几种蔬菜ACC氧化酶基因的克隆与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯作为一种植物激素,对植物种子萌发、生长发育、衰老、果实成熟、性别分化等有广泛的影响,同时与逆境胁迫如机械伤害、冷害、渍水、病原菌入侵等方面有关;并参与植物细胞的程序性死亡。植物体内乙烯的生成量主要由ACC合成酶(ACS)和ACC氧化酶(ACO)的活性大小决定,而这两个关键酶活性的提高是其mRNA表达的结果。利用基因工程克隆植物乙烯ACS和ACO基因,通过反馈调节、反义表达等调控乙烯合成,进而调控乙烯对植物的生理效应,是当前对乙烯研究的主要途径。国内有关实验已在番茄等一些跃变型果实中获得成功。研究乙烯合成酶基因和氧化酶基因的克隆、表达及调控机理,对全面了解乙烯对植物的生理效应及化控机理具有重要的指导意义。
     本研究的目的:克隆番茄、黄瓜、花椰菜等3种蔬菜作物的ACC氧化酶基因,对其结构进行分析;克隆ACC氧化酶基因的启动子,研究ACO基因的表达规律,为从分子水平上调控该基因的表达打下基础。最后,构建正义、反义、RNAi植物表达载体,调控ACC氧化酶基因的表达。结果如下:
     1.克隆了番茄ACO基因LeACO11基因组序列(gDNA)及相应的cDNA序列。测序结果分析表明:该基因gDNA序列长1697bp,由4个外显子、3个内含子组成。相应的cDNA序列长1018bp。生物信息学工具软件分析,预计该基因CDS全长951bp,编码316个氨基酸。RT-PCR结果与预测的CDS一致。gDNA序列与cDNA序列比对发现,内含子与外显子交替的位置总是以AG碱基出现,并被剪切。对该基因cDNA推断的蛋白质进行同源性分析,与番茄ACO3(CAA90904)的同源性为85%,ACO1(CAA41212)的同源性为82%。
     2.利用载体介导的PCR方法克隆了LeACO基因的上游调控序列2000bp。测序结果分析表明,2000bp的片段含有起始密码子上游1946bp,+97~+99位为翻译起始密码子,(-29~-22)之间为TATA盒(TATAAATA),(-193~-189)为CAAT盒(CCAAT),-1724~-1300与-1037~-592高度重复,存在100多个转录因子结合位点。
     3.对番茄植株不同组织及不同发育时期的器官(茎、叶片、花、果实的未成熟期、绿熟期、破色期、红熟期)ACO基因的表达分析发现,LeACO11基因在叶片中有微量表达,在未成熟期果实中没有表达,在绿熟期、破色期、红熟期果实中均有高水平的表达,且随成熟度的增加其表达量增强。推断该基因的表达具有时间和空间特异性。
Ethylene, a phytohormone, plays an extensive role in plant growth and development, such as seed germination, floral differentiation, sex determination and fruit setting as well as in various stresses: wounding, freezing, drought, plant disease. Ethylene biosynthesis in plants has been discovered. ACC oxidase is the key enzyme in the course. The antisense transgenic plants have been acquired in tomato. The research in cloning, expression of ACO and ACS gene is important to learn the role of ethylene and the mechanism of manipulation.The objective of this research was to clone the ACO genes of tomato, cucumber and cauliflower, and analyze the gene structures and expression patterns. Then, plant expression vectors with sense and antisense orientations and RNA interfering have been constructed and the manipulation of endogenous gene expression was done with the Agrobacterium-mediated transformation.1. The gDNA and cDNA of tomato ACO gene (LeACO11) was cloned using PCR. The full length of LeACO11 gDNA is 1697 bp with four exons and three introns. The length of LeACO11 cDNA is 1018 bp, including the coding sequence 951 bp and poly--A. It encoded 316 amino acids. The alignment results of the gDNA and cDNA showed that AG was always on the splicing site.2. 2000 bp upstream of LeACO11 gene was obtained using the method of vector-mediated PCR. Sequence analysis showed that it contains the regulatory elements: TATA box (-29 ~ -22), CAAT box (-193 ~ -189), wound and drought response elements. -1724 ~ -1300 and -1037 ~ -592 were repeated. 100 transcription factor binding sites exist in the upstream.3. Northern blotting of different tissues was conducted. The expression of LeACO11 is week in both leaves and the mature green fruits, however it expressed strongly in breaker and red ripen fruits.4. Five plant expression vectors were constructed, which consist of the sense, antisense, RNAi of LeACO11 cDNA sequence and two fragments of upstream sequences. Transgenic plants were acquired using the Agrobacterium-mediated transformation. Expression analysis showed the inhibition of the endogenous gene.
