基于HHT复杂环境下低信噪比语音检测及增强方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息处理技术手段的发展,语音信号应用领域的不断扩展,对语音信号处理的要求也越来越高。如语音识别技术,要求存在背景噪声的环境下达到有效识别;语音通信技术,要求在不影响接收语音信号质量的前提下,尽可能降低无语音段的数据传输;军事上,有效截获对方的信息和高效传输信息是电子对抗的重要组成部分。然而在复杂声学环境下,由于强背景噪声的影响,使得上述情况的语音信号变得相对较微弱,如室外嘈杂环境的语音通信与识别,短波通信噪声较强情况下的信息截获等,然而,这些情况往往都是经常出现的。为此,在复杂背景情况下,能否有效地对低信噪比语音信号进行检测与增强具有重要意义。
     时频分析是语音信号检测与增强的有效手段之一。传统的时频分析算法主要有短时傅里叶、小波变换等,这些算法需要根据经验人为的设定信号分解尺度,而这些尺度有时并不能完全反应出信号的特征。此外,像小波变换需要根据变换对象事先选定小波基,而固定的小波基并不一定适合整个信号的分析。据此,本文选用一种可以根据信号特征自适应选取基函数及滤波尺度的算法——希尔伯特-黄变换。该算法特别适合分析像语音信号这样的非平稳信号。
     本文针对希尔伯特-黄变换在低信噪比语音信号检测及增强方面展开研究,主要研究成果如下:
     首先,采用了一种基于希尔伯特-黄变换的低信噪比语音信号检测算法,解决高斯噪声环境下低信噪比语音信号的检测问题。该算法的核心思想是,利用经验模态分解的自适应分解特性,将低信噪比语音信号中噪声含量较多的固有模态分量筛分出来,通过其它固有模态分量构建希尔伯特能量谱,从而实现低信噪比语音信号的检测;
     其次,提出了一种基于希尔伯特-黄变换谱矩阵的低信噪比语音信号检测算法,解决多噪声环境下低信噪比语音信号的检测问题。该算法的核心思想是,利用语音信号与噪声信号的希尔伯特-黄变换谱特征的不同,实现低信噪比语音信号的检测。在构建低信噪比语音信号的希尔伯特-黄变换谱矩阵的过程中,考虑到能量集中问题,所以采用以帧为单位,构建该信号的谱矩阵。为了更有效、直观地分析谱矩阵,提出一种三维可视化分析方法。有效地找到了语音与噪声在谱矩阵中的区别,通过该区别设定滤波参数,对矩阵实施权值滤波,滤波后将谱矩阵转换成以帧为单位的二维时-幅曲线,自适应计算阈值,实现语音段的检测;
     再次,采用极值域均值模式分解算法,对经验模态分解的曲线拟合、端点效应进行了改进。该算法的核心思想是,利用信号的所有信息,构建均值曲线。在构造信号的均值曲线时,通过极值点及极值点间的所有数据,利用积分中值定理的原理,寻找一个信号中的实际存在的值作为均值,使求取的均值更能反映输入信号的真实均值,提高了对局域均值的估计精度,降低了端点效应;
     再次,提出一种基于极值域均值模式分解最大相似度的低信噪比语音增强算法,解决部分噪声环境下低信噪比语音信号增强问题。该算法核心思想是,对分解后得到的固有模态分量进行筛选后再做滤波处理,以此减少过滤波和欠滤波情况的发生。在筛选过程中,提出一种最大相似度判断算法,通过检测得到的噪声信号与固有模态分量计算最大相似度,通过最大相似度筛选出固有模态分量进行滤波,由于噪声与语音信号容易发生频谱混叠,在滤波器的选择上采用时域滤波器。将滤波后的固有模态分量和未作处理的固有模态分量进行信号重构,得到增强后结果;
     最后,提出了一种基于极值域均值模式分解与独立分量分析相结合的低信噪比语音增强算法,解决更多噪声环境下低信噪比语音信号增强问题。该算法的核心思想是,利用独立分量分析的特点,分离出选取的固有模态分量的固有特性,消除信息混淆。通过最大相似度,筛选出需要处理的固有模态分量,对其进行独立分量分析,使噪声特性能够进一步集中,提高最大相似度,这样更有利于噪声的滤除。由于独立分量分析存在幅值、位置的不确定性,所以对滤波后的独立分量要进行二度重构,即独立分量分析重构和极值域均值模式分解重构,得到增强后结果。
     本文从复杂环境下低信噪比语音信号的希尔伯特-黄变换的特性出发,围绕着低信噪比语音信号的检测与增强,针对不同噪声环境进行了研究,提出了相应的算法,并对所提出的算法进行了性能分析和对比实验,最终解决了复杂环境下低信噪比语音信号的检测与增强。
With the development of information processing technical means and the extension of speech signals application field, speech signals processing have been increasingly required. Speech recognition technology requires to achieve effective recognition in the background noise. Speech communication technology requires to decrease data transmission in the no speech band as much as possible without affecting speech signals quality received. Intercepting opponent information and transmiting information effectively are the important component in the military. However, in the complicated acoustics environment, the speech signals of above situation became weaker relatively due to the effect of strong background noise, such as speech communication and recognition in the noisy environment outside, information interception in the HF communication with the stronger noise etc.The situations have usually appeared. Therefore, it has significant meaning to detect and enhance speech signal with low SNR effectively in the complicated background environment.
