黑森瘿蚊肠转录组及其小麦抑制基因表达水平的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑森瘿蚊Mayetiola destructor (Say)是广布于世界主要小麦产区的一种毁灭性害虫,防治实践证明抗虫品种是控制其危害的最经济有效的措施。但是,大范围、长期使用抗虫品种对黑森瘿蚊种群施加了强烈的选择压力,导致黑森瘿蚊种群新的生物型出现,而这又降低了抗性品种的使用寿命。由于昆虫的消化道是食物消化、营养吸收、解毒和植物抗性的主要位点,因此鉴定和研究黑森瘿蚊幼虫消化道的基因及其特性,不但能够提高对昆虫肠生理的理解,而且还能为抗性品种的培育及改善害虫的治理提供重要的理论指导。另外,由于黑森瘿蚊-小麦系统符合gene-for-gene关系,因此也提供了研究刺吸式害虫与植物关系的模式系统。本论文利用ESTs、Microarray、RT-PCR及Transcriptome等技术,首次系统研究了黑森瘿蚊肠转录组、小麦-黑森瘿蚊相容(compatible interaction)、不相容(incompatible interaction)关系中小麦蛋白抑制基因表达水平的变化。主要研究结果如下:
     1.对黑森瘿蚊10 051条Expressed sequenced tag(ESTs)进行聚类拼接得到2 024 cluster(s包括870 contigs和1 154 singletons)。BLASTx鉴定了1 216 clusters与GenBank数据库中序列有同源匹配。在这些clusters中,有809 clusters编码的蛋白与已知功能蛋白具有相似性或是少于250个氨基酸的小的分泌蛋白(Small secretory proteins,SSP)。这些clusters被分成9个类别,分别是:I为代谢有关的蛋白(Proteins involved in metabolism);II为结构蛋白(Structural proteins);III为调节者(Regulators);IV为运输者(Transporters);V为与蛋白合成和折叠有关蛋白(Proteins involved in protein synthesis and folding);VI为消化酶类(Digestive enzymes);VII为解毒酶类(Detoxification enzymes);VIII为小的分泌蛋白(Small secretory proteins, SSP);IX其它类(Others)。前5类代表的基因参与看家功能(House-keeping functions),其余3类具有肠功能特征。
     2.转录编码的多样性的消化酶类与吮吸式口器昆虫明显不同。消化酶类包括的clusters编码10个trypsins(6个新基因,分别是MDP6A、MDP6B、MDP7A、MDP8C、MDP9A和MDP10A), 7个chymotrypsins(4个新基因,分别是MDP11A、MDP12B、MDP13A和MDP14B), 2个cysteine proteases(新基因), 1个aspartic protease(新基因), 1个endo-oligopeptidase(新基因), 3个aminopeptidases(新基因), 10个carboxypeptidases(1个新基因), 2个α-amylases(新基因)。
     3.解毒酶类包括的clusters编码13个cytochrome P450s(新基因), 3个glutathione S-transferases (GSTs)(1个新基因), 3个peroxidases(1个新基因), 3个ferritins(新基因), 1个catalase(新基因), 2个peroxiredoxins(新基因), 7个其它的酶类。转录编码多样性的抗氧化酶的存在可能是黑森瘿蚊克服毒性氧化剂和源于寄主植物次生代谢物质的分子基础。
     4.SSP包括111 clusters,其中22个编码结构类似于蛋白酶抑制剂(Protease inhibitors)(7个新基因),核糖核酸酶(Ribonuclease)(2个新基因),表皮蛋白(Cuticle protein)(4个新基因)和细胞调节者(Cellular regulator),其余的clusters编码未知的蛋白。大量转录编码SSP是黑森瘿蚊幼虫肠转录组独特的特征,占整个ESTs的25%,其中大约63%的SSP是黑森瘿蚊或瘿蚊昆虫特有的,表明这些SSP在黑森瘿蚊幼虫取食位点营养组织的建立、寄主生长抑制的效应器细胞(Effector)等方面发挥功能。
     5.鉴定了具有不同结构的4组编码蛋白的抑制基因。在小麦-黑森瘿蚊不相容关系中,大部分基因表达水平上调,而在相容关系中则下调。抗虫植物和感虫植物间,不相容关系中的基因上调水平和相容关系中的基因下调水平导致了4--30倍的差异。不相容关系中抑制基因表达量的提高表明这些基因是小麦抵抗黑森瘿蚊侵袭的防御机制的一部分,而相容关系中这些抑制基因表达量的降低则表明毒性黑森瘿蚊幼虫能够抑制植物的防御反应。另外,这些抑制基因表达水平的差异与伤口诱导途径无关。
     上述研究结果为更深入地注释黑森瘿蚊基因组的功能、理解黑森瘿蚊的进化地位以及揭示瘿蚊—植物的协同进化机制提供了重要的理论基础,对更进一步研究黑森瘿蚊功能基因组学具有重要的理论意义,而且在实践上可为抗性品种的培育及改善害虫的治理提供重要的理论指导。
The Hessian fly, Mayetiola destructor (Say), is a destructive pest of wheat and is widely distributed throughout most wheat-growing areas of the world. Host plant resistance has been considered the most effective and economical means of controlling this pest in wheat. However, the widespread use of resistant cultivars has placed a strong selection pressure on Hessian fly populations, which has resulted in the evolution of new genotypes of the fly that can overcome previously resistant wheat. Since the gut is the primary site for food digestion, nutrient absorption, toxic degradation and plant resistance. Thus, identification and characterization of genes expressed in the Hessian fly larval gut will not only increase our understanding of insect gut physiology, but provide novel and specific targets for the development of strategies for pest management. On the other hand, the wheat-Hessian fly system follows a typical gene-for-gene interaction, and provides a good model for studying the scheme of attack and counter-attack between insects and plants. In the paper, the first global analysis of gut transcripts from a gall midge and systematic analysis of the expression patterns of inhibitor-like genes in wheat-Hessian fly system were conducted by means of methods and techniques of Expressed sequenced tag (ESTs), transcriptome, microarray and Real-Time PCR. The main results were as follows.
     1. More than 10 000 ESTs were assembled into 2 024 clusters (contigs and singletons). BLASTx identified 1 216 clusters with similarity to GenBank sequences. Among them, 809 clusters coded either for proteins with similarity to functionally known proteins or for small secretory proteins (SSP) (<250 amino acids). These clusters were grouped into nine categories: I. Proteins involved in metabolism, II. Structural proteins, III. Regulators, IV. Transporters, V. Proteins involved in protein synthesis and folding, VI. Digestive enzymes, VII. Detoxification enzymes, VIII. SSP, and IX. Others. The first five categories represent genes participating in house-keeping functions. The other three categories, including digestive enzymes, detoxification enzymes, and SSP, are characteristic of gut functions.