    5. The promoter regulatory elements were chereterized with histochemical analysis of GUS activity in various tissues. The results showed that the two fragments of the promoter were able to direct fruit-specific gene expressions. The expression driven by 2000 bp fragment of regulatory element increased with the maturation of fruits. The fragment of 1200 bp could direct uidA gene expression in fruits with the induction of drought and wound. The regulatory region for fruit-specificity was probably located in the 1200 bp of 5'-flanking sequence and some positive regulatory elements or enhancers may exist in the region from 1200 to 2000 bp.6. The cucumber ACO gene of CsACO4 was cloned using the method of homologous sequence with the GenBank accession number: AY450356. The length of the genome sequence is 2200 bp. The spliced length of mRNA was 933 nucleotides (nts) and it encoded 311 amino acids. The length of 5' untranslated region of CsACO4 is 795 bp. The core region of the deduced promoter was located at -51- -11, TATA box at -47--39, and no CAAT box. Nine primary response elements concerning signal transduction were found in the upstream of TATA box, they are wound response elements, heavy metal response elements, drought response elements and auxin response elements.7. Northern blotting showed that the gene expressed among female flowers of gynoecious and monoecious genotypes, it could not express in other tissues or organs. This implied that the gene might be correlated with the female behavior positively.8. Plant expression vector of RNAi was constructed and genetic transformation was done using the Agrobacterium-mediated method. Five transgenic plants were identified by southern blotting. The morphological exploration showed that the inserted target fragment inhibited the endogenous gene expression and it contributed to the male differentiation in the lower nodes.9. The cauliflower ACO gene of BoACO was cloned using the method of homologous sequence with the GenBank accession number: AY676466. The size of BoACO is 1202 bp of nucliotides. Three exons and two introns were identified in this sequence. The spliced length of mRNA is 756 nts and encodes 252 amino acids. This gene expressed in the flowers and leaves, the levels in flower was higher than in the leaves.10. Plant expression vector of RNAi was constructed and genetic transformation was performed using the Agrobacterium-mediaied method. Three transgenic plants were
    identified by southern blotting. The aboundence of the endogenous mRNA in the transgenic plants was lower than in the wild type based on Northern blotting. As well the activity of ACO enzyme was inhibited significantly.
引文
1.山松,张中林,陈曦.烟草叶绿体16s启动子的克隆改造及转基因植株的获得.作物学报,1999,25(5):536~540.
    2.尤进钦,曾梦蛟.苏云菌杀虫晶体蛋白基因转移到青花菜、花椰菜及小白菜.中国园艺,1996,42(4):312~330.
    3.王自章,李杨瑞,张树珍,林俊芳,郭丽琼.甘蔗ACC基因片段的克隆与序列分析.遗传学报,2003,30(1):62~69.
    4.王新力,彭学贤.香蕉ACC合成酶果实特异性启动子的克隆及功能初探.生物工程学报,2001,17(3):293~296.
    5.王新国,肖成祖,张国华.用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子.中国生物化学和分子生物学报,2001,17(1):61~65.
    6.叶志彪,李汉霞,郑用链,刘后利.反义ACC氧化酶基因的导入对番茄乙烯生成的抑制作用.华中农业大学学报,1996,15(4):324~328.
    7.叶志彪,李汉霞.两个反义基因在番茄工程植株中的生理抑制作用.植物生理学报,1996,22(2):157~160.
    8.刘愚.果实成熟过程中乙烯的生成和作用.大自然探索,1986,5(3):127~132.
    9.华学军,陈晓邦,范云六.Bacillus thuringiensis杀虫基因在花椰菜愈伤组织的整合和表达.中国农业科学,1992,25(4):82~87.
    10.吴昌银,叶志彪,李汉霞,唐克轩.雪花莲外源凝集素基因转化番茄.植物学报,2000,42(7):719~723.
    11.张七仙,敖光明.根癌农杆菌介导的甘蓝高效稳定的遗传转化系统的建立及对CpTI基因转化的研究.农业生物技术学报,2001,9(1):72~76.
    12.张凤兰,高田畑羲,徐家炳.大白菜子叶离体培养再生植株.园艺学报,2002,29(4):348~352.
    13.张承妹,陆家定.黄瓜组织培养与诱导四倍体再生植株.上海农业学报,1995,11(3):36~36.
