6自由度机器人轨迹再生成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前使用的6自由度工业机器人是主要依靠示教编程工作的第二代机器人,该型机器人在遇到规划轨迹与实际轨迹发生偏差的问题后无法自行调节。解决上述问题的有效方法是使该型机器人具有轨迹修正和轨迹再生成的功能。由于HP6机器人系统具有知识产权保护,其既有系统功能不接受非授权改变,因此无法引用其他已有成果获得轨迹再生成功能。本论文采取在MOTOMAN6自由度电弧焊接机器人的基础上加装视觉传感器,通过监测机器人实际运动轨迹与规划轨迹的偏差,并通过对机器人运动误差进行修正的方法,最终得出修正后的新路径。
     (1)本文在实验室购买的首钢MOTOMAN公司生产的HP-6弧焊机器人基础上用3次多项式差值法对机器人运动进行了轨迹规划,并在计算分析的基础上,利用Matlab Robotics tool工具箱对机器人运动路径进行分析和仿真。
     (2)计算出MOTOMAN6自由度机器人的雅克比矩阵,建立机器人速度控制的理论基础,找到适合的机器人在纠偏过程中的速度控制方法,通过实验定量分析HP6机器人的纠偏电压与纠偏量的关系,并在此基础上对机器人纠偏路径进行研究。
     (3)对安装有光学传感器的机器人纠偏运动轨迹进行理论分析,并基于机器人视觉系统运用图像获取、图像二值化、图像拟合等图像处理和数学算法,得到机器人运动路径的检测、误差分析和误差修正的方法,并在图像分析的基础上将所得信息通过MOTOCOM32通信系统与NX100控制器连接来修正机器人运动轨迹。
     (4)在前面的分析结果基础上,使用VC++编写视觉机器人纠偏系统软件,并通过实验得出在该纠偏方法下对机器人运动轨迹追踪的有效性和精确性,并在此基础上进行误差分析。
The current use of6degrees of freedom industrial robot is mainly a second-generation robot rely on teach programming,the robot in the face of planning trajectory and actual trajectory deviation can not be self-regulation, and therefore of MOTOMAN six degrees arc welding robot based on the installation of visual sensor, through the monitoring of the actual robot trajectory planning trajectory deviation, to find the error compensation method of robot movement, and eventually come to the new path after optimization improvements, this article by6degrees of freedom robot trajectory deviations occur on the deviation of the amendment then generated by the robot trajectory.
     Firstly, the Shou gang MOTOMAN company purchased in the laboratory production of HP-6arc welding robot based on robot trajectory planning with cubic polynomial method, and calculation on the basis of the analysis, then use matlab robotics toolbox for analysis and simulation the robot motion path.
     Secondly, in calculating the robot Jacobian matrix to obtaining the speed control of robot correction process, and on this basis to optimize the robot corrective path.
     Thirdly, theoretical analysis and correcting the trajectory of the optical robot, use the image edge for robot vision, based on image binarization processing and mathematical algorithms to find the robot motion path detection, error analysis and error correction method.
     Finally, in the preceding analysis based on the results, using VC++to write vision Robot correction system software, and the robot trajectory tracking the effectiveness of the correction method and accuracy obtained by experiment, and concluded..
引文
[1]Craig JJ. Introduction to robotics:mechanics and control. Second ed. New York:Addison-Wesley Publishing Company, Inc.; 1989.
    [2]Goldenberg AA, Benhabib B, Fenton RG. A complete generalized solution to the inverse kinematics of robots. IEEE J Robot Autom 1985; 1(1):14-20.
    [3]StanisicMM, Goehler CM. Singular planes of serial wrist-partitioned manipulators and their singularity metrics. Mech Mach Theory 2007; 42:889-902.
    [4]Tourassis VD, Ang MH. Identification and analysis of robot manipulator singularities. Int J Robot Res 1992;11(3):248-59.
    [5]Yang J, Abdel-Malek K, Nebel K. Reach envelope of a 9-degree-of-freedom model of the upper extremity. Int J Robot Autom 2005;20(4):248-59.
    [6]熊有伦,丁汉,刘恩沧.机器人学[M].北京:机械工业出版社,1992:65-156.
    [7]John J. Craig(美).机器人学导论[M].北京:机械工业出版社,2006:78-124.
    [8]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [9]Khatib O, Demircan E, De Sapio V, Sentis L, Besier T, Delp S. Robotics-based synthesis of human motion. J Physiol-Paris 2009; 103:211-9.
    [10]Leibniz G. Mathematics Schriften 1858;1(Part 2):377-82.
    [11]石炜,李强.工业机器人奇异位形的分析及雅克比矩阵的推导[J].高校理科研究(科技信息),1999:387-389.
    [12]Osier TJ. A further extension of the Leibniz rule to fractional derivatives and its relation to Parseval's formula. SIAM J Math Anal 1972;3(1):211-9.
