江西相山铀矿田热液蚀变特征及成矿物理化学条件分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是作者参加“危机矿山接替资源勘查试点项目”(国土资发[2004]296号)之“江西省乐安县山南铀矿接替资源勘查”项目(项目编码:200436009,任务书编号:[2004]009)研究工作结果编写而成的。
     江西相山铀矿田是目前中国最大的火山岩型铀矿田,也是国内目前主要的铀矿产地之一。对于相山铀矿,前人做过较多的研究工作,取得了较多的研究成果。但前人的研究大都是在上世纪八十年前完成的,存在着信息陈旧,技术落后等局限性。后期虽然也有不少专家学者陆续对相山进行了研究,但在热液蚀变以及成矿物理化学条件上仍有不少的争论。
     本文是在收集总结前人研究资料的基础上,通过野外实地观察分析总结、电子探针以及成矿流体包裹体的研究分析等手段,探讨了矿区围岩蚀变与矿化的关系,分析了矿床的成矿物理化学条件。这对于更加有效、及时地指导相山铀矿田的找矿勘查工作,使找矿工作更有针对性,减少盲目性,缩小工作范围,提高勘查效率具有一定的理论指导意义。
     经过近两年的研究后,取得的主要认识如下:
     1.证实了前人的普遍认识,即相山铀矿田主要经历了三次大的热液蚀变过程,分别为成矿前的以钠长石化为主的蚀变(碱性蚀变),成矿期的以萤石—水云母化为主的蚀变(酸性蚀变),以及成矿后期的硅质蚀变。并且围岩蚀变跟铀矿化关系密切,矿化蚀变成带状对称分布。进一步研究认为:钠长石交代岩(碱性蚀变)的广泛分布是找矿选区的标志;钙、镁交代的存在是成矿条件优劣的评价指标:而萤石—水云母交代(酸性蚀变)的出现是富矿体赋存环境的识别依据。
     2.对相山四个主要的铀矿床中原生流体包裹体的研究表明:相山铀矿床流体包裹体的均一温度分布范围为140~360℃。峰值分布为:沙洲200~260℃,邹家山140~160℃,280~290℃,横涧200~210℃,南陂280~310℃,340~360℃;矿床成矿深度:沙洲0.561~1.443km,平均深度为0.965km;邹家山:0.506~1.048km,平均深度为0.775km;南陂:0.683~1.294km,平均深度为1.090km;横涧:0.504~0.756km,平均深度为0.596km;成矿压力(单位:105 Pa):沙洲为168.4~433.0,平均为289.4;邹家山为151.8~314.5,平均为232.5;南陂为204.8~388.1,平均为326.9;横涧为151.3~226.9,平均为178.7。成矿溶液的平均密度为0.93g/cm~3。
     从包裹体的温度、盐度、压力以及大致成矿深度可以看出,相山铀矿田的矿床分布存在着带状分布的特点,即从相山破火山口向外,各物理化学性质大致成偏高的趋势。
     3.相山铀矿田成矿热水溶液的来源属于大气降水和岩浆水范围,并且已发生明显的“氧漂移”;推测成矿流体C的来源可能为大气降水和岩浆岩。
     4.相山铀矿田的成矿铀物质主要来自于震旦—寒武纪岩石以及与小岩体有关的深源岩浆,其次还可能来自于凝固的花岗斑岩、斑状花岗岩、似斑状花岗岩及其它围岩。
This paper is based on the project of "Shannan uranium ore resources exploration in Le'an County,Jiangxi Province,"(No:200436009) of "The crisis of resources prospecting and mining project"
     Xiangshan uranium ore field in Jiangxi province,as one of the biggest volcanic-type uranium ore deposits in China,is the major domestics uranium mining recently.Although lots of research work have been done about this ore field before the 1980s last century,the mineralized alteration and ore-forming conditions in physics and chemistry are still poorly understanding for long time.
     Based on the collection and field observations,the results of the electronic probe and fluid inclusions in the research and analysis,and other means to identify the rock alteration and mineralization,as well as the type of this deposit.For these can enable effective and timely guidance of uranium ore field of mineral exploration,prospecting work so that more targeted to reduce blindness,and narrow the scope of work, improving the efficiency of exploration.
     The main achievements of this essay include as following:
     1.The Xiangshan uranium ore-field experienced three major large hydrothermal alteration process:before the mineralization to the albitzation metasomatism(albitzation alteration);mineralization to the fluorite-hydrom icatization alteration(acid alteration);and the latter part of siliceous alteration.Mineralization and alteration rock close relationship with uranium mineralization,pitting a band mineralization symmetrical distribution.We can get the concluded: albitzation alteration is the wide distribution of the signs prospecting constituency;calcium,magnesium explainthe existence of mineralization conditions merits of the evaluation index,and fluorite-hydrom icatization alteration is the emergence of Rich Ore occurrence of the environment based on the identification.