    14.张宪省,钟海文,吕程.授粉诱导蝴蝶兰雌蕊中乙烯合成和ACC氧化酶基因表达.植物学报,1996,3(5):375~378.
    15.李竹红,刘德培,梁植权.改进的反向PCR技术克隆转移基因的旁侧序列.生物化学与生物物理进展,1999,26(6):600~602.
    16.李曙轩,傅炳通.黄瓜及瓠瓜的性别表现与激素控制.植物生理学报,1979,5(1):83~92.
    17.周晓红,陈晓光,张晓东等.番茄果实特异性E8启动子的基因克隆与序列分析.第一军医大学学报,2003,1(1):25~28.
    18.欧阳波,李汉霞,叶志彪.转双价水解酶基因番茄植株对枯萎病抗性的提高.植物生理与分子生物学报,2003,29(1):179~184.
    19.金红,王以光.麦迪霉素产生菌具有启动功能的TRB片段的克隆和分析.微生物学报,1994,36(4):415~421.
    20.钟华鑫,赵映振,邹华.热处理对黄瓜种子萌发级离体培养子叶直接花芽分化的影响.植物生理通讯,1993,29(2):98~100.
    21.徐忠传.成熟猕猴桃果实不同组织中ACC氧化酶基因的表达差异研究.中国科学技术大学学报,2001,31(2):235~240.
    22.徐淑平,卫志明,黄健秋.根癌农杆菌介导Bt基因和CpZ1基因对花椰菜的转化.植物生理与分子生物学学报,2002,28(3):193~199.
    23.高俊平,叶新民,孙自然.延缓月季和香石竹衰老的机理.园艺学进展,1994,20(2):694~698.
    24.曹利仙,赵鹂,唐宇力,朱诚.硝酸银对黄瓜离体子叶培养芽再生的促进效应.甘肃农业大学学报,2001,36(2):168~171.
    25.梅茜,张兴国.黄瓜组织培养研究.西南农业大学学报,2002,24(3):266~267.
    26.彭仁旺,周雪荣,周奕华.烟草花药特异表达基因启动子的克隆及序列分析.生物工程学报,1996,12(3):247~250.
    27.蒋浩,秦红敏,田颖川.杨皮树储藏蛋白基因启动子的克隆和功能研究.林业科学,1999,35(5).
    28.蔡荣旗,孙德岭,赵前程等.根癌农杆菌介导Bt杀虫基因对花椰菜的转化初报.天津农业科学,2000,6(4):9~12.
    29.潘瑞炽,董愚得.植物生理学.高等教育出版社,1987,1~30.
    30.潘瑞炽.植物激素的作用机理.植物生理生化进展,1982,1:90~102.
    31. Abeles F B, Morgan P W, Saltveit M E. Ethylene in plant biology. 2 ed. Academic Press, New York, 1992.
    32. Abeles F B. Ethylene in plant biology. New York: Academic Press, 1973.
    33. Adams D O, Yang S F. Ethylene biosynthesis: identification of 1-aminocyclobutane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA, 1979, 76(1): 170~174.
    34. Aloni R, Wolf A, Feigenbaum P. The never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens induced crown galls in tomato stems. Plant Physiol Rockville, 1998, 117(3): 841~849.
    35. Alvarado A S, Newmak P A. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acard Sci USA, 1991, 96(6): 5049-5054.
    36. Arnaud M C, Thalouarn P, Fer A. Characterization of mechanism related to the resistance of crops to two parasitic higher plants (Cuscuta reflexa and Striga hermonthica). Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales, 1998, 192(1): 101-119.
    37. Bailey B A, Avni A, Anderson J D. The influence of ethylene and tissue age on the sensitivity of xanthi tobacco leaves to a Trichoderma viride xylanase. Plant Cell Physiol, 1995,36(8): 1669-1676.
    38. Balague C, Walson C F, Turner A J, Rouge P, Picton S, Pech J C, Grierson D. Isolation of a ripening and wound- induced cDNA from Cucumis melon L. encoding a protein with homology to the ethylene forming enzyme. European Journal of Biochemistry, 1993, 212(1): 27-34.
    39. Barry C S, Blume B, Bouzayen M. Differential expression of 1-aminocyclopropane 1-carboxylic acid oxidase genes family of tomato. Plant J, 1996, 9(1): 525-535.
    40. Barry J P, Christopher G D, Kevin M D. Differential expression of two 1-aminocyclopropane-1- carboxylic acid oxidase genes in Broccoli after harvest. Plant Physiol, 1995, 108(2):651-657.