    [13]Vetter WJ. Derivative operations on matrices. IEEE Trans Autom Control 1970; 15(2):241-4.
    [14]张凯,张风传等.六自由度机器人奇异位形分析及仿真[J].机械设计与制造,2003(10):42-44.
    [15]何立婷MOTOMAN HP-6机器人系统动力学分析:[D].北京:北方工业大学,2009.
    [16]Goehler CM, Murray WM. The sensitivity of end point forces produced by the extrinsic muscles of the thumb to posture. J Biomech 2010; 43:1553-9.
    [17]林瑞麟.机械手奇异分析和判断.华侨大学学报.自然科学版[J],1998,4,19(2):174-179.
    [18]徐礼锯,范守文.机器人奇异曲面及工作空间界限面分析的数字符号法[J].机械科学与技术,2000,11,19(6):861-864.
    [19]李国栋,陈宁新.机器人工作空间的界限面及其位置奇异曲面的代数求解方法[J].机器人,2002(6):25-31.
    [20]J.E. Bobrow, S. Dubowsky, J. S. Gibson, Time-optimal control of robotic manipulators along specified paths, International Journal of Robotics Research 4 (3) (1985) 554-561.
    [21]马如奇,郝双晖,郑伟峰,等.基于MATLAB与ADAMS的机械臂联合仿真研究[J].机械设计与制造,2010(4):93—95.
    [22]李延富.CINCINNATI机器人运动学和动力学的研究与仿真分析[D]
    [23]K. G. Shin, N. D. McKay, A dynamic programming approach to trajectory planning of robotic manipulators, IEEE Transactions on Automatic Control 31 (6) (1986) 491-500.
    [24]T. Balkan, A dynamic programming approach to optimal control of robotic manipulators, Mechanics Research Communications 25(2) (1998) 225-230.
    [25]D. Constantinescu, E.A. Croft, Smooth and time-optimal trajectory planning for industrial manipulators along specified paths, Journal of Robotic Systems 17 (5) (2000) 233-249.
    [26]D. Costantinescu, Smooth time optimal trajectory planning for industrial manipulators, PhD thesis. The University of British Columbia, 1998.
    [27]王旭东CINCINNATI MILACRON T3工业机器人开放式控制系统设计分析与基础研究[D].沈阳:东北大学,2005.
    [28]C. S. Lin, P. R. Chang, J. Y. S. Luh, Formulation and optimization of cubic polynomial joint trajectories for industrial robots, IEEE Transactions on Automatic Control 28 (12) (1983) 1066-1073.
    [29]C. H. Wang, J. G. Horng, Constrained minimum-time path planning for robot manipulators via virtual knots of the cubic B-Spline functions, IEEE Transactions on Automatic Control 35 (35) (1990) 573-577.
    [30]E. Jamhour, P.J. Andre', Planning smooth trajectories along parametric paths, Mathematics and Computers in Simulation 41 (1996)615-626.沈阳:东北大学,2005.
    [31]黄石生,钱迎雪.基于ART人工神经网络的焊缝跟踪检测算法[J].机械工程学报,1994,30(2):93—98.
    [32]唐新华,Paul Drews.机器人三维可视化离线编程和仿真系统[J].焊接学报,2005, 26(2):64-68.
    [33]Y. C. Chen, Solving robot trajectory planning problems with uniform cubic B-splines, Optimal Control Applications & Methods 12 (1991) 247-262.
    [34]A. Piazzi, A. Visioli, Global minimum-time trajectory planning of mechanical manipulators using interval analysis, International Journal of Control 71 (4) (1998) 631-652.
    [35]C. Guarino Lo Bianco, A. Piazzi, A semi-infinite optimization approach to optimal spline trajectory planning of mechanical manipulators, in:M. A. Goberna, M. A. Lo'pez (Eds.), Semi-infinite Programming:Recent Advances, Springer-Verlag, Berlin,2001, pp.271-297.
    [36]Yu, J. Y.,&Na, S. J. (1998). Astudyonvisionsensorsforseamtrackingofheig ht- varying weldment. Part2:Applications. Mechatronics,8,21-36.
    [37]G. Field, Y. Stepanenko, Iterative dynamic programming:an approach to minimum energy trajectory planning for robotic manipulators, in:Proceedings of the IEEE International Conference on Robotics and Automation, 1996, pp.2755-2760.
    [38]B. J. Martin, J.E. Bobrow, Minimum effort motions for open chain manipulators with task-dependent end-effector constraints, International Journal of Robotics Research 18 (2) (1999) 213-224.
    [39]陈新征,王克争。线阵CCD焊缝跟踪系统的应用研究。焊管,2003;26(4):12-14.
    [40]何景山,杨春利,林三宝等。无辅助光源图像的T1G焊焊缝跟踪传感系统。焊接学报,2000;21(1):37-40.
    [41]王伟,邹奇仕,朱六妹,宋国军。视觉传感焊缝跟踪技术的发展状况及实 施方案探讨.电焊机.2002.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700