE) and partial least squares- linear discriminant analysis (PLS-LDA). The proposed method can select out the informative variables to establish a good discriminant model and sort their importance for model by the help of C value plot. Two datasets of simulative mixture samples and real Chinese herbal medicine samples were investigated by this method and conventional UVE-PLSR. The results showed that the proposed method has selected out informative variables and established a better discriminant model for bioactive levels of antioxidant of samples. Furthermore, the compounds with potential bioactivity of antioxidant were identified and their bioactive strength was sorted by the help of C plot obtained during data analysis.
     4. The quantitative structure-retention relationship (QSRR) model is a useful assistance on qualitative analysis of complex multi-components systems, since the retention index is an important qualitative way in chromatographic analysis. A novel modeling method based on subspace orthogonal projection was developed. In this approach, the molecular descriptors coming from same family are grouped as a "block variable" With the help of subspace orthogonal projection, the block variables are orthogonalized to eliminate the redundancies existed in them. Each orthogonalized block variable can derivate a regression direction, and the final QSRR model is established based on all obtained directions. The results showed that the proposed modeling method might provide a QSRR model with better performance compared with PCR and PLSR. At the same time, the Mahalanobis distance was proposed to define a predictive domain of established model, which can clarify the practice range of the model.
     5. Alternative moving window factor analysis (AMWFA) was applied to solve the problem of embedded peaks occurred in metabonomics researches. AMWFA extracts selective information from two analytical systems by alternative scanning and comparing between two systems. On the basis of the selective information obtained from chromatograms and/or spectra of two systems, the AMWFA approach can resolve the embedded peaks in GC-MS two-dimensional data into pure chromatograms and spectra without any model assumption on the peak shape. The resolution results obtained from one simulated data and two real metabonomics data demonstrated the analytical procedure and the performance of the proposed approach and indicated that it will be a promising way for analyzing complex data from metabonomics researches.
引文
[1]俞汝勤.化学计量学导论.长沙:湖南教育出版社,1991.
    [2]梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法.长沙:湖南科学出版社,1996.
    [3]Kowalski B.R. Analytical chemistry as an information science. TrAC Trends in Analytical Chemistry,1981,1(3):71-74.
    [4]Kowalski B.R. Chemometrics. Analytical Chemistry,1980,52(5): R112-R122.
    [5]Lavine B. and Workman J. Chemometrics. Analytical Chemistry,2008, 80(12):4519-4531.
    [6]Massart D.L., Vandeginste B.G.M., Buydens L.M.C., et al. Handbook of chemometrics and qualimetrics. Amsterdam:Elsevier Science,1997.
    [7]梁逸曾,俞汝勤.分析化学手册-化学计量学(第十分册),第二版.北京:化学工业出版社,2000.
    [8]Nicholson J.K. and Wilson I.D. Understanding 'global' nsystems biology: Metabonomics and the continuum of metabolism. Nature Reviews Drug Discovery, 2003,2(8):668-676.
    [9]Wilson I.D., Plumb R., Granger J., et al. HPLC-MS-based methods for the study of metabonomics. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2005,817(1):67-76.
    [10]Goodacre R., Vaidyanathan S., Dunn W.B., et al. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends in Biotechnology,2004, 22(5):245-252.
    [11]Lindon J.C., Holmes E., Bollard M.E., et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers,2004,9(1):1-31.
    [12]Nicholson J.K., Lindon J.C., and Holmes E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999,29(11):1181-1189.
    [13]Lenz E.M. and Wilson I.D. Analytical strategies in metabonomics. Journal of Proteome Research,2007,6(2):443-458.
    [14]Xia J.F., Liang Q.L., Hu P., et al. Recent trends in strategies and methodologies for metabonomics. Fenxi Huaxue/Chinese Journal of Analytical Chemistry,2009,37(1):136-143.
    [15]Trygg J., Holmes E., and Lundstedt T. Chemometrics in Metabonomics. Proteome Res.,2007,6(2):469-479.
    [16]Trygg J., Lundstedt T., John C.L., et al., Chemometrics Techniques for Metabonomics. The Handbook of Metabonomics and Metabolomics. Amsterdam: Elsevier Science B.V.,2007.171-199.
    [17]Bruce S.J., Jonsson P., Antti H., et al. Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry:From extraction to data analysis. Analytical Biochemistry,2008,372(2):237-249.
    [18]Kitano H. Innovation-A robustness-based approach to systems-oriented drug design. Nature Reviews Drug Discovery,2007,6(3):202-210.
    [19]Xue T.H. and Roy R. Studying traditional Chinese medicine. Science,2003, 300(5620):740-741.
    [20]谢培山.中药现代化的取向与质量控制模式.中药新药与临床药理,2002,13(4):201-203.
    [21]谢培山.中药色谱指纹图谱鉴别的概念、属性、技术与应用.中国中药杂志,2001,26(10):653-655.