    41. Bashan Y. Symptom expression and ethylene production in leaf blight of cotton caused by Alternaia macrospore and Alternaria alternate alone and incombination. Can J Botany, 1994, 72(11): 1574-1579.
    42. Block M D, De Brouwer D T, Paul Tenning. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol, 1989, 91(2): 694-701.
    43. Blume B, Barry C S, Hamilton A J, et al. Identification of transposon-like elements in non-coding regions of tomato ACC oxidase genes. Mol Gen Genet, 1997a, 254(1): 297-303
    44. Blume B, Grierson D. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J, 1997b, 12(3): 731-746.
    45. Bolle T. Ethylene and plant pathogen interactions. Curr Top Plant Physiol, 1990, 5(1): 138-145.
    46. Boiler T. Ethylene in pathogenesis and disease resistance. In: Mattoo A k, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, Florida, 1991, pp 293-314.
    47. Buechter R, Stroemberg A, Schemelzer E. Primary structure and expression of acidic
     (class Ⅱ ) chitinase in potato. Plant Mol Biol, 1997, 35(6): 749-761.
    48. Buell C R. Arabidopsis: A weed leading the field of plant pathogen interactions. Plant Physiol and Biochem Paris, 1998, 36(1-2): 177-186.
    49. Chang P F L, Xu Y, Narasimhan M L. Induction of pathogen resistance and pathogenesis-related genes in tobacco by a heat-stable Trichoderma mycelial extract and plant signal messengers. Physiologia Plantarum, 1997, 100(2): 341-352.
    50. Chi G L, Pua E C. Ethylene inhibitors enhanced de novo shoot regeneration in cotyledonary of Brassica campestris ssp chinensis (Chinese cabbage) in vitro. Plant Science, 1989, 64(1): 243-250.
    51. Choi D, Kim H M, Yun H K. Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L and its induction by wounding and tobacco mosaic virus infection. Plant Physiol. (Rockville) 1996, 112(1): 353-359.
    52. Clare G, Pascale H. Developmental and pathogen-induced activation of an msr gene, str246c, from tobacco involves multiple regulatory elements. Molecular Gene Genetic, 1995,247(1): 323-337.
    53. Cooper W, Bouzayen M, Hamilton A. Use of transgenic plants to study the role of ethylene and polygalacturonase during infection of tomato fruit by Colletotrichum gloeosporioides. Plant Pathology Oxford, 1998,47(3): 308-316.
    54. Cushman K E. The role of ethylene in the development of constant-light injury of potato and tomato. J Amer Soc Hort Sci, 1998,123(2): 239-245.
    55. Davis M E, Lineberger R D, Miller A R. Effects of tomato cultivar, leaf age, and bacterial strain on transformation by Agrobacerium tumefaciens. Plant Cell Tiss Org Cult, 1991,24(1): 115-121.
    56. Day D A, Aron G P, Christoffersen R E, Laties G G. Effect of ethylene and carbon dioxide on potato metabolism stimulation of tuber and mitochondria respiration, and inducement of the alternative path. Plant Physiol, 1978, 62(5): 820-825.
    57. Deikman J, Kline R, Fischer R L. Organization of ripening and ethylene regulations in a fruit-specific promoter from tomato. Plant Physiol, 1992, 100(3): 2031-2017.
    58. Deikman J, Xu R L, Kneissl M L, Ciardi J A, Kim K N. Separation of cis elements responsive to ethylene, fruit develop- ment and ripening in the 5'-flanking region of the ripening-related E8 gene. Plant Molecular Biology, 1998, 37(6): 1001-1011.
    59. Ding L C, Hu C Y, Yeh K W, Wang P J. Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep, 1998, 17(11):854~860.
    60. Donald A, Hunter, Sang D Y. Expression of 1-aminocyclopropane-1-carboxylate
     oxidase during leaf ontogeny in white clover. Plant Physiol, 1999, 120(1): 131-141.
    61. Dugassa G D, Von A T, Schoebeck F. Effects of arbscular mycorrhiza (AM) on health of Linum usitatissimum L infected by fungal pathogens. Plant and Soil, 1996, 185(2): 173-182.
    62. Eon S J, Jae H L, Jong A P. Temporal and spatial regulation of the expression of 1-aminocyclopropane-1-carboxylate oxidase by ethylene in mung bean. Physiologia Plantarum, 1999, 105(1): 132-140.