     2. There were transcripts coding for diverse putative digestive proteases, which is different from other plant-sucking insects such as aphids. The digestive enzymes included clusters coding for 10 trypsins (six represented novel genes, named MDP6A, MDP6B, MDP7A, MDP8C, MDP9A and MDP10A), seven chymotrypsins (four represented novel genes, named MDP11A, MDP12B, MDP13A and MDP14B), two cysteine proteases (novel genes), one aspartic protease (novel genes), one endo-oligopeptidase (novel genes), three aminopeptidases (novel genes), 10 carboxypeptidases (one novel gene), and twoα-amylases (novel genes).
     3. Detoxification enzymes included clusters coding for 13 cytochrome P450s (novel genes), three glutathione S-transferases (GSTs) (one novel gene), 3 peroxidases (one gene), three ferritins (novel genes), one catalase (novel gene), two peroxiredoxins (novel genes), and several other enzymes. The existence of transcripts coding for diverse antioxidant enzymes may be the molecular basis for Hessian fly to overcome toxic oxidants and secondary metabolites resulted from basal and induced defenses of host plants.
     4. The category of SSP contained 111 clusters, 22 of which coded for proteins structurally similar to protease inhibitors (seven novel genes), ribonucleases (two novel genes), cuticle proteins (four novel genes), and cellular regulators, whereas the other clusters coded for unknown proteins. The unique feature of Hessian fly larval gut transcriptome was the presence of a large number of transcripts coding for SSP, which represented nearly 25% of all the ESTs. Most (63%) of the putative SSP were unique to Hessian fly or gall midges. This strongly suggests that they probably perform functions characteristic of this insect, such as serving as effectors for the inhibition of host growth or in establishing nutritive tissue at the feeding site.
     5. Four groups of inhibitor-like genes encoding proteins with diverse structures were identified from wheat. The majorities of these genes were up-regulated by avirulent Hessian fly larvae during incompatible interactions, and were down-regulated by virulent larvae during compatible interactions. The upregulation during incompatible interactions and downregulation during compatible interactions resulted in 4 to 30 fold differences between the expression levels in resistant plants and those in susceptible plants. The increased expression of inhibitor-like genes during incompatible interactions suggested that these genes are part of defense mechanisms in wheat against Hessian fly attacks, whereas the downregulation of these genes during compatible interactions suggested that virulent larvae can suppress plant defenses. Both the upregulation of the inhibitor-like genes during incompatible interactions by avirulent larvae and the downregulation during compatible interactions by virulent larvae were through mechanisms that were independent of the wound response pathway.
引文
1. Adams MD, Celniker SE, Holt RA, et al. 2000. The genome sequence of Drosophila melanogaster. Science, 287: 2185-2195.
    2. Adams MD, Kelley JM, Gocayne JD, et al. 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 252: 1651-1656.
    3. Agrawal AA and Fordyce JA. 2000. Induced indirect defence in a lycaenid-ant association: the regulation of a resource in a mutualism. Proc. R. Soc. Land., B267: 1857-1861.
    4. Ahmad S and Pardini RS. 1990. Antioxidant defense of the cabbage looper, Trichoplusia ni: Enzymatic responses to the superoxide-generating flavonoid, quercetin, and photodynamic furanocoumarin, xanthotoxin. Photochem. Photobiol., 51: 305-311.
    5. Amri A, Bouhssini ME, Lhaloui S, et al. 1992. Estimates of yield loss to the Hessian fly (Diptera: Cecidomyiidae) on bread wheat using near-isogenic lines. AI Awamia, 77: 75-88.
    6. Amri A, Cox TS, Gill BS, et al. 1990b. Chromosomal location of the Hessian fly resistance gene H20 in Jori durum wheat. J. Hered., 81: 71-72.
    7. Amri A, Cox TS, Hatchett JH, et al. 1990a. Complementary action of genes for Hessian fly resistance in the wheat cultivar Seneca. J. Hered., 81: 24-27.
    8. Anderson KG and Harris MO. 2006. Does R gene resistance allow wheat to prevent plant growth effects associated with Hessian fly (Diptera: Cecidomyiidae) attack? J. Econ. Entomol., 99: 1842-1853.
    9. Armstrong RC, Aja T, Xiang J,et al. 1996. Fasinduced activation of the cell death-related protease CPP32 is inhibited by Bcl-2 and by ICE family protease inhibitors. J. Biol. Chem., 271: 16850-16855.
    10. Asavanich AP and Gallun RL. 1979. Duration of feeding by larvae of the Hessian fly and growth of susceptible wheat seedlings. Ann. Entomol. Soc. Am., 72: 218-221.
    11. Ashburner M, Ball CA, Blake JA, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25: 25-29.
    12. Aspan A, Sturtevant J, Smith VJ, et al. 1990. Purification and characterization of a propehnoloxidase activating enzyme from crayfish blood cells. Insect Biochem., 20: 709-718.
    13. Bentur JS and Kalode MB. 1996. Hypersensitive reaction and induced resistance in rice against the Asian rice gall midge Orseolia oryzae. Entomol. Exp. Appl., 78: 77-81.
    14. Bergh JC, Harris MO and Rose S. 1990. Temporal patterns of emergence and reproductive behavior of the Hessian fly. Ann. Entomol. Soc. Am., 83(5): 998-1004.
    15. Berzonsky WA, Ding H, Haley SD, et al. 2003. Breeding wheat for resistance to insects. Plant Breed Rev., 22: 221-296.
    16. Billingsley PF. 1990. The midgut ultrastructure of hematophagous insects. Annu. Rev. Entomol., 35: 219-248.
    17. Bloch C Jr and Richardson M. 1991. A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins. FEBS lett, 279: 101-104.
    18. Boigregrain RA, Mattras H, Brehelin M, et al. 1992. Insect immunity: Two proteinase inhibitors from hemolymph of Locusta migrtoria. Biochem. Biophy. Res. Comm., 189: 790-793.
    19. Briggle, LW, Strauss SL, Hamilton, et al. 1982. Distribution of the varieties and classes of wheat in the United States in 1979. USDA-ARS Stat. Bull., 676. 107 pp.
    20. Brown-Guedira GL, Hatchett JH, Liu XM, et al. 2005. Registration of KS99WGRC42 Hessian fly resistant hard red winter wheat germplasm. Crop Sci., 45: 804-805.