    [22]Liang Y.Z., Xie P.S., and Chan K. Quality control of herbal medicines. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2004,812(1-2):53-70.
    [23]Lu G.H., Chan K., Liang Y.Z., et al. Development of high-performance liquid chromatographic fingerprints for distinguishing Chinese Angelica from related umbelliferae herbs. Journal of Chromatography A,2005,1073(1-2):383-392.
    [24]Xie P.S., Chen S.B., Liang Y.Z., et al. Chromatographic fingerprint analysis- a rational approach for quality assessment of traditional Chinese herbal medicine. Journal of Chromatography A,2006,1112(1-2):171-180.
    [25]Tian R.T., Xie P.S., and Liu H.P. Evaluation of traditional Chinese herbal medicine:Chaihu (Bupleuri Radix) by both high-performance liquid chromatographic and high-performance thin-layer chromatographic fingerprint and chemometric analysis. Journal of Chromatography A,2009,1216(11):2150-2155.
    [26]van Nederkassel A.M., Vijverman V., Massart D.L., et al. Development of a Ginkgo biloba fingerprint chromatogram with UV and evaporative light scattering detection and optimization of the evaporative light scattering detector operating conditions. Journal of Chromatography A,2005,1085(2):230-239.
    [27]Lawto W.H. and Sylvestr E.A. Self modelling-curve resolution. Technometrics,1971,13(3):617-633.
    [28]Maeder M. Evolving Factor Analysis for the Resolution of Overlapping Chromatographic Peaks. Analytical Chemistry,1987,59(3):527-530.
    [29]Malinowski E.R. Window Factor-Analysis - Theoretical Derivation and Application to Flow-Injection Analysis Data. Journal of Chemometrics,1992,6(1): 29-40.
    [30]Manne R., Shen H.L., and Liang Y.Z. Subwindow factor analysis. Chemometrics and Intelligent Laboratory Systems,1999,45(1-2):171-176.
    [31]Shen H.L., Manne R., Xu Q.S., et al. Local resolution of hyphenated chromatographic data. Chemometrics and Intelligent Laboratory Systems,1999, 45(1-2):323-328.
    [32]Kvalheim O.M. and Liang Y.Z. Heuristic Evolving Latent Projections -resolving 2-way multicomponent data .1. selectivity, latent-projective graph, datascope, local rank, and unique resolution. Analytical Chemistry,1992,64(8): 936-946.
    [33]Liang Y.Z., Kvalheim O.M., Keller H.R., et al. Heuristic Evolving Latent Projections - Resolving 2-Way Multicomponent Data.2. Detection and Resolution of Minor Constituents. Analytical Chemistry,1992,64(8):946-953.
    [34]Winding W. and Guilment J. Interactive self-modeling mixture analysis. Analytical Chemistry,1991,63(14):1425-1432.
    [35]Gemperline P.J. A priori estimates of the elution profiles of the pure components in overlapped liquid-chromatography peaks using target factor-analysis. Journal of Chemical Information and Computer Sciences,1984,24(4):206-212.
    [36]Sanchez F.C., Rutan S.C., Garcia M.D.G., et al. Resolution of multicomponent overlapped peaks by the orthogonal projection approach, evolving factor analysis and window factor analysis. Chemometrics and Intelligent Laboratory Systems,1997,36(2):153-164.
    [37]Guo F.Q., Liang Y.Z., Xu C.J., et al. Determination of the volatile chemical constituents of Notoptergium incium by gas chromatography-mass spectrometry and iterative or non-iterative chemometrics resolution methods. Journal of Chromatography A,2003,1016(1):99-110.
    [38]Guo F.Q., Liang Y.Z., Huang L.F., et al. Determination of the volatile chemical constituents of Notoptergium incium by GC-MS and OPA or EWOP. Chemical Journal of Chinese Universities-Chinese,2004,25(3):430-435.
    [39]Li B.Y., Liang Y.Z., Du Y.P., et al. Resolution and identification of the acidic fraction of a petroleum ether extract of Radix Rehmanniae Preparata by an evolving chemometric approach. Chromatographia,2003,57(3-4):235-243.
    [40]Li X.N., Cui H., Song Y.Q., et al. Analysis of volatile fractions of Schisandra chinensis (Turcz.) baill. using GC-MS and chemometric resolution. Phytochemical Analysis,2003,14(1):23-33.
    [41]Liang Y.Z., Kvalheim O.M., Rahmani A., et al. Resolution of Strongly Overlapping 2-Way Multicomponent Data by Means of Heuristic Evolving Latent Projections. Journal of Chemometrics,1993,7(1):15-43.
    [42]Xu C.J., Liang Y.Z., Song Y.Q., et al. Resolution of the essential constituents of Ramulus cinnamomi by an evolving chemometric approach. Analytical and Bioanalytical Chemistry,2001,371(3):331-336.
    [43]Hastie T., Tibshirani R., and Friedman J. The Elements of Statistical Learning:Data Mining, Inference, and Prediction. New York, USA:Springer,2001.