     2.The study of the fluid inclusions in Xiangshan uranium deposit prove:a uranium deposit fluid inclusions in the uniform temperature distribution in the range of 140~360℃.Peak distribution:Shazhou 200~260℃,Zou Jiashan 140~160℃,280 "-- 290℃,Hengjian 200~210℃,Nanpi 280~310℃,340~360℃;Deposits Depth: Shazhou 0.561~1.443 km,an average depth of 0.965 km:Zou Jiashan: 0.506~1.048 km,an average depth of 0.775 km;Nanpi 0.683~1.294 km, an average depth of 1.090 km;Hengjian 0.504~0.756 km,The average depth of 0.596 km;mineralization pressure(unit:10~5 Pa):Shazhou to 168.4 from 433.0,with an average of 289.4;Zou Jiashan to 151.8 from 314.5,with an average of 232.5;Nanpi to 204.8 from 388.1,with an average of 326.9; Hengjian For 151.3 to 226.9,with an average of 178.7.the mineralization solution average density is 0.93 g/cm~2.
     From the fluid inclusion of temperature,salinity,pressure and depth of mineralization can be seen broadly,the field of uranium ore deposits there is a zonal distribution of the characteristics,from the crater of the mountain broke out,the physical and chemical properties generally High into the trend.
     3.The fluid of Xiangshan uranium deposit com from:the hydrothermal of mineralization of Xiangshan uranium deposit are come from the a source of precipitation and water of the magma,and obviously has the "oxygen drift";speculate mineralization fluid C also may be the source of water of river and the magma.
     4.In Xiangshan uranium deposit,U mainly come from Zhen Dan-Cambrian rocks and the deep source of magma.Secondly,it may also come from the solidification of granite porphyry,Granitic porphyry,porphyry like granite and other rocks.
引文
[1]Hansley,P.L.,Fitzpartick,J.J.,1989.Compositional and crystallographic data on REE-bearing coffinite from the Grants uranium region,northwestern New Mexico.American Mineralogist 74,263-270.
    [2]Jensen,M.L.,1958.Sulfur isotopes and the origin of sandstone-type uranium ore deposits.Economic Geology 53,598-616.
    [3]Landais,P.,1993.Bitumens in Uranium Deposits.In:Parnell,J.,Kucha,H.,kandais,P.(Eds.),Bitumens in Ore Deposits.Springer-Verlag,Berlin,pp.213-238.
    [4]S.C.Antunes,D.R.de Figueiredo,S.M.Marques,B.B.Castro,R.Pereira,F.Gonqalves.Evaluation of water column and sediment toxicity from anabandoned uranium mine using a battery of bioassays.Science of the Total Environment 374(2007) 252-259
    [5]Takashi Murakami,,Tsutomu Sato,Toshihiko Ohnuki,Hiroshi Isobe.Field evidence for uranium nanocrystallization and its implications for uranium transport.Chemical Geology 221(2005) 117-126.
    [6]P.Go'mez,A.Garralo'n,B.Buil,Ma.J.Turrero,k.Sa'nchez,B.de la Cruz,Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine.Science of the Total Environment 366(2006) 295-309
    [7]F.P.Carvalho,M.J.Madruga,M.C.Reis,J.G.Alves,J.M.Oliveira,J.Gouveia,L.Silva,Radioactivity in the environment around past radium and uranium mining sites of Portugal.Journal of Environmental Radioactivity ⅹⅹ(2007) 1-8
    [8]Timothy E.Payne,Peter L.Airey,Radionuclide migration at the Koongarra uranium deposit,Northern Australia-Lessons from the Alligator Rivers analogue project Physics and Chemistry of the Earth 31(2006) 572-586.
    [9]David Read,Stuart Black,Tracy Buckby,Karl-Heinz Hellmuth,Nuria Marcos,Maria Siitari-Kauppi.Secondary uranium mineralization in southern Finland and its relationship to recent glacial events.Global and Planetary Change ⅹⅹ(2007)1-15.
    [10]NEA,2002.Environmental remediation of uranium production facilities.A Joint Report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency,Paris.323p.
    [11]:龙期华,刘庆成.相山盆地基底形态及其与铀矿化的关系探讨.华东地质学院学报,2002,25(3):228-233.
    [12]:龙期华.江西主要铀矿田地球物理场特征及其成矿环境.东华地质学院学报,2000,23(2):157-162.