    63. Fire A, Xu S, Montgometry M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
    64. Frary A, Hamilton C M. Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res, 2001,10(1): 121-132.
    65. Fraser A G, Kamath R S, Zipperlen P, Marnxa M C, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 2000, 408(6810): 325-330.
    66. Gough C, Hemon P, Tronchet M, Lacomme C, Marco Y, Roby D. Developmental and pathogen-induced activation of an msr gene, str246c, from tobacco involves multiple regulatory elements. Molecular & General Genetics, 1995,247(1): 323-337.
    67. Grierson D, Slater S, Speris i. The appearance of polygalacturonase mRNA in tomatoes: one of a series of changes in gene repression during development and ripening. Planta, 1985, 163(1): 263-271.
    68. Gude H, van der Plas L H W. Endogenous ethylene formation and the development of the alternative pathway in potato tuber discs. Physio Plant, 1985,65(1): 57-62.
    69. Guiltinan M J, Deikman J. Molecular and genetic approaches to the study of plant hormone action. Hort Rev, 1994, 16(1): 1-32.
    70. Guis M, Botondi R, Ben A M. Ripening-associated biochemical traits of cantaloupe charentais melons expressing an antisense ACC oxidase transgene. J Amer Soc Hort Sci, 1997,122 (6): 748-751.
    71. Guo S, Kemphues K J. par-I, a generequired for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81(6): 611-620.
    72. Halevy A H. Flower senescence. In: Leshem Y Y, Holevy A H and Frenkel C ed. Processes and control of plant senescence. Elsevier, Amsterdam, 1986.
    73. Hamilton A J, Baulcombe D C. A species of small antisense RNA in post transcripti- onal gene silencing in plants. Science, 1999,286(3):950-951.
    74. Hamilton A J, Bouzayen N I, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA, 1991, 88(8): 7434-7437.
    75. Hamilton A J, Brown S, Han Y, Ishizuka M, Lowe A, Solis A G A, Grierson D. A transgene with repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant J, 1998, 15(10):737~746.
    76. Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plant. Nature, 1990, 346(5): 284-287.
    77. Hoffman N E, Yang S F. Enhancement of wound-induced ethylene synthesis by ethylene in preclimacteric cantaloupe. Plant Physiol, 1982, 69(1):317-322.
    78. Hyodo H F. Flower senescence and ethylene. Agriculture and Horticulture in Japan, 1989,64(1): 19.
    79. Hyodo H, Tanaka K, Yoshisaka J. Induction of 1-aminocyclobutane-1-carboxylic acid synthase in wounded tissue of winter squash fruit and effects of ethylene. Plant Cell Physiol, 1985,26(1): 161-167.
    80. Inaba A, Nakamura R. Effect of exogenous ethylene concentration and fruit temperature on the minimum treatment time necessary to induce ripening in banana fruit. J Japan Soc Hort Sci, 1986, 55(1): 348-354.
    81. Itzhaki H, Maxson J M, Woodson W R. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathion-S- transferase (GSTI) gene. PNAS, 1994,91(1): 8925-8929
    82. Iwahori S J, Lyons M, Smis W L. Induce femaleness in cucumber by 2-chloroethane- phosphonic acid. Nature, 1969,222(1): 271-272.
    83. John I, Drake R, Farrell A, et al. Delayed leaf senescence in ethylene-deficient ACC oxidase antisense tomato plants: molecular and physiological analysis. Plant J, 1995, 7(1): 483-490.
    84. Kahana A, Silberstein L, Kessler N, Goldstein R S, Perl-Treves R. Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Molecular Biology, 1999,41(4): 517-528.
    85. Kamachi S, Sekimoto H, Kondo N. Cloning of a cDNA for 1-aminocyclobutane-1- carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant Cell Physiol, 1997, 38(11): 1197-1206.
    86. Kende H. Ethylene biosynthesis. ANN Rev Plant Physiol Plant Mol Biol, 1993,44(1): 283-307.
    87. Kim W T, Yang S F. Structure and expression of cDNAs encoding 1-aminocyclopro pane- 1-carboxylate oxidase homologs isolated from excised mung bean hypocotyls. Planta, 1994, 194(1): 223-229
    88. King G A, Woollard D C, Irving D E, Borst W M. Physiological changes in asparagus tips after harvest. Plant Physiol, 1990, 80(2): 393-400.
    89. Knoester M, Van L L C, Van D H J, Henning J. Ethylene-insensitive tobacco lacks non host resistance against soil-borne fungi. Proc Natl Acad Sci USA, 1998, 95 (4): 1933-1937.