    [44]Schneeweiss H. and Mathes H. Factor analysis and principal components. Journal of Multivariate Analysis,1995,55(1):105-124.
    [45]Baker F.B. and Hubert L.J. MEASURING POWER OF HIERARCHICAL CLUSTER-ANALYSIS. Journal of the American Statistical Association,1975, 70(349):31-38.
    [46]Gustafson D.E. and Kessel W.C. FUZZY CLUSTERING WITH A FUZZY COVARIANCE MATRIX. Proceedings of the IEEE Conference on Decision and Control,1978:761-766.
    [47]Holmes E., Nicholls A.W., Lindon J.C., et al. Chemometric models for toxicity classification based on NMR spectra of biofluids. Chemical Research in Toxicology,2000,13(6):471-478.
    [48]Jia L.W., Chen J., Yin P.Y., et al. Serum metabonomics study of chronic renal failure by ultra performance liquid chromatography coupled with Q-TOF mass spectrometry. Metabolomics,2008,4(2):183-189.
    [49]Li Q.R., Zhang Q., Xu G.W., et al. Metabonomics study of intestinal transplantation using ultrahigh-performance liquid chromatography time-of-flight mass spectrometry. Digestion,2008,77(2):122-130.
    [50]Odunsi K., Wollman R.M., Ambrosone C.B., et al. Detection of epithelial ovarian cancer using H-1-NMR-based metabonomics. International Journal of Cancer, 2005,113(5):782-788.
    [51]Zhang X.G., Han T., Zhang Q.Y., et al. Chemical Fingerprinting and Hierarchical Clustering Analysis of Centella asiatica from Different Locations in China. Chromatographia,2009,69(1-2):51-57.
    [52]Bezdek J.C., Ehrlich R., and Full W. FCM:The fuzzy c-means clustering algorithm. Computers and Geosciences,1984,10(2-3):191-203.
    [53]Cuperlovic-Culf M., Belacel N., Culf A.S., et al. NMR metabolic analysis of samples using fuzzy K-means clustering. Magnetic Resonance in Chemistry,2009, 47(SUPPL.1).
    [54]Li X., Lu X., Tian J., et al. Application of fuzzy c-means clustering in data analysis of metabolomics. Analytical Chemistry,2009,81(11):4468-4475.
    [55]Wold S. Pattern recognition by means of disjoint principal components models. Pattern Recognition,1976,8:127-139.
    [56]Geladi P. and Kowalski B.R. Partial least-squares regression:a tutorial. Analytica Chimica Acta,1986,185:1-17.
    [57]Kowalski B.R. and Bender C.F. Pattern recognition. Powerful approach to interpreting chemical data. Journal of the American Chemical Society,1972,94(16): 5632-5639.
    [58]Bosque M. Understanding 99% of artificial neural networks:introduction & tricks. New York:iUniverse,2002.17-22.
    [59]Lutz U., Lutz R.W., and Lutz W.K. Metabolic profiling of glucuronides in human urine by LC-MS/MS and partial least-squares discriminant analysis for classification and prediction of gender. Analytical Chemistry,2006,78(13): 4564-4571.
    [60]Yuan K.L., Kong H.W., Guan Y.F., et al. A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2007,850(1-2):236-240.
    [61]Zhou J.L., Xu B., Huang J., et al. H-1 NMR-based metabonomic and pattern recognition analysis for detection of oral squamous cell carcinoma. Clinica Chimica Acta,2009,401(1-2):8-13.
    [62]Wang C., Kong H.W., Guan Y.F., et al. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Analytical Chemistry,2005,77(13):4108-4116.
    [63]Ramadan Z., Jacobs D., Grigorov M., et al. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta,2006,68(5):1683-1691.
    [64]Bai L.F., Zhang H.T., Wang H.X., et al. Analysis of ultraviolet absorption spectrum of Chinese herbal medicine - Cortex Fraxini by double ANN. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2006,65(3-4): 863-868.
    [65]Xia J.M., Wu X.J., and Yuan Y.J. Integration of wavelet transform with PCA and ANN for metabolomics data-mining. Metabolomics,2007,3(4):531-537.
    [66]Makinen V.P., Soininen P., Forsblom C., et al.1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death. Molecular Systems Biology,2008,4.
    [67]Kumpula L.S., Makela S.M., Makinen V.P., et al. Characterization of metabolic interrelationships and in silico phenotyping of lipoprotein particles using self-organizing maps. Journal of Lipid Research,2010,51(2):431-439.
    [68]Makinen V.P., Forsblom C., Thorn L.M., et al. Metabolic phenotypes, vascular complications, and premature deaths in a population of 4,197 patients with type 1 diabetes. Diabetes,2008,57(9):2480-2487.