     Time-frequency analysis is one of the effective means in the speech signals detection and enhancement.Traditional time-frequency analysis algorithm have short-time fourier and wavelet transform etc. The algorithms need to set signal decomposition scale artificially by experience.However, the scales doesn't sometimes response signal characteristics. Furthermore, wavelet transform need to choose wavelet base beforehand by transform object, whereas fixed wavelet base has not fit the whole signal analysis. According to this, the article selected basic function and filter scale algorithm adaptively by signal characteristics, Hilbert-Huang Transform. The algorithm is specially proper to analyze non-stationary signals.
     We researched speech signal detection and enhancement with low SNR based on HHT. The main achievements includes these contents.
     Firstly, the paper adopted a speech signal detection algorithm with low SNR based on HHT for solving the speech signals detection with low SNR in Gauss environment. The core of the algorithm is to separate IMFs of more noise in the speech signals with low SNR by adaptive decomposition characteristic of EMD. According to other IMFs constructing Hilbert energy spectrum, speech signals with low SNR have been detected.
     Secondly, the paper presented a detection algorithm of speech signals with low SNR based on HHTSM for solving the speech signals detection in many environments. The core of the algorithm is to realize speech signals detection by the difference of HHT spectrum between speech signals and noise signals. Constructing HHTSM of speech signals with low SNR, energy concentration has been considered, so the paper adopted a frame as unit and constructed spectrum matrix of the signal. The article presented a 3D viewable analysis method for analyzing spectrum matrix effectively. It effectively found the difference between speech and noise in the spectrum matrix, and implemented weight filter to the matrix by the difference setting filter coefficient. Spectrum matrix has been transformed 2D time-amplitude curve frame as unit after filter, and it calculated threshold adaptively. Speech band has been detected.
     Then, the paper adopted EMMD algorithm to improve curve fitting and endpoint effect of EMD. The core of the algorithm is to construct mean curve by the whole information of signals. Constructing mean curve of signals, integral mean value theorem has been applied by all datas among the extreme points. Practical value has been found in the a signal as means. Obtained means responsed the true means of input signals. It improved estimation accuracy of local mean, and reduced endpoint effect.