    [13]:覃慕陶,刘师先.南岭花岗岩型和火山岩型有矿床.地质出版社,1998.
    [14]:邱爱金.江西相山铀矿田东西向隐伏构造的发现及其地质意义.地质论评,2001,47(6):637-642.
    [15]Horst Monken Fernandes,and so on.2007,Critical analysis of the waste management performance of two uranium production units in Brazil—part Ⅰ:Poc-os de Caldas production centre Journal of Environmental Management,2007,1(45):1-14.
    [16]K.M.Wilcken,T.T.Barrows,and so on..AMS of natural 236U and 239Pu produced in uranium ores.Nuclear Instruments and Methods in Physics Research B 259(2007)727-732.
    [17]Chunfang Cai,Hongtao Li,Mingkuan Qin b,and so on,Biogenic and petroleum-related ore-forming processes in Dongsheng uranium deposit,NW China,Ore Geology Reviews,2006,6:1-13.
    [18]Abdelouas,A.,Lu,Y.M.,Lutze,W.,Nuttall,H.E.,1998.Reduction of U(Ⅵ) to U(Ⅳ) by indigenous bacteria in contaminated groundwater.Journal of Contaminant Hydrology 35,217-233.
    [19]Anderson,R.F.,1987.Redox behaviors of uranium in an anoxic marine basin.Uranium 3,145-164.
    [20]Anderson,R.F.,Fleisher,M.Q.,LeHuray,A.P.,1989.Concentration,oxidation state and particulate flux of uranium in the Black Sea.Geochimica et Cosmochimica Acta 53,2215-2224.
    [21]Bennett,P.C.,Siegel,D.I.,1987.Increased solubility of quartz in H_2O due to complexing by organic compounds.Nature 326,684-686.
    [22]Brookins,D.G.,1976.Position of uraninite and/or coffinite accumulation to the hematite-pyrite interface in sandstone-type deposits.Economic Geology 71,944-948.
    [23]Cai,C.F.,Hu,G.Y.,He,H.,Li,J.,Li,J.F.,Wu,Y.S.,2005a.Geochemical characteristics and origin of natural gas and thermochemical sulfate reduction in Ordovician carbonates in the Ordos Basin,China.Journal of Petroleum Science and Engineering 48(3/4),209-226.
    [24]:杜乐天.碱交代作用地球化学原理.中国科学B,1986(7):81-90
    [25]:杜乐天.碱交代作用的地球化学共性和归纳.矿床地质,1983.(2):33-41.
    [26]:温志坚,杜乐天,刘正义.相山铀矿田特富矿成矿模式.地质论评,1990,45(增刊):765-7671.
    [27]:温志坚,杜乐天,刘正义.相山矿田热液水云母化及其与铀矿化关系研究.矿床地质,2000,19(3):257-264.
    [28]:温志坚,杜乐天,刘正义.相山铀矿田磷灰石与富矿形成的关系.铀矿地质,1999,15(4):217-224.
    [29]:吴仁贵,余达淦.相山铀矿田611和6122矿床与34号矿床矿石建造特征对比.铀矿地质 2000,16(4):204-212.
    [30]:王德滋,刘昌实,沈渭洲,陈繁荣.江西东乡-相山中生代S型火山岩带的发现及其地质意义.科学通报,1991,(19):1491-1494.
    [31]:魏详荣,林舸,龙期华,周叶.江西相山邹家山—石洞断裂带及其控矿作用.铀矿地质,2006,22(5):281-289.
    [32]:夏林忻,夏祖春,张诚,R.Clocchiatti J.L.Joron,相山中生代含铀火山杂岩岩石地 球化学.地质出版社,1992.
    [33]:徐海江,赖绍聪.相山及邻区七个火山盆地火山岩岩性特征及成因探讨.现代地质,1988,21(4):440-450.
    [34]:许军才:黄临平.位场反演在相山火山岩型铀矿中的应用研究.资源调查与环境,2006,27(1):18-24.
    [35]:薛振华,蒋振频,董永杰,喻建发,胡荣泉,张柳贵.相山铀矿田4号带凝灰岩中的高品位铀矿脉.华东地质学院学报,2003(4):251-355.
    [36]:方锡珩,侯文尧,万国良.相山破火山口火山杂岩体的岩石学研究.岩矿测试,1982,1(1):1-7
    [37]:原608地质队内部资料 相山地区铀矿床岩性岩相填图报告,1973.
    [38]:从柏林.岩浆活动与火成岩组合.地质出版社.1979.
    [39]:邓永飞,陈江峰.稳定同位素地球化学.科学出版社,2000.