    [69]Makinen V.P., Soininen P., Forsblom C., et al. Cardiovascular risk factors in type 1 diabetes:A metabonomic study by 1H NMR spectroscopy of serum. Atherosclerosis Supplements,2007,8(1):218-218.
    [70]Stigler S.M. Gauss and the invention of least-squares. Annals of Statistics, 1981,9(3):465-474.
    [71]Cowe I.A. and McNicol J.W. The use of principal components in the analysis of near-infrared spectra. Applied Spectroscopy,1985,39(2):257-266.
    [72]Chang C.W., Laird D.A., Mausbach M.J., et al. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Science Society of America Journal,2001,65(2):480-490.
    [73]Keithley R.B., Heien M.L., and Wightman R.M. Multivariate concentration determination using principal component regression with residual analysis. Trac-Trends in Analytical Chemistry,2009,28(9):1127-1136.
    [74]Sun J.G. A multivariate principal component regression analysis of NIR data. Journal of Chemometrics,1996,10(1):1-9.
    [75]Zarrabi K., Durfee S.L., Daniel S.R., et al. Use of principal component regression to characterize a complex oxidation-product mixture. Journal of Analytical and Applied Pyrolysis,1991,21(1-2):1-14.
    [76]Wold S., Sjostrom M., and Eriksson L. PLS-regression:a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems,2001,58(2): 109-130.
    [77]Aznar M., Lopez R., Cacho J., et al. Prediction of aged red wine aroma properties from aroma chemical composition. Partial least squares regression models. Journal of Agricultural and Food Chemistry,2003,51(9):2700-2707.
    [78]Oberg T. A QSAR for baseline toxicity:Validation, domain of application, and prediction. Chemical Research in Toxicology,2004,17(12):1630-1637.
    [79]Rossel R.A.V., Walvoort D.J.J., McBratney A.B., et al. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma,2006,131(1-2):59-75.
    [80]Saxena A.K. and Prathipati P. Comparison of MLR, PLS and GA-MLR in QSAR analysis. SAR and QSAR in Environmental Research,2003,14(5-6):433-445.
    [81]Roy P.P. and Roy K. On some aspects of variable selection for partial least squares regression models. Qsar & Combinatorial Science,2008,27(3):302-313.
    [82]Wold S., Sjostrom M., and Eriksson L. Partial Least Squares (PLS) in chemistry. The Encyclopedia of Computational Chemistry,1999:2006-2020.
    [83]Nicholls A.W., Nicholson J.K., Haselden J.N., et al. A metabonomic approach to the investigation of drug-induced phospholipidosis:An NMR spectroscopy and pattern recognition study. Biomarkers,2000,5(6):410-423.
    [84]Oliver S.G., Winson M.K., Kell D.B., et al. Systematic functional analysis of the yeast genome. Trends Biotechnol,1998,16:373-378.
    [85]Sauter H., Lauer M., and Fritsch H. Metabolic profiling of plants - a new diagnostic technique. ACS. Symposium Series,1991,443:288-299.
    [86]Ott K.H., Aranibar N., Singh B., et al. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry,2003,62(6):971-985.
    [87]Fiehn O. Metabolomics - The link between genotypes and phenotypes. Plant Molecular Biology,2002,48(1-2):155-171.
    [88]Taylor J., Ross D.K., Thomas A., et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics,2002, 18:241-248.
    [89]Weckwerth W., Tolstikov V., and Fiehn O., Metabolomic characterization of transgenic potato plants using GC/TOF and LC/MS, in 49th ASMS Conference on Mass spectrometry and Allied Topics.2001.
    [90]Keun H.C., Ebbels T.M.D., Bollard M.E., et al. Geometric trajectory analysis of metabolic responses to toxicity can define treatment specific profiles. Chemical Research in Toxicology,2004,17(5):579-587.
    [91]Nicholson J.K., Connelly J., Lindon J.C., et al. Metabonomics:a platform for studying drug toxicity and gene function. Nature reviews,2002,1:153-161.
    [92]Barshop B.A. Metabolomic approaches to mitochondrial disease:correlation of urine organic acids. Mitochondrion,2004,4:521-527.
    [93]Chen M. and Hofestadt R. A medical bioinformatics approach for metabolic disorders:Biomedical data prediction, modeling, and systematic analysis. Journal of Biomedical Informatics,2006,39(147-159).
    [94]Dunckley T., Coon K.D., and Stephan D.A. Discovery and development of biomarkers of neurological disease. Drug Discovery Today,2005,10:326-334.
    [95]Griffin J.L. Metabonomics:NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis,. Current Opinion in Chemical Biology,2003,7:648-654.
    [96]Yi L.-Z., He J., Liang Y.-Z., et al. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Letters, 2006,580(30):6837-6845.
    [97]Yi L., He J., Liang Y, et al. Simultaneously quantitative measurement of comprehensive profiles of esterified and non-esterified fatty acid in plasma of type 2 diabetic patients. Chemistry and Physics of Lipids,2007,150(2):204-216.