     Additionally, the paper presented a speech signal with low SNR algorithm based on EMMD for solving the speech signals enhancement with low SNR in any environments. The core of the algorithm is to filter after screening decomposited IMFs, preventing over-filter and owe-filter. The article presented a maximum similarity judgement algorithm by the maximum similarity of noise signals and IMFs. As noise and speech signals easily spectrum aliasing, we adopted time domain filter by the maximum similarity screening IMFs. The new signal has been reconstructed by IMFs which has been filter and IMFs which has been no processing. Then enhancement results have been obtained.
     Eventually, it presented a speech signal enhancement algorithm with low SNR based on EMMD and ICA for solving the speech signals enhancement with low SNR in more environments. The core of the algorithm is to separate intrinsic properties of IMFs and to eliminate information confusion by ICA. To improve maximum similarity, IMFs which have been screened are processed by ICA. It was beneficial to concentrate noise properties and eliminate noise. ICA after filter must be twice reconstruction, which are ICA reconstruction and EMMD reconstruction, as the unconcerned amplitude and location of ICA. The enhancement results have been obtained.
     The dissertation presented relevant algorithms aimed to different noise environments, with detection and enhancement of speech signals with low SNR by HHT characteristics of speech signals with low SNR in the complicated environment. It analyzed properties and experiments of the algorithms. Finally, the speech signal detection and enhancement with low SNR have been solved.
引文
[1]张雄伟,陈亮,杨吉斌.现代语音处理技术及应用.北京:机械工业出版社,2003:147-152
    [2]Yeldener, S., Kondoz, A.M., Evans, B. G. High quality multiband LPC coding of speech at 2.4 kbit/s. Electronics Letters.1991,27 (14):1287-1289
    [3]Gribonval R, Vandergheynst P. On the exponential convergence of matching pursuit in quasi-incoherent dictionaries. IEEE Transactions on Information Theory,2006,52 (1): 255-261
    [4]范虹,孟庆丰,张优云.用混合编码遗传算法实现匹配追踪算法.西安交通大学学报.2005,39(3):295-299
    [5]Huang N E, Shen S S. The Hilbert-Huang transform and its applications. Singapore: World Scientific,2005:153-160
    [6]Rabiner L. R.. On creating reference templates for speaker independent recognition of isolated words. IEEE Trans. on Speech, Signal Process.1978:ASSP-26,34-42
    [7]Wilpon J.G., Rabiner L.R., Lee C.-H., Goldman E. R.. Automatic recognition of keywords in unconstrained speech using hidden Markov models. IEEE Transactions on Acoustics, Speech and Signal Processing.1990,18 (31):1870-1878
    [8]Jan P. Van Hemert. Automatic segmentation of speech. IEEE Transactions on Signal Processing.1991,39 (4):1008-1012
    [9]V. Ralph Algazi, Yoshiaki Kato, Makoto M. Miyahara and Kazunori Kotani. Comparison of image coding techniques with a picture quality scale. Proc. SPIE 1771. 1993:396-398
    [10]张刚,张雪英.语音处理与编码.北京:兵器工业出版社,2000:367-371
    [11]Ta-Hsin Li. Discrimination of time series by parametric filtering.Journal of the American Statistical Association.1996,91:284-293
    [12]Beritelli F., Casale S., Serrano S.. Adaptive Robust speech processing based on acoustic noise estimation and classification. Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology.2005:773-777