    21. Brune A and Friedrich M. 2000. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol., 3: 263-269.
    22. Bullock DG, BosquePerez NA, Johnson JB, et al. 2004. Species composition and distribution of Hessian fly (Diptera: Cecidomyiidae) parasitoids in northern Idaho. J. Kansas Entomol. Soc., 77: 174-180.
    23. Buntin DG and Chapin JW. 1990. Biology of Hessian fly in the southeastern United States: geographic variation and temperature-dependent phenology. J. Econ. Entomol., 83: 1015-1024.
    24. Buntin DG and Raymer PL. 1989. Hessian fly (Diptera: Cecidomyiidae) damage and forage production of winter wheat. J. Econ. Entomol., 82: 301-305.
    25. Byers RA and Gallun RL. 1972. Ability of the Hessian fly to stunt winter wheat: Effect of larval feeding on elongation of leaves. J. Econ. Entomol., 65: 955-958.
    26. Cartwright WB and Jones ET. 1953. The Hessian fly and how losses from it can be avoided. USDA Farmer’s Bull., 1627. 9 pp.
    27. Casaretto JA and Corcuera LJ. 1998. Proteinase inhibitor accumulationin aphid-infested barley leaves. Phytochem., 49: 2279-2286.
    28. Ceci LR, Volpicella M, RahbéY, et al. 2003. Selection by phage display of a variant mustard trypsin inhibitor toxic against aphids. Plant J., 33: 557-566.
    29. Chapman RF. 1985. Structure of the digestive system. In: Kerkut GA and Gilbert LI (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon Press, New York, pp. 165-211.
    30. Chen MS, Fellers JP, Stuart JJ, et al. 2004. A group of related cDNAs encoding secreted proteins from Hessian fly [Mayetiola destructor (Say)] salivary glands. Insect Mol. Biol., 13: 101-108.
    31. Chen MS, Fellers JP, Zhu YC, et al. 2006b. A super-family of genes coding for secreted salivary gland proteins from the Hessian fly, Mayetiola destructor. J. Insect Sci., 6: 12 (http://insectscience.org/6.12/).
    32. Chen MS, Liu X, Zhu YC, et al. 2006a. Genes Encoding a group of related small secreted proteins from the gut of Hessian fly larvae [Mayetiola destructor (Say)]. Insect Sci., 13: 339-348.
    33. Chen MS, Zhao HX, Zhu YC, et al. 2008. Analysis of Transcripts and Proteins Expressed in the Salivary Glands of Hessian fly (Mayetiola destructor) Larvae. J. Insect Physiol., 54: 1-16.
    34. Chen MS. 2008. Inducible direct plant defense against insect herbivores. Insect Sci., 15(2): 101-114.
    35. Chi YH, Salzman RA, Balfe S, et al. 2009. Cowpea bruchid midgut transcriptome response to a soybean cystatin-costs and benefits of counter-defence. Inscet Mol. Biol., 18(1): 97-110.
    36. Cox TS, Hatchett JH. 1994. Hessian fly resistance gene H26 transferred from Triticum tauschii to common wheat. Crop Sci., 34: 958-960.
    37. Crosby MA, Goodman JL, Strelets VB, et al. 2007. FlyBase: genomes by the dozen. Nucleic Acids Res., 35: D486-D491.
    38. Dangl JL and McDowell JM. 2006. Two modes of pathogen recognition by plants. PNAS, 103: 8575-8576.
    39. Dickinson JL, Bates EJ, Ferrante A, et al. 1995. Plasminogen activator inhibitor 2 inhibits tumor necrosis factor alpha-induced apoptosis. Evidence for an alternate biological function. J. Biol. Chem., 270: 27894-27904.
    40. Dillon RJ, Ivens AC, Churcher C, et al. 2006. Analysis of ESTs from Lutzomyia longipalpis sand flies and their contribution toward understanding the insect-parasite relationship. Genomics, 88(6): 831-840.
    41. EI Bouhssini M, Hatchett JH, Cox TS, et al. 2001. Genotypeic interaction between resistance genes in wheat and virulence genes in the Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae). Bull. Entomol., Res., 91: 327-331.
    42. EI Bouhssini M, Hatchett JH, Wilde GE. 1998. Survival of Hessian fly (Diptera: cecidomyiidae) larvae on wheat cultivars carrying different genes for antibiosis. J. Agri. Entomol., 15: 183-193.
    43. Elpidina EN, Vinokurov KS, Rudenskaya YA, et al. 2001. Proteinase inhibitors in Nauphoeta cinerea midgut. Arch. Insect Biochem. Physiol., 48(4): 217-222.
    44. Enayati AA, Ranson H, Hemingway J. 2005. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol., 14: 3-8.
    45. FAO. 2000. Food and Agriculture Organization of the United Nations, statistics division databases. (http:/www.fao.org).
    46. Ferry N, Edwards MG, Gatehouse JA, et al. 2004. Plant-insect interactions: Molecular approaches to insect resistance. Curr. Opin. Biotechnol., 15: 155-161.
    47. Fitch A. 1847. Insect injurious to vegetation V. The Hessian fly. Am. Quart. J. Agr. Sci., 5: 1-27.
    48. Flor HH. 1955. Host-parasite interaction in flax rust: It’s genetics and other implications. Phytopathol., 45: 680-685.
    49. Flor HH. 1971. Current status of the gene-for-gene concept. Ann. Rev. Phytopathol., 9: 275-296.
    50. Formusoh ES, Hatchett JH, Black WC, et al. 1996. Sex-linked inheritance of virulence against wheat resistance gene H9 in the Hessian fly. Ann. Entomol. Soc. Amer., 89: 428-434.
    51. Foster JE, Sosa Jr and Roberts JJ. 1975. Interrelationships between Hessian fly infestation and tillering capacity in soft red winter wheats. Presentation at National Meeting of ESA, New Orleans, Lousiana.
    52. Fournier D, Bride JM, Poirie M, et al. 1992. Insect glutathione S-transferases. Biochemical characteristics of major form from houseflies susceptible and resistant to insecticides. J. Biol. Chem., 267: 1840-1845.
    53. Friebe B, Hatchett JH, Gill BS, et al. 1991. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor. Appl. Genet., 83: 33-40.
    54. Gagne RJ and Hachett JH. 1989. Instars of the Hessian fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am., 82: 73-79.
    55. Gallun RL and Hatchett JH. 1968. Interrelationship between races of Hessian fly and resistance in wheat. In: Proceedings of the 3rd International Wheat Genetics Symposium. Camberra. Aust. Acad.Sci., pp. 258-262.