    90. Kousugi Y, Naoko O, Shigeru S. Inhibition by 1-aminocyclobutane-1-carboxylate of the activity of 1-aminocyclobutane-1-carboxylate oxidase obtained from senescing petals of carnation (Dianthus caryophllus L.) flowers. Plant Cell Physiol, 1997, 38 (3): 312-318.
    91. Kue J. Molecular aspects of plant responses to pathogens. Acta Physiologiae Plantarum, 1997, 19 (4): 551-559.
    92. Lasserre E, Bouquin T, Hernandez J A. Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melon L.). Mol Gen Genet, 1996, 251(1): 81-90
    93. Lasserre E, Gordard F, Bouquin J A, Hernandez J C, Roby D, Balague C. Differential activation of two ACC oxidase gene promoters from melon during plant development and in response to pathogen attack. Molecular & General Genetics, 1997, 256(1): 211-222.
    94. Lawton K, Weymann K, Frienrich L. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mole Plant Microbe Interactions, 1995, 8(6): 863-870.
    95. Leon R, Santamaria J M, Alpizar L. Physiological and biochemical changes in shoot soft coconut palms affected by lethal yellowing. New Physiologist, 1996, 134(2): 227-234.
    96. Leslie C A, Romani R J. Inhibition if ethylene biosynthesis by salicylic acid. Plant Physiol, 1988, 88(9): 833-837.
    97. Lieberman M. Biosynthesis and action of ethylene. Ann Rev Plant Physiol, 1979, 30(3): 533-591.
    98. Liu Q, Singh S, Green A. Genetic modification of cotton seed oil using inverted- repeat gene- silencing techniques. Biochem Soc Trans 2000,28(5):927-929.
    99. Liu X J, Shiomi S J, Akir A N. Characterization of ethylene biosynthesis associated with ripening in banana fruit. Plant Physiol, 1999, 121(7): 1257-1265.
    100.Liu Y, Hoffman N E, Yang S F. Production by ethylene of the capability to convert 1-aminocyclobutane-1-carboxylic acid to ethylene in preclimacteric tomato and cantaloupe fruits. Plant Physiol, 1985, 77(1): 407-411.
    101.Lund S T, Stall R E, Klee H J. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell, 1998, 10(3): 371-382.
    102.Ma Q H, Song Y R. Expression of tomato antisense ACC synthase gene in transgenic tomato and its role in shoot formation. Acta Botanica Sinica, 1997, 39(11): 1047-1052.
    103.Malepszy S, Niermirowicz S K. Sex determination in cucumber (Cucumis sativus L.) as a model system for molecular biology. Plant Science, 1991, 80(1): 39-47.
    104.Marssen N, van der Plas L H W, Duy S. Influence of temperature, ethylene and cyanide on the occurrence of alternative respiration in mitochonbolria from iris bulbs. 1986, 45(1): 19-25.
    105.Mathooko F M. Regulayion of ethylene biosynthesis in higher plants by carbon dioxide. Posthharv Biol Technol, 1996, 7(1): 1-26.
    106.McIntosh L. Molecular biology of alternative oxidase. Plant Physiol, 1994, 105(2): 781-786.
    107.McMurchie E J, McGlosson W B, Eaks I L. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature, 1972, 237(1): 235-236.
    108.Meller Y, Sessa G, Eyal Y. DNA-protein interactions on cis-DNA elements essential for ethylene regulation. Plant Mol Biol, 1993,23(3): 453-463.
    109.Moore T C. Biochemistry and physiology of plant hormones. Springer Verlag. New York, 1979.
    110.Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nuclei Acid Res, 1980, 8(5): 4321- 4325
    11 l.Muskens M W M, Vissers A P A, Mol J N M, Kooter J M. Role of inverted repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol, 2000, 43(1):243~260.
    112.Nicholass F J, Smith C J, Schuch W, et al. High levels of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene-flanking regions. Plan Mol Biol, 1995, 28(2): 423-435.
    113.Nickell L G. Plant growth regulators, agricultural uses. Springer Verlag. Berlin, 1982.
    114.Pang J L. Direct formation of male and female flower from excised cotyledons of cucumber {Cucumis sativa L). Chinese J. Bot. 1993, 5(2): 185-188.
    115.Passelegue E, Kerlan C. Transformation of cauliflower (Brassica oleracea Var. botrytis L.) by transfer of cauliflower mosaic virus genes through combined cocultivation with virulent and avirulent stain of Agrobacterium. Plant Sci., 1996, 113(1): 79-89.