    [13]Ramirez, J., Yelamos, P., Gorriz, J.M., Segura, J. C.. SVM-based speech endpoint detection using contextual speech features. Electronics Letters.2006,42 (7):426-428
    [14]Rabbani, H., Vafadust, M., Gazor, S.. Video Denoising Based on a bivariate cauchy distribution in 3-D complex wavelet domain. ISSPA 2007,9th International Symposium on. Signal Processing and Its Applications 2007:1-4
    [15]宋倩倩,于凤芹.基于EMD和改进双门限法的语音端点检测.电声技术.2009(8):60-63
    [16]张德祥,吴小培,吕钊,郭晓静.基于经验模态分解和Teager峭度的语音端点检测.仪器仪表学报.2010(3):493-499
    [17]Weiss M R, Aschkenasy E,Parsons T W. Study and development of the INTEL technique for improving speech intelligibi-lity. Nicolet Scientific Corp..1974:107-112
    [18]Lim J S, Oppenheim A V. Enhancement and bandwidth compression of noisy speech.Proc.IEEE.1997,67:1585-1604
    [19]McAulay R J, Malpass M L.Speech Enhancement using a soft-decision noise suppression filter. IEEE Trans.on Acoustics, Speech and Signal Processing.1980,28 (2):137-145
    [20]Ephraim V, Malah D. Speech Enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics,Speech,and Signal Processing,1984,32 (6):1109-1121
    [21]Huang N E, Shen Z, Long S R etal. The empirical mode de-composition method and the Hilbert spectrum for non-stationary time series analysis. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Science 1998,54:903-995
    [22]Liu Hua-Ping, Li Xin, Xu Bo-Ling, Jiang Ning. Summary and survey of endpoint detection algorithm for speech signals. Application Research of Computers.2008,25(8): 2278-2283
    [23]李晔,张仁智,崔惠娟等.低信噪比下基于谱熵的语音端点检测算法.清华大学学报.2005,45(10):1397-1400
    [24]H.K. Maganti, P. Motlicek, D. Gatica-Perez. Unsupervised speech/Non-speech Detection for automatic speech recognition in meeting rooms. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP.2007:1520-6149
    [25]J. M. Gorriz, J. Ramirez, and J. C. Segura. An effective cluster-based model for robust speech detection and speech recognition in noisy environments.Acoustical Society of America.2006,120 (1):470-481
    [26]H. Ghaemmaghami, R. Vogt, S. Sridharan, M. Mason. Speech endpoint detection using gradient based edge detection techniques. International Conference on Signal Processing and Communication Systems.2008:1-8
    [27]Vojtech Stejskal, Nikolaos Bourbakis, Anna Esposito. Empty speech pause detection in spontaneous speech.21st IEEE International Conference on Tools with Artificial Intelligence.2009:237-242
    [28]M. Fujimoto, K. Ishizuka, T. Nakatani. A voice activity detection based on the adaptive integration of multiple speech features and a signal decision scheme. IEEE International Conference on Acoustics, Speech and Signal Processing.2008:4441-4444
    [29]S.H.K. Parthasarathi, M. Magimai-Doss, H. Bourlard, D. Gatica-Perez. Evaluating the robustness of privacy-sensitive audio features for speech detection in personal audio log scenarios. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP).2010:4474-4477
    [30]Guangyu Kang, Shize Guo. Variable sliding window DTW speech identification slgorithm. Ninth International Conference on Hybrid Intelligent Systems.2009,1: 304-307
    [31]Chuck Wooters, Marijn Huijbregts.The ICSI RT07s speaker diarization system. Multimodal Technologies for Perception of Humans Lecture Notes in Computer Science.2008,4625:509-519
    [32]Mikko Myllymaki, Tuomas Virtanen. Voice activity detection in the presence of breathing noise using neural network and hidden Markov model 16th European Signal Processing Conference.2008:485-489