    56. Gallun RL and Hatchett JH. 1969. Genetic evidence of elimination of chromosomes in the Hessian fly. Ann. Entomol. Soc. Am., 62: 1095-1101.
    57. Gallun RL and Langston R. 1963. Feeding habits of Hessian fly larvae on P32-labeled resistance and susceptible wheat seedlings. J. Econ. Entomol., 56(5): 702-706.
    58. Gallun RL. 1977. Genetic basis of Hessian fly epidemics. Ann. New York Acad. Sci., 287: 223-229.
    59. Gaylor W. 1843. A treatise on insects injurious to field crops. Trans. New York State Agr. Soc., 3: 129-174.
    60. Gerhold D and Caskey CT. 1996. It's the genes! EST access to human genome content. BioEssays, 18: 973-981.
    61. Gill BS, Hatchett HJ and Raupp WJ. 1987. Chromosomal mapping of Hessian fly resistant gene H13 in the D genome of wheat. J. Hered., 78: 97-100.
    62. Goates BS, Sumerford DV, Hellmich RL, et al. 2008. Mining an Ostrinia nubilalis midgut expressed sequence tag (EST) library for candidate genes and single nucleotide polymophisms (SNPs). Insect Mol. Biol., 17(6): 607-620.
    63. Grant DF and Matsumura F. 1989. Glutathione S-transferase 1 and 2 in susceptible and resistant insecticide resistant Aedes aegypti. Pest. Biochem. Physiol., 33: 132-143.
    64. Green TR and Ryan CA. 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science, 175: 776-777.
    65. Grover Jr PB, Ross DR and Shukle RH. 1988. Identification and partial characterization of digestive carbohydrases in larvae of the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). Arch. Insect Biochem. Physiol., 8: 59-72.
    66. Hahlbrock K, Bednarek P, Ciolkowski I, et al. 2003. Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. PNAS, 100: 14569-14576.
    67. Harmon R. 1843. Report of experiments on the varieties of wheat cultivated in the state of New York. Trans. of New York State Agr. Soc., 3: 217-231.
    68. Harris MO and Rose S. 1989. Temporal changes in the egglaying behavior of the Hessian fly, Mayetiola destructor. Entomol. Exp. Appl., 53: 17-29.
    69. Harris MO, Freeman TP, Rohfritsch O, et al. 2006. Virulent Hessian fly (Diptera: Cecidomyiidae) larvae induce a nutritive tissue during compatible interactions with wheat. Ann. Entomol. Soc. Am., 99: 305-316.
    70. Harris MO, Stuart JJ, Mohan M, et al. 2003. Grasses and gall midges: plant defense and insect adaptation. Annu. Rev. Entomol., 48: 549-577.
    71. Haseman L. 1930. The Hessian fly larva and its method of taking food. J. Econ. Entomol., 23(2): 316-319.
    72. Hatchett JH and Gallun RL, 1970. Genetics of the ability of the Hessian fly, Mayetiola destructor, to survive on wheats having different genes for resistance. Ann. Entomol. Soc. Am., 63: 1400-1407.
    73. Hatchett JH, Kreitner GL and Elzinga RJ. 1990. Larval mouthparts and feeding mechanism of the Hessian fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am., 83: 1137-1147.
    74. Hatchett JH, Sears RG and Cox TS. 1993. Inheritance of resistance to Hessian fly in rye and wheat-rye translocation lines. Crop Sci., 33: 730-734.
    75. Hatchett JH, Starks KJ, Webster JA. 1987. Insect and mite pests of wheat. In Wheat and Wheat improvement. Agronomy Monograph, 13: 625-675.
    76. Herrero S, Oppert B, Ferre J. 2001. Different mechanisms of resistance to Bacillus thuringiensis toxins in the indianmeal moth. Appl. Environ. Biol., 67(3): 1085-1089.
    77. Hoglund S, Larrson S, Wingsle G. 2005. Both hypersensitive and non-hypersensitive responses are associated with resistance in Salix viminalis against the gall midge Dasineura marginemtorquens. J. Exp. Botany, 56: 3215-3222.
    78. Holt RA, Subramanian GM, Halpern A, et al. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298: 129-149.
    79. Huang X and Madan A. 1999. CAP3: A DNA sequence assembly program. Genome Res., 9: 868-877.
    80. Hubert JF, Thomas D, Cavalier A, et al. 1989. Structural and biochemical observations on specialized membranes of the filter chamber, a water-shunting complex in sap-sucking homopteran insects. Biol. Cell, 66(1-2): 155-163.
    81. Hudson RD, Buntin GD and Isenhour DJ. 1991. Small grain insects. In: Douce GK and McPherson RM (eds.), Summary of Losses from Insect Damage and Costs of Control in Georgia, 1989. Georgia Agr. Expt. Sta. Spec. Publ., 70. 29 pp.
    82. Hudson RD, Buntin GD, Isenhour DJ, et al. 1988. Small grain insects. In: Douce GK and Suber EF (eds.), Summary of Losses from Insect Damage and Costs of Control in Georgia, 1986. Georgia Agr. Expt. Sta. Spec. Publ. 46. 25 pp.
    83. Hughes J and Vogler AP. 2006. Gene expression in the gut of keratin-feeding clothes moths (Tineola) and keratin beetles (Trox) revealed by subtracted cDNA libraries. Insect Biochem. Mol. Biol., 36(7): 584-592.
    84. Hui D, Iqbal J, Lehmann K, et al. 2003. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata: V. Microarray analysis and further characterization of large-scale changes inherbivore-induced mRNAs. Plant Physiol., 131: 1877-93.
    85. Ishaaya I. 1993. Insect detoxifying enzymes: their importance in pesticide synergism and resistance. Arch. Insect Biochem. Physiol., 22: 163-276.
    86. Jiang H and Kanost MR. 1997. Characterization and functional analysis of 12 naturally occurring reactive site variants of serpin-1 from Manduca sexta. J. Biol. Chem., 272: 1082-1087.
    87. Jochim RC, Teixeira CR, Laughinghouse A, et al. 2008. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infested sand flies. BMC Genomics, 9: 15.
    88. Johnson JW, Buntin GD, Foster JE, et al. 1987. Response of triticale to the Hessian fly (Diptera: Cecidomyiidae). J. Entomol. Sci., 22: 51-54.
    89. Jonson JW, Buntin GD, Cunfer BM, et al. 1995. Registration of GA-HFR barley germplasm resistant to Hessian fly. Crop Sci., 35: 294-295.
    90. Karley AJ, Douglas AE, Parker WE. 2002. Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J. Exp. Bio., 205: 3009-3018.