    [98]Yuan K., Kong H., Guan Y., et al. A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile. Journal of Chromatography B, 2007,850(1-2):236-240.
    [99]Johnson R.A. and Wichern D.W. Principal Component Analysis in Applied Multivariate Statistical Analysis (Second ed.). New Jersey:Prentice-Hall International, 1988.
    [100]Majumder S.K., Gupta A., Gupta S., et al. Multi-class classification algorithm for optical diagnosis of oral cancer. Journal of Photochemistry and Photobiology B:Biology,2006,85(2):109-117.
    [101]Halouska S. and Powers R. Negative impact of noise on the principal component analysis of NMR data. Journal of Magnetic Resonance,2006,178(1): 88-95.
    [102]Kvalheim O.M. and Karstang T.V. Interpretation of latent-variable regression-models. Chemometrics and Intelligent Laboratory Systems,1989,7(1-2): 39-51.
    [103]Kvalheim O.M. Latent-variable regression-models with higher-order terms- an extension ofresponse modeling by orthogonal design and multiple linear-regression. Chemometrics and Intelligent Laboratory Systems,1990,8(1): 59-67.
    [104]Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Eugenics,1936,7:178-188.
    [105]Foley D. and J. S. Optimal set of discriminant vectors. IEEE Transactions on Computers,1975,24(3):281-289.
    [106]Jin Z., Yang J.-Y., Hu Z.-S., et al. Face recognition based on the uncorrelated discriminant transformation. Pattern Recognition,2001,34(7): 1405-1416.
    [107]Fukunaga K. Introduction to Statistical Pattern Classification. New York: Academic Press,1990.
    [108]Swets D.L. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):831-836.
    [109]Ye J., Janardan R., Li Q., et al. Feature reduction via generalized uncorrelated linear discriminant analysis. IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1312-1322.
    [110]Friedman J. Regularized discriminant analysis. J. Am. Statistical Assoc., 1989,84(405):165-175.
    [111]Howland P., Jeon M., and Park H. Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM Journal on Matrix Analysis and Applications,2004,25(1): 165-179.
    [112]Howland P. and Park H. Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8):995-1006.
    [113]Hastie T., Buja A., and Tibshirani R. Penalized discriminant analysis. Annals of Statistics,1995,23:73-102.
    [114]Ye J., Janardan R., Park C.H., et al. An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8):982-994.
    [115]Kokot S. and Gilbert C. Application of drift spectroscopy and chemometrics to the discrimination of dye mixtures extracted from fibres from worn clothing. The Analyst,1994,119(4):671-676.
    [116]Sato-Ilic M. General class of weighted fuzzy cluster loading models. International Journal of Innovative Computing, Information and Control,2008,4(5): 1023-1032.
    [117]Dunn J.C. Fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern,1973,3(3):32-57.
    [118]Chaturvedi N., Fuller J.H., Taskinen M.R., et al. Differing associations of lipid and lipoprotein disturbances with the macrovascular and microvascular complications of type 1 diabetes. Diabetes Care,2001,24(12):2071-2077.
    [119]Lyons T.J., Jenkins A.J., Zheng D.Y., et al. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Investigative Ophthalmology & Visual Science,2004,45(3):910-918.
    [120]Thorn L.M., Forsblom C., Fagerudd J., et al. Metabolic syndrome in type 1 diabetes - Association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care,2005,28(8):2019-2024.
    [121]李嘉强,戴颖秀,刘玉敏等.糖尿病及高危人群血清游离脂肪酸成分分析.中国公共卫生,2006,22(6):690-692.
    [122]Note for Studying Fingerprint of Traditional Chinese Medicine Injections (Draft).2000, State Food and Drug Administration of China (SFDA).
    [123]Note for Guidance on Quality of Herbal Medicinal Products, Products C.f.P.M.P.a.C.f.V.M., Editor.2002, The European Agency for the Evaluation of Medicinal Products (EMEA).
    [124]Guidance for Industry:Botanical Drug Products, Research C.f.D.E.a., Editor.2004, US Food and Drug Administration.
    [125]Revised Draft:Good Manufacturing Practices:Updated Supplementary Guidelines for the Manufacture of Herbal Medicinal Products, Policy D.o.E.D.a.M., Editor.2004., World Health Organization (WHO).
    [126]Zeng Z., Chau F.-t., Chan H.-y., et al. Recent advances in the compound-oriented and pattern-oriented approaches to the quality control of herbal medicines. Chinese Medicine,2008,3(1):9.
    [127]Mok D.K.W. and Chau F.T. Chemical information of Chinese medicines:A challenge to chemist. in International Conference on Chemometrics and Bioinformatics in Asia.2004. Shanghai, PEOPLES R CHINA.210-217.
    [128]Chen Y., Zhu S.B., Xie M.Y., et al. Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. Analytica Chimica Acta,2008,623(2):146-156.