    [33]Yi Hu, P.C. Loizou. Evaluation of objective quality measures for speech enhancement. IEEE Transactions on Audio, Speech, and Language Processing.2008,16 (1):229-238
    [34]Yi Hua, Philipos C. Loizou. Subjective comparison and evaluation of speech enhancement algorithms. Speech Communication.2007,49 (7-8):588-601
    [35]Gang Wang, Chunguang Li, Le Dong. Noise estimation using mean square cross prediction error for speech enhancement. IEEE Transactions on Circuits and Systems I: Regular Papers.2010,57 (7):1489-1499
    [36]M. Tinston, Y. Ephraim. Speech enhancement using the multistage Wiener filter.43rd Annual Conference on Information Sciences and Systems, CISS.2009:55-60
    [37]Fei Chen, P.C. Loizou. Speech enhancement using a frequency-specific composite Wiener function. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP).2010:4726-4729
    [38]Huijun Dinga, Ing Yann Soona, Soo Nee Koha, Chai Kiat Yeob. A spectral filtering method based on hybrid wiener filters for speech enhancement. Speech Communication. 2009,51 (3):259-267
    [39]C. Breithaupt, M. Krawczyk, R. Martin. Parameterized MMSE spectral magnitude estimation for the enhancement of noisy speech. IEEE International Conference on Acoustics, Speech and Signal Processing.2008:4037-4040
    [40]Thomas Schonhoff, Arthur A. Giordano. Detection and estimation yheory and its application. Electronic Industry Press.2007:654-660
    [41]Xuchu Hou, Shengnan Guo, Huij Cui, K. Tang, Ye Li. Speech enhancement for non-Stationary noise environments. International Conference on Information Engineering and Computer Science.2009:1-3
    [42]Y Ephraim, H L Van Trees。A signal subspace approach for speech enhancement.IEEE Transactions on. Speech and Audio Processing 1995,3 (4):251-266
    [43]Kris Hermus, Patrick Wambacq, Hugo Van Hamme. A review of signal subspace speech enhancement and its application to noise robust speech recognition. EURASIP Journal on Advances in Signal Processing.2007 (1):1-15
    [44]Shi-Huang Chen, Jhing-Fa Wang, Miao-Hai Chen, Zheng-Wei Sun, Min-Jian Liao, Shun-Chieh Lin, Shyang-Jye Chang. A design of far-field speaker localization system using independent component analysis with subspace speech enhancement.11th IEEE International Symposium on Multimedia.2009:558-561
    [45]Mohammed Bahoura and Jean Rouat. Wavelet speech enhancement based on time-scale adaptation. Speech Communication.2006,48 (12):1620-1637
    [46]Michael T. Johnsona, Xiaolong Yuanb, Yao Ren. Speech signal enhancement through adaptive wavelet thresholding. Speech Communication.2007,49 (2):123-133
    [47]Yasser Ghanbaria, Mohammad Reza Karami-Mollaei. A new approach for speech enhancement based on the adaptive thresholding of the wavelet packets. Speech Communication.2006,48 (8):927-940
    [48]Lu-Feng Shi and Yvonne Law. Masking effects of speech and music:Does the masker's hierarchical structure matter? International Journal of Audiology.2010,49 (4):296-308
    [49]Yi Hu, Loizou P. C..Evaluation of objective quality measures for speech enhancement. IEEE Transactions on Audio, Speech, and Language Processing.2008,16 (1):229-238
    [50]F. Mustiere, M. Bolic, M. Bouchard. Improved colored noise handling in Kalman Filter-based speech enhancement algorithms. Canadian Conference on Electrical and Computer Engineering, CCECE.2008:497-500