    91. Kessler A and Baldwin IT. 2002. Plant responses to insect herbivory. Ann. Rev. Plant Biol., 53: 299-328.
    92. Kihara H. 1944. Die entdeckung des DD-analysators beim weizen. Agric. Hortic., 19: 889-890.
    93. Kirschner MW. 2005. The meaning of systems biology. Cell, 121: 503-4.
    94. Kogan M and Ortman EE. 1978. Antixenosis-a new term proposed to replace Painter’s non-preference modality of resistance. Bull. Entomol. Soc. Am., 24: 175-176.
    95. Koike M, Okamoto T, Tsuda S, et al. 2002. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem. Biophys. Res. Commun., 298: 46-53.
    96. Kraut J. 1977. Serine proteases: structure and mechanism of catalysis. Ann. Rev. Biochem., 46: 331-358.
    97. Krishnan N and Kodrík D. 2006. Antioxidant enzymes in Spodoptera littoralis (Boisduval): Are they enhanced to protect gut tissues during oxidative stress? J. Insect Physiol., 52: 11-20.
    98. Krombein KV, Hord PD, Smith JDR, et al. 1979. Catalog of Hymenoptera in America North of Mexico. Smithsonian Institution Press, Washington DC.
    99. Lamb C and Dixon RA. 1997. The oxidative burst in plant disease resistance. Ann. Rev. Plant Physio. Plant Mol. Biol., 48: 251-275.
    100. Lamiri AS, Lhaloui S, Benjilali B, et al. 2001. Insecticidal effects of essential oils against Hessian fly, Mayetiola destructor (Say). Field Crops Res., 71: 9-15.
    101. Laskowski MJ and Kato I. 1980. Protein inhibitors of proteinases. Ann. Rev. Biochem., 49: 593-626.
    102. Lee IS, Lee SH, Koo JC, et al. 1999. Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nirvata lugens Stal) in transgenic rice. J. Mol. Breed., 5: 1-9.
    103. Lehane MJ. 1991. Biology of Blood-Sucking Insects. Harper Collins Academic, London, pp. 1-75.
    104. Lehane MJ. 1997. Peritophic matrix structure and function. Annu. Rev. Entomol., 42: 525-550.
    105. Lhaloui SL, Buschman L, Bouhssini ME, et al. 1992. Control of Mayetiola species (Diptera: Cecidomyiidae) with Carbofuran in bread wheat, durum wheat and barley with yield loss assessment and its economic analysis. AI Awamia, 77: 55-74.
    106. Li HM, Buczhowski G, Mittapalli O, et al. 2008. Transcriptomic profiles of Drosophila melanogaster third instar larval midgut and responses to oxidative stress. Insect Mol. Biol., 17(4): 325-339.
    107. Li W, Zangerl AR, Schuler MA, et al. 2004. Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella. Insect Mol. Biol., 13: 603-613.
    108. Lin MF, Carlson JW, Crosby MA, et al. 2007. Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes. Genome Res., 17: 1823-1836.
    109. Liu X, Fellers JP, Wilde GE, et al. 2004. Characterization of two genes expressed in the salivary glands of the Hessian fly, Mayetiola destructor (Say). Insect Biochem. Mol. Biol., 34: 229-237.
    110. Liu X, Fellers JP, Zhu YC, et al. 2006. Cloning and characterization of cDNAs encoding carboxypeptidase-like proteins from the gut of Hessian fly [Mayetiola destructor (Say)] larvae. Insect Biochem. Mol. Biol., 36: 665-673.
    111. Liu XL, Bai J, Huang L, et al. 2007. Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol., 33: 2171-2194.
    112. Liu XM, Brown-Guedira GL, Hatchett JH, et al. 2005a. Genetic characterization and molecularmapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat. Theor. Appl. Genet., 111: 1308-1315.
    113. Liu XM, Fritz AK, Reese JC, et al. 2005b. H9, H10, and H11 compose a cluster of Hessian fly resistance genes in the distal gene-rich region of wheat chromosome 1AS. Theor. Appl. Genet., 110: 143-148.
    114. Liu XM, Gill BS, Chen MS. 2005c. Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor. Appl. Genet., 111: 243-249.
    115. Loeb MJ, Martin P, Hakim RS, et al. 2001. Regeneration of populations of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect Physiol., 47: 599-606.
    116. Ma R, Cohen MB, Berenbaum MR, et al. 1994. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins. Arch. Biochem. Physiol., 310: 332-340.
    117. Maas FB, Patterson FL, Foster JE, et al. 1987. Expression and inheritance of Marquillo wheat to Hessian fly biotype D. Crop Sci., 27: 49-52.
    118. Maas FB, Patterson FL, Foster JE, et al. 1989. Expression and inheritance of resistance of ELS 6404-160 durum wheat to Hessian fly. Crop Sci., 29: 23-28.
    119. Maddur AA, Liu XM, Zhu YC, et al. 2006. Cloning and characterization of protease inhibitor-like cDNAs from the Hessian fly Mayetiola destructor (Say). Insect Mol. Biol., 15(4): 485-496.
    120. Marchler-Bauer A, Anderson JB, Derbyshire MK, et al. 2007. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res., 35: D237-240.
    121. Martin-Sanchez JA, Gomez-Colmenarejo M, Del Moral J, et al. 2003. A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor. Appl. Genet., 106: 1248-1255.
    122. Masoudi-Nejad A, Tonomura K, Kawashima S, et al. 2006. EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res., 34: W459-462.
    123. McFadden ES and Sears ER. 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered., 37: 81-89.
    124. McIntosh RA, Yamazaki Y, Devos KM, et al. 2003. Catalogue of gene symbols for wheat. Mac-Gene 2003 (http://www.grs.nig.ac.jp/wheat/komugi/genes/download.jsp, veriWed 1 Nov. 2005.
    125. Mckay PA and Hatchett JH. 1984. Mating behavior and evidence of a female sex pheromone in the Hessian fly, Mayetiola destructor (Say). Ann. Entomol. Soc. Amer., 77: 616-620.
    126. Miles PW. 1999. Aphid saliva. Biol. Rev., 74 (1): 41-85.
    127. Miller BS, Mitchell HL, Johnson JJ, et al. 1958. Lipid soluble pigments of wheat plants as related to Hessian fly infestations. Plant Physiol., 33: 413-416.
    128. Min XJ, Butler G, Storms R, et al. 2005. OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res., 33: W677-680.
    129. Mittapalli O, Neal JJ, Shukle RH. 2007. Antioxidant defense response in a galling insect. PNAS, 104(6): 1889-1894.
    130. Morales ME, Kalinna BH, Heyers O, et al. 2004. Genomic organization of the Schistosoma mansoni aspartic protease gene, a platyhelminth orthologue of mammalian lysosomal cathepsin D. Gene, 338: 99-109.
