多途信道中被动定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被动声呐是现代水声对抗最重要的探测装备。早期的被动声呐只能测目标的方位,不能测目标的距离。上世纪70年代出现了被动测距声纳是水声定位技术的一个重大突破。90年代出现的舷侧阵声呐代表了被动声呐的最新体制,是目前舰壳声呐中作用距离最远的被动声呐。但是迄今为止,被动声呐仍然局限于检测宽带目标,对于脉冲目标没有跟踪定位的能力。因此,脉冲信号被动定位成为当前水声定位技术研究的热点,并期待在该领域取得新的突破。
     侦察脉冲信号是一种窄带信号。它的持续时间短,参数未知且随机出现,因此常规的互相关被动定位技术不适用,只能依靠传统的过门限技术估计信号时延,本论文称之为“直接法”。直接法时延估计的精度依赖于信号的波形,由于脉冲信号在海洋多途信道中传播,波形不可避免地会发生畸变,所以直接法时延估计达不到被动定位的精度要求。本论文从三点定位的基本原理出发,通过分析时延差估计误差与时延估计误差的关联性,采用信道均衡技术提高脉冲信号时延差估计的精度和稳定性。利用信号时延与相移的内在联系,结合自适应处理技术,提出时延差估计误差的整数倍周期修正方法,提高低信噪比信号时延差估计的精度。在此基础上,研究开发了联合多门限脉冲信号被动定位方法。应用该方法处理海试实验数据,其处理结果与雷达测量数据在各方位点的平均相对测距误差小于15%,是本论文的创新性研究成果。
     常规舷侧阵被动声呐在跟踪低信噪比宽带目标或交叉运动宽带多目标时,经常会发生丢失目标的现象。众所周知,宽带目标跟踪过程中干扰是随机发生的,而信号相对平稳;目标不同,其线谱特征也不相同。本论文综合利用目标的线谱特征和能量信息跟踪目标,改善了对目标的跟踪能力;通过增加目标累积的历史信息显示,将原系统的A式显示模式改造成伪三维显示(B式显示),提高了低信噪比目标的检测概率,使原系统的技术性能有所提高。研究成果具有创新意义。
     近场噪声分布声图技术在水声对抗技术领域有潜在的应用价值。在海洋信道中,由于多途干扰的影响,它对于噪声目标近场定位的性能会下降。本论文采用虚阵技术抗多途干扰,提出了乘积声图的方法改善分辨率,取得较好的结果。此外,还应用方位引导方法对聚焦波束形成技术进行了改进,得到了方位引导聚焦波束形成方法。它可使运算量大幅减小,降低了对系统资源的要求。
     本论文的研究成果均在理论分析的基础上,进行了实验验证。
Passive sonar is the most important detecting equipment in modern underwater acoustical countermeasure. Earlier passive sonar could only estimate the azimuth of a target, but not to range for any targets. It was a major breakthrough that a new kind of sonar being developed, which could estimate the azimuths as well as distances of targets, in the 70s of the last contrary. Being a representative of the newest design architecture, frank passive sonar, which was presented in the 90s, had possessed the furthest ranging capability compared with the rest of onboard passive sonars. However, all of the passive sonars are constrained to range broadband targets only, remaining useless in ranging for impulse targets up till now. Therefore, passive locating for signal impulses becomes a research hot point recently, expecting to have a new breakthrough in the field it belongs.
     Surveillance signal impulses, which are brought out randomly, are narrow band signals with short durations and unknown parameters so that conventional correlation techniques are not applicable in passive locating for signal impulses, which has to be relied on the traditional amplitude gated time delay estimation called "Direct method" in this dissertation. Precision of direct time delay estimation relies on signal waveforms. Since waveforms of signal impulses will be distorted unavoidably while propagating in multi sea channels, direct estimation fails to meet the precision requirement for passive locating. The technique of channel equalization was applied to improve the precision and stability of time delay difference estimation in this dissertation from the point of view of principles of three points locating based on the analysis of the relativity between time delay difference and time delay estimation errors. Exploiting the inherent relationship between time delay and phase shift together with adaptive processing techniques, multi period compensation method for time delay difference estimation error was developed leading to the reduction of estimation errors. On the basis of aforementioned techniques, the cooperative multi amplitude gated passive locating technique, which is considered as the creative research achievement of this dissertation, was proposed. Applying this technique to process sea trial data, the average relative ranging error at different azimuths is less than 15%, using the test data obtained by radar as references.