    [51]Ning Ma, M. Bouchard, R.A. Goubran. Speech enhancement using a masking threshold constrained Kalman filter and its heuristic implementations. IEEE Transactions on Audio, Speech, and Language Processing.2006,14 (1):19-32
    [52]Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing.Prentice Hall.2009:235-239
    [53]Claasen T, Mecklenbrauker W. The Wigner Distribution:part Ⅰ. Philips Journal of Research.1980,35:217-250
    [54]Tsung-Ching Lin, Chien-Wen Chen, Shi-Huang Chen, and Trieu-Kien Truong. An Enhanced Wavelet-based Scheme for Near Lossless Satellite Image Compression. Proc. of SPIE,2009 (7443):74431S-1-74431S-9
    [55]S. G. Mallat. A wavelet tour of signal processing. Academic Press.1998:191-196
    [56]N. E. Huang, S. R. Long, Z. Shen. The mechanism for frequency downshift in nonlinear wave evolution. Adv. Appl. Mech..1996,32:59-111
    [57]C.H.Loh, T.C.Wu, N. E. Huang. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responsed. Bulletin of the Seismological Society of America.2001,91 (5):1339-1357
    [58]Robert C. Sharpley, Vesselin Vatchev. Analysis of the Intrinsic Mode Functions. Constructive Approximation.2006,24 (1):17-47
    [59]谭善文,秦树人,汤宝平. Hilbert-Huang变换的滤波特性及其应用.重庆大学学报,2004.27(2):9-12
    [60]Xun Zhang, Lean Yu, Shouyang Wang and Kin Keung Lai. Estimating the impact of extreme events on crude oil price:An EMD-based event analysis method. Energy Economics.2009,31 (5):768-778
    [61]S.D. Hawley, L.E. Atlas, H.J. Chizeck. Some Properties of an Empirical Mode Type Signal Decomposition Algorithm. IEEE Signal Processing Letters.2010,17 (1):24-27
    [62]Mo Chen, D.P. Mandic, P. Kidmose, M. Ungstrup. Qualitative assessment of intrinsic mode functions of empirical mode decomposition. IEEE International Conference on Acoustics, Speech and Signal Processing.2008:1905-1908
    [63]T. Tanaka, D. P. Mandic. Complex Empirical Mode Decomposition. IEEE Signal Processing Letters.2007,14 (2):101-104
    [64]李关防,惠俊英.基于经验模态分解的模态域MVDR方法研究.电子学报.2007,37(5):942-946
    [65]C. M. Sweeney-Reed and S. J. Nasuto. A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition. Journal of Computational Neuroscience.2007:79-111
    [66]JEAN-CLAUDE NUNES and ERIC DEL ECHELLE. Empirical mode decoposition: application on signal and image processing. Advances in Adaptive Data Analysis.2009,1:125-175
    [67]V. Sethu, E. Ambikairajah, J. Epps. Empirical mode decomposition based weighted frequency feature for speech-based emotion classification. IEEE International Conference on Acoustics, Speech and Signal Processing.2008:5017-5020
    [68]Lin S., Wang H., Ma R., and Zhao H.. Time-freauency distribution based on local frequency and EMD. Proc. of ICALIP.2008:112-117
    [69]刘华平,李昕.一种改进的自适应子带谱熵语音端点检测方法.系统仿真学报,2008:65-71
    [70]马静霞.带噪语音端点检测方法的研究.燕山大学博士论文.2007:56-61
    [71]JUANG ChiaFeng, CHENG Chunnan. Speech detection in noisy environments by wavelet energy-based recurrent neural fuzzy network. Expert Systems with Applications. 2009,36:321-332
    [72]Flandrin P, Rilling G, et al. Empirical Mode Decomposition as Filter Bank, IEEE Signal Process Lett,2003,11:112-114
    [73]J. N. Yang, Y. Lei, S. Lin, and N. Huang.Hilbert-Huang Based Approach for Structural Damage Detection. American Society of Civil Engineers.2004,130 (1):85-95
    [74]Z.K. Penga, Peter W. Tseb, and F.L. Chua. An improved Hilbert-Huang transform and its application in vibration signal analysis. Journal of Sound and Vibration.2005,286 (1-2):187-205