    116.Peterson C E, Andher L D. Induction of staminate flowers on gynoecious cucumber gibberellin A3. Science, 1960, 131(4): 1673-1674.
    117.Pierce L K, Kehner T C. Review of gene and lonkage groups in cucumber. Hortscience, 1990, 25(2): 605-615.
    118.Popp M P, Lesney M S, David J M. Defense response elicited in pine cell suspension cultures. Plant Cell Tissue and Organ Culture, 1996, 47(3): 199-206.
    119.Pozueta-Romero J, Houlne G, Canas K, Schantz R, Chamarro J. Enhanced regneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cell Tiss Org Cult, 2001, 67(1): 173-180.
    120.Prem L, Bhalla, Nicole S, Agrobacterium tumefaciens-mediated transformation of cauliflower, Brassica oleracea Var. Botryis. Molecular Breeding, 1998, 4(6): 531-541.
    121 .Pua E C, Lee J E E. Enhanced de novo shoot morphogenesis in vitro by expression of antiense 1-aminocyclopropane-1-carboxylate oxidase gene in transgenic mustard plants. Planta (Heidelberg), 1995,196(1): 69-76.
    122.Pua E C. Plant regeneration from stem-derived protoplasts of Brassica Alboglabra Baily. Plant Sci., 1987, 50(1): 153-160.
    123.Rajasekaran K, Mullins M G, Nair Y. Flower formation in vitro by hypocotyls explants of cucumber (Cucumis sativus L.). Ann Bot, 1983, 52(2):417-420.
    124.Rhim S L, Cho H J, Kim B D, Schnetter W, Geider K. Development of insect resistance in tomato plants expressing the endotoxin gene of Bacillus thuringiensis sub sp. tenebrionis. Mol Breed, 995,1(1): 229-236.
    125.Riov J, Yang S F. Effects of exogenous ethylene on ethylene production in citrus leaf tissue. Plant Physiol, 1982, 70(1): 136-141.
    126.Rudich J, Baker L R, Scott J W. Phenotypic stability and ethylene evolution in androecious cucumber. J Amer Soc Hort Sci, 1976,101(1): 48-51.
    127.Rudich J, Halevy A H, Kedar N. Ethylene evolution from cucumber paints as related to expression. Plant Physiol, 1972,49(1): 998-999.
    128.Rudich J, Halevy A H, Scott J W, Sell H M. Phenotypic stability and ethylene evolution in androecious cucumber. Journal of American Society Horticulture Science. 1976, 101(1): 48-51.
    129.Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd Ed. New York: Cold Spring Harbor Laboratory Press. 1989.
    130.Savin K W, Baudinette S C, Graham M W. Antisense ACC oxidase RNA delay carnation petal senescence. Hortscience, 1995, 30(5): 970-972.
    131.Sekimoto S H, Kondo N, Sakai S. Cloning of a 1-aminocyclopropane-1- carboxylic synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant Cell Physiology, 1997, 38(11): 1197-1206.
    132.Serek M, Michael S R. A volatile ethylene inhibitor improves the postharvest lofe potted roses. JAmer Soc Hort Sci, 1994, 119(5): 572-577.
    133.Serek M. Novel gaseous ethylene binding inhibitor prevents ethylene affected in potted flowering plants. J Amer Soc Hort Sci, 1994, 119(6): 1230-1233.
    134.Shinshi H, Usami S, Ohme-Takagi M. Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Mol Biol, 1995, 27(3): 923-932
    135.Siebert P D, Chenchik A, Kellogg D E. Animproved PCR method for walking inuncloned genomic DNA. Nucleic Acids Res, 1995, 23(6): 1087-1088.
    136.Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol J N M, Kooter J M. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol, 2001, 11(2):436~440.
    137.Sisler E C, Reid M S, Yang S F. Effect of antagonists of ethylene action on binding of ethylene in cut carnations. Plant Growth Regulation, 1986, 4(1): 213-218.
    138.Slater A, Maunder M J, Edwards K. Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol Biol, 1985,5(1): 137-147.
    139.Smith C J S, Slater A, Grierson D. Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein of molecular weight 3500. Planta, 1986, 168(1): 94-100.
    140.Smith N A, Singh S P, Wang M B, Peter A S, Allan G G, Peter M W. Total silencing by intron-spliced hairpin RNAs. Nature, 407(6802): 319-320.
    141.Solemos T, Laties G G. Induction by ethylene of cyanide resistant respiration. Biochem Biophys Res Comm, 1976, 70(3): 663-671.