     It is easy to happen, that one or more of the targets while being tracked by conventional frank passive sonar will be lost under the condition that some of the targets were of lower SNR or moving cross over. It is well known that interferences are created randomly while broadband signals radiated by targets are kept stable during the tracking process. The line components of broadband signals radiated by targets will be different if the targets are different from each other. The information of both line component and signal energy of a target was utilized comprehensively by this dissertation to improve the tracking ability. Display mode of type A of an existing system was transformed into pseudo 3D display (type B) by adding historical information of targets accumulated during operation to the screen, resulting in higher detecting probability for lower SNR targets. Therefore, performance of the existing system is enhanced, which is regarded as a contributive research achievement of this dissertation.
     The technique of sound distribution map of near field noises is of great potential importance in underwater acoustical countermeasure. Because of the interferences of multi sea channels, its performance of near field locating for noise targets will be degraded. By applying virtual array technique to suppress the interferences of multi sea channels, and developing the technique of product sound map, which was proposed by this dissertation, to improve the resolution, satisfactory results were obtained. Besides, direction guided focused beam forming technique had been developed as well, which could not only locate near field target with high precision but also reduce the computation burden by a big margin.
     Experimental measurements were carried out in this dissertation to verify theoretical predictions.
引文
[1]毛卫宁.水下被动定位方法回顾与展望.东南大学学报.2001,Vol.31(6):129-131页
    [2]Brian H. Detection and localization of weak targets by space-time integration. IEEE JOCE,1991, Vol.16(2):189-194P
    [3]Fawcett J A. Maranda B H. A hybrid target motion analysis/matched-field processing localization method. JASA,1993, Vol.94(3):1363-1371P
    [4]Blanc Benon P, Jauffret C. TMA from bearing and multipath time delays. IEEE Trans AES,1997, Vol.33(3):813-824P
    [5]Baggeroer A B, Kuperman W A, Mikhalevsky P N. An overview of matched field method in ocean acoustics. IEEE JOCE,1993, Vol.18(4):401-424P
    [6]Jensen F B, Kuperman W A, Porter M B, et al. Computation ocean acoustics. New York:AIP Press,1994
    [7]王新勇.互谱法被动测距改进研究.哈尔滨工程大学博士学位论文.2005
    [8]宋新见,惠俊英,殷冬梅等.水下噪声目标被测距技术研究.应用声学.2005,Vol.24(3):133-139页
    [9]阎福旺等.现代声呐技术.海洋出版社.1998
    [10]田坦,刘国枝,孙大军.声呐技术.哈尔滨工程大学出版社.2000
    [11]Capon J. High-Resolution frequency-Wave number spectrum analysis. Geophysics,1969, Vol.34(1):21-38,1969
    [12]Krolik J, Swingler D. Multiple broadband source location using steered covariance matrices. IEEE Trans. ASSP,1989, Vol.37(10):1481-1494P