    131. Morgan MRJ. 1976. Gut carbohydrases in locusts and grasshoppers. Acrida, 5: 45-58.
    132. Moura DS and Ryan CA. 2001. Wound-inducible proteinase inhibitors in pepper: Differential regulation upon wounding, systemin, and methyl jasmonate. Plant Physiol., 126: 289-298.
    133. Nation JL. 2002. Digestion. In: Nation JL (ed.), Insect Physiology and Biochemistry. CRC press, Boca Raton, FL, pp. 27-64.
    134. National Center for Biotechnology Information: [http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucest&cmd=search&term=European+corn+borer+EST/]
    135. Nene V, Wortman JR, Lawson D, et al. 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science, 316: 1718-1723.
    136. Neurath R. 1989. The diversity of proteolytic enzymes. In: Beynon RJ and Bond JS (eds.), Proteolytic Enzymes, a Practical Approach. IRL Press, Oxford, pp. 1-23.
    137. Noble WB. 1943. Differentiation of the two genetic factors for resistance to the Hessian fly in Dawson wheat. J. Agric. Res., 67: 1-32.
    138. Obanni M, Patterson FL, Foster JE, et al. 1988. Genetic analysis of resistance to durum wheat PI428435 to the Hessian fly. Crop Sci., 28: 223-226.
    139. Odani S and Ikenaka T. 1976. The amino acid sequences of two soybean double headed proteinase inhibitors and evolutionary consideration on the legume proteinase inhibitors. J. Biochem., 80: 641-643.
    140. Ohm HW, Patterson FL, Ratcliffe RH, et al. 2004. Registration of Hessian fly resistant wheat gerplasm line PI921696. Crop Sci., 44: 2272-2273.
    141. Ohm HW, Ratcliffe RH, Patterson FL, et al. 1997. Resistance to Hessian fly conditioned by genes H19 and proposed gene H27 of durum wheat line PI422297. Crop Sci., 37: 113-115.
    142. Ohm HW, Sharma HC, Patterson FL, et al. 1995. Linkage relationships among genes on wheat chromosome 5A that condition resistance to Hessian fly. Crop Sci., 35: 1603-1607.
    143. Olson M, Hood L, Cantor C, et al. 1989. A common language for physical mapping of the human genome. Science, 245: 1434-1435.
    144. Orino K, Lehman L, Tsuji Y, et al. 2001. "Ferritin and the response to oxidative stress". Biochem. J., 357(1): 241-247.
    145. Oviedo MN, VanEkeris L, Corena-Mcleod MDP, et al. 2008. A microarray-based analysis of transcriptional compartmentalization in the alimentary canal of Anopheles gambiae (Diptera: Culicidae) larvae. Insect Mol. Biol., 17(1): 61-72.
    146. Packard AS. 1880. The Hessian fly, its ravages, habits, enemies, and means of preventing its increase. U. S. Entomol. Comm., 3: 198-248.
    147. Packard CM and Cartwright CB. 1939. The Hessian fly in Indiana. Purdue Univ. Agr. Expt. Sta. Bul., 440. West Lafayette, IN.
    148. Packard CM. 1928. The Hessian fly in California. USDA Tech. Bull., 81. 25 pp.
    149. Painter RH. Insect resistance in crop plants. University of Kansas Press. Lawrence, 520 pp.
    150. Papanicolaou A, Joron M, McMillan WO, et al. 2005. Genomic tools and cDNA derived markers for butterflies. Mol. Ecol., 14: 2883-2897.
    151. Patterson FL, Maas FB, Foster JE, et al. 1994. Registration of eight Hessian fly resistant common winter-wheat germplasm lines (Carol, Erin, Flynn, Iris, Joy, Karen, Lola, and Molly). Crop Sci., 34: 315-316.
    152. Pechan T, Ye J, Chang YM, et al. 2000. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell, 12: 1031-1040.
    153. Pedra JHF, Brandt A, Westerman R, et al. 2003. Transcriptome analysis of the cowpea weevil bruchid: identification of putative proteinases andα-amylases associated with food breakdown. Insect Mol. Biol., 12(4): 405-412.
    154. Peterson AM, Barillas-Mury CV, Wells MA. 1994. Sequence of three cDNAs encoding an alkaline midgut trypsin from Manduca sexta. Insect Biochem. Mol. Biol., 24: 463-471.
    155. Pike K, Veseth RB, Miller R, et al. 1993. Hessian fly management in conservation tillage systems for the inland Pacific Northwest. Pacific Northwest Conservation Tillage Handbook Series 15, Chapter 8. Univ. Idaho-Oregon State Univ.
    156. Poerio E, Caporale C, Carrano L, et al. 1994. The amino acid sequence and reactive site of a single-headed trypsin inhibitor from wheat endosperm. J. Protein Chem., 13: 187-194.
    157. Porcel BM, Tran AN, Tammi M, et al. 2000. Gene survey of the pathogenic protozoan Trypanosoma cruzi. Genome Res., 10: 1103-1107.
    158. Prokopy RJ and Roitberg BD. 2001. Joining and avoidance behavior in nonsocial insects. Ann. Rev. Entomol., 46: 631-665.
    159. Qi RF, Song ZW and Chi CW. 2005. Structural features and molecular evolution of Bowman-Birk protease inhibitors and their potential application. Acta Biochem. Biophys. Sin., 37: 283-292.
    160. Rahbe Y, Deraison C, Bonade-Bottino M, et al. 2003. Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Sci., 164: 441-450.
    161. Rahbe Y, Ferrasson E, Rabesona H, et al. 2002. Toxicity to the pea aphid Acyrthosiphon pisum of anti-chymotrypsin isoforms and fragments of Bowman-Birk protease inhibitors from pea seeds. Insect Biochem. Mol. Biol., 33: 299-306.
    162. Ramalho-Ortigao M, Jochim RC, Anderson JM, et al. 2007. Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sandflies. BMC Genomics, 8: 300.
    163. Rampias TN, Sideris DC, Fragoulis EG. 2003. Cc RNase: the Ceratitis capitata ortholog of a novel highly conserved protein family in metazoans. Nucl. Acid Res., 31(12): 3092-3100.
    164. Ramsey JS, Wilson AC, de Vos M, et al. 2007. Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics, 8: 423.
    165. Ratcliffe RH and Hatchett J H. 1997. Biology and genetics of the Hessian fly and resistance in wheat. In: Bondari (ed.), New Developments in Entomology. Research Signpost, Trivandrum, IN, pp. 47-56.