    142.Song Feng Ming, Zhend Zhong. The correlation between inhibition of ethylene production and trifluralin-induced resistance of cotton seedlings against Fusarium oxysporum f. sp. vasinfectum. Acta Physiologica Sinica, 1998,24(2): 111-118.
    143.Spanu P, Reinhardt D, Boiler T. Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. Embo
     J, 1991, 10(6): 2007-2013.
    144.Suttle J C, Kende H. Methionine metabolism and ethylene biosynthesis in senescing petals of Tradescanita. Phytochem, 1980, 19(3): 1075-1079.
    145.Tabaeizadeh Z, Agharbaoui Z, Harrak H, Poysa V. Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Rep, 1999, 19(1): 197-202.
    146.Theologis A. One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell, 1992, 70(1): 181-184.
    147.Tian M S, Downs C G, Lill R E, King G A. A role for ethylene in the yellowing of broccoli after harvest. HortScience, 1994, 119(1): 276-281.
    148.Wehner T C and Lxney R D. In Vitro Adverntiticus Shoot and Root Formation of Cultivms and Lines of Cucumis sativas L. Hortscience, 1981, 16(6): 759-760.
    149.Trebitsh T, Staub J E, O'Neil S D. Identification of a 1-aminocyclopropane-1- carboxylic acid synthase gene linked to the female locus that enhances female sex expression in cucumber. Plant Physiology, 1997, 113(3): 987-995.
    150.Van Haaren M J, Houck C M. Strong negative and positive regulatory elements contribute to the high-level fruit-specific expression of the tomato 2A11 gene. Plant Mol Biol, 1991,17(2): 615- 630.
    151.Van Roekel J S C, Damm B, Melchers L S, Hoekema A. Factors influencing transformation frequency of tomato {Lycopersicon esculentum). Plant Cell Rep, 1993, 12(3): 644-647.
    152.Veen H, Kwakkenbos A A M. The effect of solver thiosulphate pretreatment on 1-aminocyclobutane-1-carboxylic acid content and action in cut carnations. Scientia Hort, 1982, 18(1): 227-286.
    153.Vendrell M, MacGlasson W B. Inhibition of ethylene production in banana fruit tissue by ethylene treatment. Aust Biol Sci, 1971, 24(5): 885-895.
    154.Wang C Y. Effect of aminoethoxy analog of rhizobitoxine and sodium benzoate on senescence of broccoli. HortScience, 1977, 12(1): 54-56.
    155. Wang H, Woodson W R. Reversible inhibition of ethylene action and interruption of petal senescence in carnation flowers by norbornadiene. Plant Physiol, 1989, 89(2): 434-438.
    156. Wang X L, Peng X X. Cloning of promoter of banana fruit-specific ACC synthase gene and primary study on its function. Chinese Journal of Biotechnology, 2001, 17(3): 293-296.
    157.Woodson W R, Park K Y, Dror Y A. Expression of ethylene biosynthetic pathway
     transcripts in senescing carnation flowers. Plant Physiol, 1992, 99(2): 526-532.
    158.Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol, 1984, 35(1): 155-189.
    159.Ye B P, Ji C J, Yang L L, Yang Z H, Wang Y J, Cao Z X. Studies on a gynoecious- specific ACC synthase gene in different sexual phenotypes of cucumber genome. Acta Botanica Sinica, 2000, 42(2): 164-168.
    160.Yip K C, Hew C S. Ethylene-induced cyanide-resistant respiration in orchid petal cells. Plant Growth Regul, 1989, 8(2): 365-373.
    161.Yoshii H, Imaseki H. Regulation of auxin-induced ethylene biosynthesis: Repression of inductive formation of 1-aminocyclobutane-1-carboxylate synthase by ethylene. Plant Cell Physiol, 1982, 23(3): 639-649.
    162.Yu B Y, Adams D O, Yang S F. 1-aminocyclobutane-1-carboxylate synthase, a key enzyme in ethylene biosynthesis. Arch Biochem Biophys, 1979, 198(1): 280-286.
    163.Zamore P D, Tuschl T, Sharp P A, Bartel D P. RNAi: double2stranded RNA directs the ATP_2 dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1): 25-33.
    164.Zarembinski T I, Theologis A. Ethylene biosynthesis and action: a case of conservation. Plant Molecular Biology, 1994,26(6): 1579-1597.
    165.Zeroni M, Galil J, Ben Y S. Autoinhibition of ethylene formation in nonripening stages of the fruit of syca more fig (Ficus sycomorus L.). Plant Physiol, 1976, 57(3): 647-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700