    [13]G C Carter. Time delay estimation for passive sonar signal processing, IEEE Trans. ASSP,1981, Vol.29(3):463-470P
    [14]曲津竹,刘忠,曲毅.三点等间隔线列阵被动定位系统的精度分析.火力与指挥控制.2008,Vol.33(3):50-51页
    [15]黄澎,宋文爱,赵纪兰.用于被动声探测的时间延迟估计技术.电脑开发技术与应用.2005.Vol.18(4):39-41页
    [16]李国罡,石岩,胡昌振.被动声探测系统的时间延迟估计技术.现代引信.1998(2):17-22页
    [17]宋新见.数字式噪声目标被动测距声呐研究.哈尔滨工程大学博士学位论文.2004
    [18]惠俊英.水下声信道.国防工业出版社.1992
    [19]Lanniello, John P. High-resolution multipath time delay estimation for broad-band random signals. IEEE Trans. ASSP,1988, Vol.36(3):320-327P
    [20]Ching, P. C. So, H C. Two adaptive algorithms for multipath time delay estimation. IEEE. JOE,1994, Vol.19(3):458-463P
    [21]Hamilton M, Schultheiss P M. Passive ranging in multipath dominant environments, Part I:Known multipath parameters. IEEE Trans. Signal Processing.1992, Vol.40(1):1-12P
    [22]Hamilton M. Passive ranging in multipath dominant environments:part II unknown multipath parameters. IEEE Trans. Signal Processing.1993, Vol.41(1):1-12P
    [23]丘天爽,王琏.广义相关时延估计的自适应实现.海洋技术.1994,Vol.13(4):20-29页
    [24]马雯,黄建国.广义相关时延估计在被动定位系统中的应用研究.探测与控制学报.2000,Vol.22(3):51-54页
    [25]行鸿彦,赵守国,邸继征等.广义相关时延估计算法的自适应实现形式.西安石油学院学报(自然科学版).2001,Vol.11(6):47-50页
    [26]A 0 Hero, S C Schwartz. A new generalized correlation method for estimation of time delay. IEEE Trans. ASSP,1985, Vol.33(1):38-45P
    [27]T Chan, J M F Riley, J B Rlant. Modeling of time delay and it's application to estimation of nonstationary delays. IEEE Trans. ASSP,1981, Vol.29(3): 577-581P
    [28]J Krolik, M Eizenman, S Pasupathy. Application of the LMS adaptive line enhancer in time delay estimation. ICASSP'85,1985:1769-1769P
    [29]F A Reed, P L Feintuch, N J Bershad. Time delay estimation using LMS adaptive filter—static behavior. IEEE Trans. ASSP,1981, Vol.29(3):571-576P
    [30]D H Youn, N Ahmed, G C Carter. On using the LMS algorithm for time delay estimation. IEEE Trans. ASSP,1982, Vol.30(5):798-801P
    [31]J Krolik, M Eizenman, S Pasupathy. Time delay estimation via generalized correlation with adaptive spatial prefteing. ICASSP'86,1986:1893-1896P
    [32]P C Ching, Y T Chan. Adaptive time delay estimation with constants. IEEE Trans. ASSP,1981, Vol.36(4):599-602P
    [33]J O Smith, B Friedlander. Adaptive multipath delay estimation. ICASSP'84, 1984:18591-1594P
    [34]K C Ho, Y T Chan, P C Ching. Adaptive time—delay estimation in nonstationary signal and/or noise power environments. IEEE Trans. ASSP,1993, Vol.41 (7): 2289-2299P
    [35]Wang H, Kaveh M. On the Performance of Signal-SubsPace Processing-Part I: Narrow-Band Systems. IEEE. Trans. ASSP,1986, Vol.34(5):1201-1209P
    [36]Miriam Hamilton. Passive ranging in multipath dominant environments, part I:Kown multipath parameters. IEEE Trans. Signal Processing.1992, Vol.40(1): 1-12P