    166. Ratcliffe RH, Cambron SE, Flanders KL, et al. 2000. Biotype composition of Hessian fly (Diptera: Cecidomyiidae) populations from the southeastern, Midwestern, and northwestern United States and virulence to resistance genes in wheat. J. Econ. Entomol., 93: 1319-1328.
    167. Ratcliffe RH, GG Safranski, FL Patterson, et al. 1994. Biotype status of Hessian fly (Diptera: Cecidomyiidae) populations from the eastern United States and their response to 14 Hessian fly resistance genes. J. Econ. Entomol., 87: 1113-1121.
    168. Ratcliffe RH, HW Ohm, FL Patterson, et al. 1996. Response of resistance genes H9 to H19 in wheat to Hessian fly (Diptera: Cecidomyiidae) laboratory biotypes and field populations from the Eastern United States. J. Econ. Entomol., 89: 1309-1317.
    169. Ratcliffe RH, Patterson FL, Cambron SE, et al. 2002. Resistance in durum wheat sources to Hessian fly (Diptera: Cecidomyiidae) populations in Eastern USA. Crop Sci., 42: 1350-1356.
    170. Raupp WJ, Amri A, Hatchett JH, et al. 1993. Chromosomal location of Hessian fly resistance genes H22, H23, and H24 derived from Triticum tauschii in the D genome of wheat. J Hered., 84: 142-145.
    171. Rawlings ND, Tolle DP and Barrett AJ. 2005. Evolutionary families of peptidase inhibitors. Biochem. J., 378: 705-716.
    172. Ray S, Anderson JM, Urmeev FI, et al. 2003. Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol. Biol., 53: 701-714.
    173. Reeck GR, Kramer KJ, Baker JE, et al. 1997. Proteinase inhibitors and resistance of transgenic plants to insects. In: Carozzi N and Koziel M (eds.), Advances in Insect Control: the Role of Transgenic Plants. Taylor and Francis, London, pp. 157-183.
    174. Rider SD Jr, Sun W, Ratcliffe RH, et al. 2002. Chromosome landing near avirulence gene vH13 in the Hessian fly. Genome, 45: 812-822.
    175. Roberts JJ and Gallun RL. 1984. Chromosomes location of the H5 gene for resistance to the Hessian fly in wheat. J. Hered., 75: 147-148.
    176. Roberts JJ, Gallun RL, Patterson FL, et al. 1979. Effects of wheat leaf pubescence on the Hessian fly. J. Econ. Entomol., 72: 211-214.
    177. Rohfritsch O. 1992. Patterns in gall development. In: Shorthouse J and Rohfritsch O (eds.), Biology of Insect-Induced Galls. Oxford Univ. Press, New York, pp. 60-86.
    178. Rohfritsch O. 2005. Gall making. In: Goodman RM (ed.), Encyclopedia of Plant and Crop Science. Marcel Dekker, New York, pp. 1021-1022.
    179. Rojas EA, Knutson AE, Gilstrap FE. 2000. Release of Platygaster hiemalis Forbes in Texas for biological control of the Hessian fly, a Mayetiola destructor Say (Cecidomyiidae). Southwest. Entomol., 25: 175-184.
    180. Roskam HC. 2005. Phylogeny of gall midges (Cecidomyiidae). In: Raman A, Schaefer CW and Withers TM (eds.), Biology, Ecology, and Evolution of Gall-inducing Arthropods. Science Publishers, Inc. Enfield, USA, pp. 305-319.
    181. Ryan CA and Moura DS. 2002. Systemic wound signaling in plants: A new perception. PNAS, 99: 6519-6520.
    182. Sabater-Munoz B, Legeai F, Rispe C, et al. 2006. Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genome Biol., 7(3): R21.
    183. Santos CD, Ferreira C and Terra WR. 1983. Consumption of food and spatial organization of digestion in the cassava hornworm, Erinnyis ello. J. Insect Physiol., 29: 707-714.
    184. Santos CD, Ribeiro AF, Ferreira C, et al. 1984. The larval midgut of the cassava hornworm. Ultrastructure, fluid fluxes and the secretory activity in relation to the organization of digestion. Cell Tiss. Res., 237: 565-574.
    185. Sardesai N, Nemacheck JA, Subramanyam S, et al. 2005. Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor. Appl. Genet., 111: 1167-1173.
    186. Schmetz EA, Carroll MJ, LeClere S, et al. 2006. Fragments of ATP synthase mediate plant perception of insect attack. PNAS, 103: 8894-8899.
    187. Schnee C, Kollner TG, Turlings TCJ, et al. 2006. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. PNAS, 103: 1129-1134.
    188. Schuster MF and Lidell MC. 1990. Distribution and seasonal abundance of Hessian fly (Diptera: Cecidomyiidae) parasitoids in Texas. J. Econ. Entomol., 83: 2269-2273.
    189. Scott JG and Wen Z. 2001. Cytochromes P450 of insects: the tip of the iceberg. Pest Manage. Sci., 57: 958-967.
    190. Sears RG, Hatchett JH, Cox TS, et al. 1992. Registration of HAMLET, a Hessian fly resistant hard red winter wheat germplasm. Crop Sci., 32: 506.
    191. Sebesta EE, Hatchett JH, Friebe B, et al. 1997. Registration of KS92WGRC17, KS92WGRC18, KS92WGRC19, and KS92WGRC20 winter wheat germplasms resistant to Hessian fly. Crop Sci., 37: 635.
    192. Shukle RH, Grover Jr PB, Mocelin G. 1992. Responses of susceptible and resistant wheat associated with Hessian fly (Diptera: Cecidomyiidae) infestation. Environ. Entomol., 21: 845-853.
    193. Simpson RM, Newcomb RD, Gatehouse HS, et al. 2007. Expressed sequence tags from the midgut of Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae). Insect Mol. Biol., 16(6): 675-690.
    194. Smiley RW, Gourlie JA, Whittaker RG, et al. 2004. Economic impact of Hessian fly (Diptera: Cecidomyiidae) on spring wheat in Oregon and additive yield losses with Fusarium crown rot and lesion nematode. J. Econ. Entomol., 97: 394-408.
    195. Smith CM, Kahn ZR and Pathak MD. 1994. Techniques for Evaluating Insect Resistance in Crop Plants. Lewis Publishers, Boca Raton, FL, USA.