    [129]Cheng Y.Y., Yu J., and Wu Y.J. A visualization method of chromatographic data for discovering fingerprint features of natural herbal medicines. Acta Chimica Sinica,2002,60(2):328-333.
    [130]Gong F., Wang B.T., Chau F.T., et al. Data preprocessing for chromatographic fingerprint of herbal medicine with chemometric approaches. Analytical Letters,2005,38(14):2475-2492.
    [131]Gong F., Wang B.T., Liang Y.Z., et al. Variable selection for discriminating herbal medicines with chromatographic fingerprints. Analytica Chimica Acta,2006, 572(2):265-271.
    [132]Li B.Y., Hu Y., Liang Y.Z., et al. Quality evaluation of fingerprints of herbal medicine with chromatographic data. Analytica Chimica Acta,2004,514(1): 69-77.
    [133]Li J., Li W.Z.M., Huang W., et al. Quality evaluation of Rhizoma Belamcandae (Belamcanda chinensis (L.) DC.) by using high-performance liquid chromatography coupled with diode array detector and mass spectrometry. Journal of Chromatography A,2009,1216(11):2071-2078.
    [134]Ni Y., Peng Y., and Kokot S. Fingerprint analysis of Eucommia bark by LC-DAD and LC-MS with the aid of chemometrics. Chromatographia,2008,67(3-4): 211-217.
    [135]Sun G.X. and Shi C.Y. The overall quality control of Radix scutellariae by capillary electrophoresis fingerprint. Journal of Chromatographic Science,2008, 46(5):454-460.
    [136]Zou H.B., Yang G.S., Liu B., et al. Recognition of Radix Paeoiae Alba herbs(Fam. Ranunculaceae) with HPLC fingerprint spectra. Analytical Letters,2008, 41(18):3309-3323.
    [137]Yi L.Z., Yuan D.L., Liang Y.Z., et al. Quality control and discrimination of Pericarpium Citri Reticulatae and Pericarpium Citri Reticulatae Viride based on high-performance liquid chromatographic fingerprints and multivariate statistical analysis. Analytica Chimica Acta,2007,588(2):207-215.
    [138]Faber N.M., Meinders M.J., Geladi P., et al. Random error bias in principal component analysis.2. Application of theoretical predictions to multivariate problems. Analytica Chimica Acta,1995,304(3):273-283.
    [139]Leardi R. Application of genetic algorithm-PLS for feature selection in spectral data sets. in 6th Scandinavian Symposium on Chemometrics.1999. Porsgrunn, Norway:John Wiley & Sons Ltd.643-655.
    [140]Centner V., Massart D.L., deNoord O.E., et al. Elimination of uninformative variables for multivariate calibration. Analytical Chemistry,1996, 68(21):3851-3858.
    [141]Han Q.J., Wu H.L., Cai C.B., et al. An ensemble of Monte Carlo uninformative variable elimination for wavelength selection. Analytica Chimica Acta, 2008,612(2):121-125.
    [142]Cai W.S., Li Y.K., and Shao X.G. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems,2008,90(2):188-194.
    [143]Xu Q.S., Liang Y.Z., and Du Y.P. Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration. Journal of Chemometrics,2004,18(2):112-120.
    [144]Yan A.X., Jiao G.M., Hu Z.D., et al. Use of artificial neural networks to predict the gas chromatographic retention index data of alkylbenzenes on carbowax-20M. Computers & Chemistry,2000,24(2):171-179.
    [145]Zhang R.S., Yan A.X., Liu M.C., et al. Application of artificial neural networks for prediction of the retention indices of alkylbenzenes. Chemometrics and Intelligent Laboratory Systems,1999,45(1-2):113-120.
    [146]Krawczuk A., Voelkel A., Lulek J., et al. Use of topological indices of polychlorinated biphenyls in structure-retention relationships. Journal of Chromatography A,2003,1018(1):63-71.
    [147]Kortvelyesi T., Gorgenyi M., and Heberger K. Correlation between retention indices and quantum-chemical descriptors of ketones and aldehydes on stationary phases of different polarity. Analytica Chimica Acta,2001,428(1):73-82.
    [148]Du Y., Liang Y., and Yun D. Data mining for seeking an accurate quantitative relationship between molecular structure and GC retention indices of alkenes by projection pursuit. Journal of Chemical Information and Computer Sciences,2002,42(6):1283-1292.
    [149]Devillers J. and Balaban A.T. Historical development of topological indices. Topological Indices and Related Descriptors in QSAR and QSPR,1998.
    [150]Kier L.B. and Hall L.H. Molecular Structure Description: The Electrotopological State. New York, USA:Academic Press,1999.
    [151]Cramer III R.D., Patterson D.E., and Bunce J.D. Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society,1988,110(18):5959-5967.
    [152]Morales D.A. and Araujo O. On the search for the best correlation between graph theoretical invariants and physicochemical properties. Journal of Mathematical Chemistry,1993,13(1):95-106.