    [37]Brian H Maranda, John A Fawcett. The localization accuracy of a horizontal array observing a narrowband target with partial coherence. IEEE J. Ocean. Eng.1993, Vol.18(4):466-473P
    [38]范敏毅.水下声信道的仿真与应用研究.哈尔滨工程大学博士学位论文.2000
    [39]尤立克著,洪申译.声学原理.哈尔滨船舶工程学院出版社.1990
    [40]梅继丹.噪声目标被动测向问题研究.哈尔滨工程大学硕士论文.2006
    [41]43A V奥本海姆,R W谢弗著,董士嘉,杨耀增译.数字信号处理.科学出版社.1981
    [42]梁国龙.回波信号瞬时参数序列分析及其应用研究.哈尔滨工程大学博士学位论文.1997
    [43]梁国龙,惠俊英.瞬时频率方差检测器(VIFD)及其性能评价.声学学报.1999,Vol.24(2):183-190页
    [44]吴国清,李靖等.舰船噪声识别——线谱稳定性和唯一性.声学学报.1999,Vol.24(1):6-11页
    [45]Andrea Trucco. A least-squares approximation for the delays used in focused beamforming. Acoust. Soc. Am,1998, Vol.104:171-175P
    [46]生雪莉,惠俊英,梁国龙.时间反转镜用于被动检测技术的研究.应用声学.2005(6):351-358页
    [47]殷敬伟,惠俊英.虚拟时间反转镜技术.2005年全国水声学学术会议论文集.2005:98-100页
    [48]Yin Jingwei, Hui Junying. Study on a new channel equalization-virtual time reversal mirror. The 4th International Symposium on Acoustic Engineering and Technology, Harbin, China, Oct,2005
    [49]Silva A, Jesus S, Gomes J, et al. Underwater acoustic communication using a "virtual" electronic time-reversal mirror approach.5th European Conference on Underwater Acoustics, France,531-536, June,2000
    [50]Silva A, Jesus S. Underwater communications using virtual time reversal in a variable geometry. Oceans 2002 Conference and Exhibition. Conference Proceedings (Cat. No.02CH37362),2002, Vol.4:2416-21P
    [51]汪德昭,尚尔昌.水声学.科学出版社.1981
    [52]李启虎.数字式声呐设计原理.安徽教育出版社.2002
    [53]Simon Haykin. Adaptive filter theory.电子工业出版社.1998
    [54]周伟等.三元阵被动测距浅海实验及后置处理.声学学报.2009,Vol.34(3):217-221页
    [55]徐海生.利用波导不变性概念实现声源定位的实验研究.2004年全国水声学学术会议论文集.2004
    [56]Wei, X.; Yang, C.Y.; Mao, S.Y. The performance of several time delay estimation methods in multipath channel. Global Telecommunications Conference.2001(6):3282-3286P
    [57]Manickam, T.G.; Vaccaro, R.J. Multipath time-delay estimation for long data records. IEEE Trans.Acoust, Speech, Signal Processing. 1995 International Conference on, ICASSP-95. (5):3143-3146P
    [58]Jesus, S.M., Porter, M.B. Single hydrophone source localization. IEEE J. Ocean. Eng. 2000,25(3):337-346P
    [59]Assous Said, Hopper Clare, Lovell Mike. Short pulse multi-frequency phase-based time delay estimation. Journal of the Acoustical Society of America, vol 127, p 309-315,2010
    [60]G. H. Knapp and G. C. Carter. The generalized correlation method for estimation of time delay. IEEE Trans. ASSP,1976, Vol.24:320-327P
    [61]J.Chen, J. Benesty and Y.A.Huang. Time delay estimation via linear interpolation and cross correlation. IEEE Trans. SAP,1981, Vol.12:509-519P
    [62]Wang Ya-Hui, Zhao Ya-Dan, Hao Xue-Jun, Cheng Pei-Xin. Time-delay identification for linear multi-input multi-output system. Proceedings of the World Congress on Intelligent Control and Automation(WCICA), p 4751-4761,2008, Proceedings of the 7th World Congress on Intellignet Control and Automation, WCICA'08