    [40]:范洪海,凌洪飞,王德滋,刘昌实,沈渭洲,姜耀辉.相山铀矿田成矿机理研究.铀矿地质,2003,19(4):208-214.
    [41]:范洪海,凌洪飞,王德滋,沈渭洲,刘昌实,姜耀辉.江西相山铀矿田成矿物质来源的Nd、Sr、Pb同位素证据.高校地质学报,2001,7(2):139-145.
    [42]:范洪海,王德滋,沈渭洲,刘昌实,汪相,凌洪飞.江西相山火山—侵入杂岩及中基性脉岩形成时代研究.地质论评,2005,51(1):86-92.
    [42]:陈小明,陆建军,刘昌实,赵连泽,王德滋,李惠民.桐庐、相山火山-侵入杂岩单颗粒锆石U-Pb年龄.岩石学报,1999,15(2):272-278
    [44]:林祥铿.赣杭构造带若个铀矿床同位素年龄研究及铀源初探.铀矿地质,1990,5:257-2591.
    [45]:沈锋,陈然志,李方.华南相山铀矿田成矿条件及发展前景.铀矿地质,1995,(5):257-265.
    [46]:黄志章,李秀珍,蔡根庆.热液铀矿床蚀变场及蚀变类型.原子能出版社.1999.
    [47]:周文斌,史维浚.相山矿田铀的中和还原成矿作用.矿床地质,1996,15(4):351-356.
    [48]:付湘.江西省5大铀矿田深部构造环境定位分析.铀矿地质,2002,18(1):56-62
    [49]:龚晓春.相山火山岩盆地磁异常特征分析.铀矿地质,1999,15(4):229-235.
    [50]:胡瑞忠等,华南白垩—第三纪地壳拉张与铀成矿的关系.地学前缘,2004,11(1): 153-161.
    [51]:胡恭任,章邦桐,王长华.赣中相山新元古代变质岩的首次确定,中国区域地质,1997,16(2):222-225.
    [52]:胡恭任,章邦桐,王长华.赣中相山新元古代变质岩的地球化学特征及形成的构造环境.江西地质,1997,11(1):9-16
    [53]:王湘云,章邦桐,王建,王长华,阎石.相山铀矿床多期石英的天然热释光及EPR 特征.岩石矿物学杂志,1995,14(3):236-242.
    [54]:吴柏林;周鲁民.相山矿田居隆庵铀矿床成矿物理化学条件分析.西北大学学报(自然科学版),2006,36(1):119-125.
    [55]:季克检,吕凤翔.交代热液成矿学说.地质出版社,2007.
    [56]:卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.流体包裹体.科学出版社.2004.
    [57].邵浩涟,梅建明.浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义[J].矿物岩石,1986,6(3):103-111
    [58]:李学礼,孙占学,周文斌.相山成矿古水热系统的水文地球化学特征.华东地质学院学报,1992,15(3):234-2421.
    [59]:李学礼,孙占学,史维浚.相山铀矿田成矿热液的水源探讨.水文地质工程地质,1992,(3):13-16.
    [60]:孙占学.相山铀矿田铀源的地球化学证据 矿物学报,2004,24(1):19-24.
    [61]:孙占学,李学礼,史维浚,周文斌,刘金辉.华东南相山铀矿田的氢氧同位素地球化学研究.地质与勘探,2001,37(3):19-23.
    [62]:陈贵华,陈名佐.相山铀矿田成矿条件分析.铀矿地质,1999,15(6):329-338.
    [63]:单林,刘晓东.相山等火山盆地主体岩石包裹体研究.岩矿测试,1985,4(4):289-296.
    [64]:段芸,赵连泽,范洪海,王德滋.江西相山火山-侵入杂岩及其包体稀土元素地球化学.高校地质学报,2001,71(1):92-98.
    [65]:周文斌,史维浚等.铀中和还原成矿作用的基本原理和找矿标志.华东地质学院学报.1992,15(3):255-261.
    [66]:周文斌,史维浚,吕跃进.相山铀矿田成矿作用的地球化学模拟.地球化学,1997,26(5):61-69.
    [67]:周文斌,饶冰.相山铀矿田水-岩氢、氧同位素交换的实验研究.地质论评,1997,43 (3):322-328.
    [68]:邵飞.相山矿田低温热水及其与铀矿化关系.地球科学-中国地质大学学报,2005,30(2):206-212.
    [69]:张树明,余达淦,吴仁贵,张丽芬.相山铀矿田钾玄质岩石与铀成矿.大地构造与成矿学 2005,29(4):527-536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700