    [153]Gramatica P., Navas N., and Todeschini R.3D-modelling and prediction by WHIM descriptors. Part 9. Chromatographic relative retention time and physico-chemical properties of polychlorinated biphenyls (PCBs). Chemometrics and Intelligent Laboratory Systems,1998,40(1):53-63.
    [154]Klein C.T., Kaiser D., and Ecker G. Topological Distance Based 3D Descriptors for Use in QSAR and Diversity Analysis. Journal of Chemical Information and Computer Sciences,2004,44(1):200-209.
    [155]Martens H. and Naes T. Multivariate Calibration. Chichester, UK: John Wiley & Sons Ltd,1989.
    [156]Wold S., Sjostrom M., and Eriksson L. PLS-regression:A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems,2001,58(2): 109-130.
    [157]Du Y., Liang Y., Li B., et al. Orthogonalization of block variables by subspace-projection for quantitative structure property relationship (QSPR) research. Journal of Chemical Information and Computer Sciences,2002,42(5):993-1003.
    [158]NikolovaN. and Jaworska J. Approaches to Measure Chemical Similarity-A Review. QSAR and Combinatorial Science,2004,22(9-10):1006-1026.
    [159]Draper N.R. and Smith H. Applied Regression Analysis. New York, USA: John Wiley and Sons,1981.
    [160]Furnival G.M. and Wilson Jr R.W. REGRESSIONS BY LEAPS AND BOUNDS. Technometrics,1974,16(4):499-511.
    [161]Hasegawa K. and Funatsu K. GA strategy for variable selection in QSAR studies:GAPLS and D-optimal designs for predictive QSAR model. Journal of Molecular Structure:THEOCHEM,1998,425(3):255-262.
    [162]Goldberg D.E. Genetic algorithms in search, optimization and machine learning 1989.
    [163]Hibbert D.B. Genetic algorithms in chemistry. Chemometrics and Intelligent Laboratory Systems,1993,19(3):277-293.
    [164]Katritzky A.R., Chen K., Maran U., et al. QSPR correlation and predictions of GC retention indexes for methyl- branched hydrocarbons produced by insects. Analytical Chemistry,2000,72(1):101-109.
    [165]Wikel J.H. and Dow E.R. The use of neural networks for variable selection in QSAR. Bioorganic and Medicinal Chemistry Letters,1993,3(4):645-651.
    [166]Sutter J.M., Dixon S.L., and Jurs P.C. Automated descriptor selection for quantitative structure - Activity relationships using generalized simulated annealing. Journal of Chemical Information and Computer Sciences,1995,35(1):77-84.
    [167]Lucic B., Trinajstic N., Sild S., et al. A new efficient approach for variable selection based on multiregression:Prediction of gas chromatographic retention times and response factors. Journal of Chemical Information and Computer Sciences,1999, 39(3):610-621.
    [168]Taraviras S.L., Ivanciuc O., and Cabrol-Bass D. Identification of groupings of graph theoretical molecular descriptors using a hybrid cluster analysis approach. Journal of Chemical Information and Computer Sciences,2000,40(5):1128-1146.
    [169]Ivanciuc O., Taraviras S.L., and Cabrol-Bass D. Quasi-orthogonal basis sets of molecular graph descriptors as a chemical diversity measure. Journal of Chemical Information and Computer Sciences,2000,40(1):126-134.
    [170]Randic M. Resolution of ambiguities in structure-property studies by use of orthogonal descriptors. Journal of Chemical Information and Computer Sciences(?), 1991,31(2):311-320.
    [171]Amic D., Davidovic-Amic D., and Trinajstic N. Calculation of retention times of anthocyanins with orthogonalized topological indices. Journal of Chemical Information and Computer Sciences,1995,35(1):136-139.
    [172]Lucic B., Nikolic S., Trinajstic N., et al. The structure-property models can be improved using the orthogonalized descriptors. Journal of Chemical Information and Computer Sciences,1995,35(3):532-538.
    [173]Soskic M., Plavsic D., and Trinajstic N. Link between orthogonal and standard multiple linear regression models. J. Chem. Inf. Comput. Sci.,1996,36: 829-832.
    [174]Xu L. and Zhang W.J. Comparison of different methods for variable selection. Analytica Chimica Acta,2001,446(1-2):477-483.
    [175]Balaban A.T. and Ivanciuc O. Historical developments of topological indices. Topological Indices and Related Descriptors in QSAR and QSPR,1999: 21-57.
    [176]Motoc Ⅰ. and Balaban A.T. Topological indices:Intercorrelations, physical meaning, correlation ability. Rev. Roum. Chim.,1981,26:593-600.
    [177]Motoc I., Balaban A.T., Mekenyan O., et al. Topological indices: Inter-relations and composition. MATCH (Commun. Math. Chem.),1982,13: 369-404.