    [63]Lourtie I M G, Carter G C, Signal detection in a multiple time delay environment. IEEE Trans, Signal Processing,1992, Vol.40(6),1587-1590P
    [64]Lourtie I M G,Carter G C. Likelihood ratio detection in a random multipath channel. IEEE. ICASSP,1991, Vol.2:1297-1300P
    [65]Neison J K, Rowe E G, Carter G C. Detection capabilities of randomly-deployed underwater sensors. IEEE ICASSP,2008,1493-1496P
    [66]徐复,惠俊英,时洁,胡丹.多途条件下聚焦波束近程定位.声学技术.2007年第6期
    [67]惠娟,胡丹,惠俊英,殷敬伟.聚焦波束形成声图测量原理研究.声学学报.2007年第4期
    [68]梅继丹,惠俊英,惠娟.水平阵聚焦波束形成声图定位算法研究.哈尔滨工程大学学报.2007年第7期
    [69]田坦,齐娜,孙大军.矢量水听器阵波束域MVDR方法研究.哈尔滨工程大学学报.2004(03)
    [70]梅继丹,惠俊英,惠娟.聚焦波束形成声图近场被动定位技术仿真研究.系统仿真学报.2008(05)
    [71]时洁,杨德森,刘伯胜,宋海岩.基于MVDR聚焦波束形成的辐射噪声源近场定位方法.大连海事大学学报.2008(03)
    [72]余赟等.声图测量及定位海试研究.声学学报(中文版).2009(02)
    [73]李关防,惠俊英.基于经验模态分解的模态域MVDR方法研究.电子学报.2009(05)
    [74]赵辉等.基于弦侧阵的MVDR波束形成算法研究.船舶工程.2006(12)
    [75]Benesty Jacob, Chen Jing-Dong, Huang Yi-Ting. Estimation of the coherence functionn with the MVDR approach. IEEE, ICASSP.2006, Vol 3:500-503P
    [76]Benesty Jacob, Chen Jing-Dong, Huang Yi-Ting. A generalized MVDR spectrum. IEEE Signal Processing,2005, Vol.12,827-830P
    [77]Richmond Christ D. Response of sample covariance based MVDR beamformer to imperfect look and inhomogeneities. IEEE Signal Processing,1998, vol.5, 325-327P
    [78]陈阳等.一种基于频率方差加权的线谱目标检测方法.声学学报(中文版).2010(01)
    [79]惠娟,赵安邦,梁国龙.自适应方法在声呐脉冲模块中的应用.微计算机信息.2007(02)
    [80]梁国龙,惠俊英.瞬时频率方差检测器(VIFD)及其性能评价.声学学报.1999(03)
    [81]Carter G C. Future trends in sonar signal processing. NAOT ASI on underwater Aciystuc Data Processing, preprints,1988(07)
    [82]Moura J M F, Rendas M J. Optimal filtering in the Presence of multipath. Stochastic Processes in Underwater Acoustics, Lecture Notes in Control and Information Sciences,1986, Vol.85
    [83]Knapp C H. Signal detectors for deformable hydrophone arrays. IEEE Trans, ASSP.1989, Vol.37:1-7P
    [84]Ge Hongya, Kirsteins Ivars P. Passive ranging capability of a multi-module array in underwater acoustic environments. IEEE ICASSP,2010,5642-5645P
    [85]孙枕戈,马远良,屠庆平,姜小权.基于声线理论的水声被动定位原理.声学学报,1996(09)
    [86]陈励军.一种多途环境下水下运动目标被动定位方法.声学技术.1998(05)
    [87]杨德森,时洁,刘伯胜.基于倒谱分析的水声信号被动定位时延估计算法研究.系统仿真学报.2009(02)
    [88]梁晶等.三元阵被动定位方法原理及实验验证.舰船电子工程.2009(05)
    [89]刘勋,相敬林.基于声强的水中体积目标被动定位的可观测性分析.西北工业大学学报.2002(06)
    [90]魏丽萍等.不等间距非直线阵三元阵在水声平面声源被动定位中的应用.应用声学.2009(11)
    [91]生雪莉.矢量反转镜时空滤波技术及其在水声中的应用.哈尔滨工程大学博士学位论文.2005
    [92]杨蕾.被动型声呐浮标定位技术研究.哈尔滨工程大学硕士论文.2009
    [93]李姝.被动目标定位系统中浮标实时信号处理算法实现.哈尔滨工程大学硕士论文.2007
    [94]吕曜辉.互谱法被动测距的研究.哈尔滨工程大学硕士论文.2006
    [95]徐复.被动声呐仿真信号源研究与实现.哈尔滨工程大学硕士论文.2006
    [96]徐复,惠俊英,余赞.三点法被动定位误差分析及修正.兵工学报.2010(09)
    [97]罗丹.噪声目标广义互相关被动测距研究.哈尔滨工程大学硕士论文.2006
    [98]周伟.三元阵浅海近程被动定位研究与分析.哈尔滨工程大学硕士论文.2008
    [99]马敬广,殷敬伟,惠俊英,姚直象.虚拟时反镜在水声被动测距中的应用.应用声学.2007(05)
    [100]马敬广.时间反转镜被动定位技术研究.哈尔滨工程大学博士论文.2007
    [101]胡丹.聚焦波束形成声图测量技术研究.哈尔滨工程大学硕士论文.2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700