    196. Sosa O. 1978. Biotype L, ninth biotype of the Hessian fly. J. Econ. Entomol., 71: 458-460.
    197. Stebbins NB, Patterson FL and Gallun RL. 1982. Interrelationships among wheat genes H3, H6, H9 and H10 for Hessian fly resistance. Crop Sci., 22: 1029-1032.
    198. Sternlicht MD and Werb Z. 2001. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 17: 463-516.
    199. Stuart JJ and Hatchett JH. 1987. Morphogenesis and cytology of the salivary gland of the Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am., 80: 475-482.
    200. Stuart JJ, Chen MS, Harris M. 2007. Hessian fly. In: Hunter W and Kole C (eds.), Genome Mapping and Genomics in Animals. Volume 1: Genome Mapping and Genomics in Arthropods. Springer, Berlin, Heidelberg, New York, pp. 93-100.
    201. Stuart JJ, SJ Schulte, PS Hall, et al. 1998. Genetic mapping of Hessian fly avirulence gene vH6 usingbulked segregant analysis. Genome, 41: 702-708.
    202. Sugumaran M, Saul SJ and Ramesh N. 1985. Endogenous protease inhibitors prevent undesired activation of prophenolase in insect hemolymph. Biochem. Biophys. Res. Commun., 132: 1124-1129.
    203. Suneson CA. 1950. Further differentiation of genetic factors in wheat for resistance to the Hessian fly. USDA Tech. Bull., 1004.
    204. Tellam GL. 1996. The biology of the insect midgut. In: Billingsley PF and Lehane MJ (eds.), The Insect Midgut, Structure and Ultrastructure of the Midgut. Chapman and Hall, London, pp. 86-114.
    205. Terra WR and Ferreira C. 1994. Insect digestive enzymes: properties, compartmentalization and function. Comp. Biochem. Physiol., 109B (1): 1-62.
    206. Terra WR and Ferreira C. 2005. Biochemistry of digestion. In: Gilbert LI, Iatrov K and Gill SS (eds.), Comprehensive Molecular Insect Science, vol. 4, Biochemistry and Molecular Biology. Elsevier, Oxford, pp. 171-224.
    207. Terra WR, Ferreira C, Jordao BP, et al. 1996. Digestive enzymes. In: Lehane MJ and Billingsley PF (eds.), The Biology of the Insect Midgut. Chapman and Hall, London, pp. 153-186.
    208. Terra WR. 1990. Evolution of digestive systems of insects. Annu. Rev. Entomol., 35: 181-200.
    209. Thompson GA and Goggin FL. 2006. Transcriptomics and functional genomics of plant defence induction by phloem- feeding insects. J. Exp. Bot., 57: 755-66.
    210. Tran P, Cheesbrough TM and Keickhefer RW. 1997. Plant proteinase inhibitors are potential anticereal aphid compounds. J. Econ. Entom., 90: 1672-1677.
    211. Tu CPD and Akgül B. 2005. Drosophila glutathione S-transferases. Methods in Enzymology, 401: 204-226.
    212. Vavilov NT. 1926. Resistance in wheat to“Lema melanopa”. In: Vavilov NT (ed.), The Origin, Variation, Immunity and Breeding of Cultivated Plants. Chron. Bot., 13: 147.
    213. Wainhouse D, Staley JT, Jinks R, et al. 2009. Growth and defence in young pine and spruce and the expression of resistance to a stem-feeding weevil. Oecologia, 158(4): 641-650.
    214. Walling LL. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul., 19: 195-216.
    215. Wan J, Duning FM and Bent AF. 2002. Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays. Funct. Integr. Genomics, 2: 259-273.
    216. Wang S, Magoulas C, Hickey DA. 1993. Isolation and characterization of a full-length trypsin-encoding cDNA clone from the lepidopteran insect, Choristoneura fumiferana. Gene, 136: 375-376.
    217. Wang T, Xu SS, Harris MO, et al. 2006. Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Triticum tauschii in synthetic wheat. Theor. Appl. Genet., 113: 611-618.
    218. Wellso SG, Chen B, Foster JE, et al. 1988. Selected bibliography of North American parasitoids of the Hessian fly. Purdue Agr. Ext. Serv. Bul., 533, West Lafayette, IN.
    219. Werck-Reichhart D, Feyereisen R. 2000. Cytochrome P450: a success story. Genome Biol., 1(6): 3003.
    220. Whitfield CW, Band MR, Bonaldo MF, et al. 2002. Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res., 12: 555-566.
    221. Williams CE, Collier CC, Sardesai N, et al. 2003. Phenotypic assessment and mapped markers forH31, a new wheat gene conferring resistance to Hessian fly (Diptera: Cecidomyiidae). Theor. Appl. Genet., 107: 1516-1523.
    222. Wu JX, Liu XM, Zhang SZ, et al. 2008. Differential responses of wheat inhibitor-like genes to Hessian fly, Mayetiola destructor, attack during compatible and incompatible interactions. J. Chem. Ecol., 34: 1005-1012.
    223. Xu SS, Cai X, Wang T, et al. 2006. Registration of two synthetic hexaploid wheat germplasms resistant to Hessian fly. Crop Sci., 46: 1401-1402.
    224. Yan J, Cheng Q, Li CB, et al. 2002. Molecular characterization of three gut genes from flossina morsitans: Cathepsin B, zinc-metalloprotease and zinc-carboxypeptidase. Insect Mol. Biol., 11: 57-65.
    225. Yang YJ and Davies DM. 1968. Digestion, emphasizing trypsin activity, in adult simuliids (Diptera) fed blood, blood-sucrose mixtures, and sucrose. J. Insect Physiol., 14: 205-222.
    226. Yuki M, Moriya S, Inoue T, et al. 2008. Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zool Sci., 25(4): 401-406.
    227. Zantoko L and Shukle RH. 1997. Genetics of virulence in the Hessian fly to resistance gene H13 in wheat. J. Hered., 88: 120-123.
    228. Zavala JA, Patankar AG, Gase K, et al. 2004. Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiol., 134: 1181-1190.
    229. Zhu L, Liu XM, Liu X, et al. 2008. Hessian fly (Mayetiola Destructor) attack causes dramatic shift in carbon/nitrogen metabolism in wheat. Mol. Plant-Microbe Interact., 21: 70-78.
    230. Zhu YC, Liu X, Maddur M, et al. 2005. Cloning and characterization of chymotrypsin- and trypsin-like cDNAs from the gut of the Hessian fly [Mayetiola destructor (Say)]. Insect Biochem. Mol. Biol., 35(1): 23-32.
    231. Zohary D and Hopf M. 1993. Domestication of plants in the old world. Clarendon Press, Oxford, 278 pp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700