    [178]Hu Q.N., Liang Y.Z., Yin H., et al. Structural interpretation of the topological index.2. The molecular connectivity index, the Kappa index, and the atom-type E-State index. Journal of Chemical Information and Computer Sciences, 2004,44(4):1193-1201.
    [179]Shen J.W., Hu Q.N., and Liang Y.Z. Application of subspace comparison method in studying the relationship between topological block variables and variable selection. Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities,2005,26(1):39-42.
    [180]Kier L.B. and Hall L.H. Molecular Connectivity in Chemistry and Drug Research. New York, USA:Academic Press,1976.
    [181]Kier L.B. and Hall L.H., The kappa indices for modeling molecular shape and flexibility, In:Devillers J. and Balaban A.T., eds. Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands:Gordon and Breach Science Publishers,1999.455-489.
    [182]Kier L.B. and Hall L.H. An electrotopological-state index for atoms in molecules. Pharmaceutical Research,1990,7(8):801-807.
    [183]Akhlaghi Y. and Kompany-Zareh M. Application of radial basis function networks and successive projections algorithm in a QSAR study of anti-HIV activity for a large group of HEPT derivatives. Journal of Chemometrics,2006,20(1-2):1-12.
    [184]Kirkpatrick P. and Ellis C. Chemical space. Nature,2004,432:823-865.
    [185]Guha R. and Jurs P.C. Determining the validity of a QSAR model - A classification approach. Journal of Chemical Information and Modeling,2005,45(1): 65-73.
    [186]Hawkins D.M., Basak S.C., and Mills D. Assessing model fit by cross-validation. Journal of Chemical Information and Computer Sciences,2003, 43(2):579-586.
    [187]De Maesschalck R., Jouan-Rimbaud D., and Massart D.L. The Mahalanobis distance. Chemometrics and Intelligent Laboratory Systems,2000,50(1): 1-18.
    [188]Shao J. Bootstrap Model Selection. Journal of the American Statistical Association,1996,91(434):655-665.
    [189]Liu S.S., Liu Y., Li Z.L., et al. A novel molecular electronegativity-distance vector(MEDV). Acta Chimica Sinica,2000,58(11):1353-1357.
    [190]Lai W.C. and Song C.S. Temperature-programmed retention indices for G.C and M.S. analysis of coal- and petroleum- derived liquid fuels. Fuel,1995,74: 1436-1451.
    [191]Kvalheim O.M. A partial-least-squares approach to interpretative analysis of multivariate data. Chemometrics and Intelligent Laboratory Systems,1988,3(3): 189-197.
    [192]Wei S.Y., Xu C.J., Mok D.K.W., et al. Analytical comparison of different parts of Radix Angelicae Sinensis by gas chromatography coupled with mass spectrometry. Journal of Chromatography A,2008,1187(1-2):232-238.
    [193]Maeder M. and Zilian A. Evolving Factor-Analysis, a New Multivariate Technique in Chromatography. Chemometrics and Intelligent Laboratory Systems, 1988,3(3):205-213.
    [194]Malinowski E.R. Automatic window factor analysis - A more efficient method for determining concentration profiles from evolutionary spectra. Journal of Chemometrics,1996,10(4):273-279.
    [195]Liang Y.Z., Manne R., and Kvalheim O.M. Resolution of Embedded Chromatographic Peaks by Sequential Rank Analysis of the 1 st-Order Differentiated Elution Profile in the Time-Domain. Chemometrics and Intelligent Laboratory Systems,1994,22(2):229-240.
    [196]Liang Y.Z. and Kvalheim O.M. Diagnosis and Resolution of Multiwavelength Chromatograms by Rank Map, Orthogonal Projections and Sequential Rank Analysis. Analytica Chimica Acta,1994,292(1-2):5-15.
    [197]Zeng Z.D., Liang Y.Z., Wang Y.L., et al. Alternative moving window factor analysis for comparison analysis between complex chromatographic data. Journal of Chromatography A,2006,1107(1-2):273-285.
    [198]Hu Y., Liang Y.Z., Li B.Y., et al. Multicomponent spectral correlative chromatography applied to complex herbal medicines. Journal of Agricultural and Food Chemistry,2004,52(26):7771-7776.
    [199]Wang Y.L., Liang Y.Z., Hu Y, et al. Study on absorption of Angelica sinensis in rabbit plasma by HPLC-DAD-MS and multicomponent spectral correlative chromatography. Chemometrics and Intelligent Laboratory Systems,2006,82(1-2): 229-235.
    [200]Jolliffee I.T. Principal component analysis. New York:Springer Verlag, 1986.
    [201]Keller H.R. and Massart D.L. Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis. Analytica Chimica Acta,1991,246(2):379-390.
    [202]中国药典委员会.中国药典2000.
    [203]Yang J., Xu G.W., Hong Q.F., et al. Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2004,813(1-2):53-58.
    [204]沈海林,李晓宁,梁逸曾.化学体系组分数确定的新方法:子空间比较法.科学通报,2000,45(6):578-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700