    [75]C.P. Lai, R.M. Narayanan, Q. Ruan, A. Davydov. Hilbert-Huang transform analysis of human activities using through-wall noise and noise-like radar. Radar, Sonar & Navigation, IET.2008,2 (4):244-255
    [76]T. Hasan, M.K.Hasan. Suppression of Residual Noise From Speech Signals Using Empirical Mode Decomposition. IEEE Signal Processing Letters.2009,16 (1):2-5
    [77]Kais Khaldi, Abdel-Ouahab Boudraa, Abdelkhalek Bouchikhi and Monia Turki-Hadj Alouane. Speech Enhancement via EMD. EURASIP Journal on Advances in Signal Processing.2008:1-9
    [78]Xuchu Hou, Shengnan Guo, Huij Cui, K. Tang, Ye Li. Speech enhancement for non-Stationary noise environments. International Conference on Information Engineering and Computer Science.2009:1-3
    [79]Asif Masood and Sidra Ejaz. An efficient algorithm for robust curve fitting using cubic Bezier curves. Proceedings of the Advanced intelligent computing theories and applications, and 6th international conference on Intelligent computing.2010:255-262
    [80]Bradley M. Battista, Adrian D. Addison and Camelia C. Knapp. Empirical mode decomposition operator for dewowing GPR data. Journal of Environmental & Engineering Geophysics.2009,14:163-169
    [81]张德祥,吴小培,吕钊,郭晓静.基于经验模态分解和Teager峭度的语音端点检测.仪器仪表学报.2010,3:493-499
    [82]邓拥军,王伟,钱成春,王忠,戴德君.EMD方法及Hilbert变换中边界问题的处理.科学通报.2001,46(3):257-263
    [83]黄大吉,赵进平,苏纪兰等.黄变换的端点延拓.海洋学报.2003,25(1):1-2
    [84]郑天翔,杨力华.经验模式分解算法的探讨和改进.中山大学学报:自然科学版.2007,46:1-6
    [85]Chen Q H, Huangn E, Riemenschneider S, et al. A B spline approach for empirical mode decompositions. Advances in Computational Mathematics.2006 (24):171-195
    [86]O. Niang, E. Delechelle, J. Lemoine. A spectral approach for sifting process in empirical mode decomposition. IEEE Transactions on Signal Processing.2010,58 (11):5612- 5623
    [87]谭善文.多分辨希尔伯特-黄(Hilbert-Huang)变换方法的研究.重庆大学博士论文.2001:78-85
    [88]Deering R, Kaiser J F. The use of a masking signal to improve empirical mode decomposition. Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, PA, USA:IEEE Press.2005:379-384
    [89]李雪耀,邹晓杰,张汝波,钱真.谱熵和主成分分析用于EMD分解研究.哈尔滨工程大学学报.2009(7):797-803
    [90]毛炜,金荣洪,耿军平等.一种基于改进Hilbert-Huang变换的非平稳信号时频分析法及其应用.上海交通大学学报.2006,40(5):724-729
    [91]Zhaowei Sun, Xiaoping Liu. Application of EMMD in modal parameter identification of structures under ambient excitation. International Symposium on Intelligence Information Processing and Trusted Computing (IPTC).2010:125-128
    [92]徐冠雷,王孝通,徐晓刚等.基于限邻域EMD的图像增强.电子学报.2006,34(9):99-103
    [93]Manolakis D G. Statistical and Adaptive Signal Processing. NY:McGraw—Hill, 2003:438-440
    [94]Kangfeng Zheng, Xiujuan Wang, Yixian Yang, Shize Guo. Applying multiple residual error gray forecast to restrain endpoints effect in HHT of network traffic. First International Conference on Pervasive Computing, Signal Processing and Applications. 2010:1057-1060
    [95]Zhai Xueming, Li Ling, Zhu Yongli, Li Lamei. The Application of a New Process Method for End Effects of EMD in the Insulator State Diagnosis. International Forum on Information Technology and Applications.2009:64-767
    [96]A. Bouzid, N. Ellouze. Maximum error in discrete EMD decomposition of periodic signals.15th International Conference on Digital Signal Processing.2007:563-566
    [97]黄大吉,赵进平,苏纪兰.希尔伯特一黄变换的端点延拓.海洋学报.2003,25(1):1-11
    [98]Kizhner S., Flatley T.P., Huang N.E., Blank K., Conwell E.. On the Hilbert-Huang transform data processing system development. IEEE Aerospace Conference.2004:6-13
    [99]Delechelle E., Lemoine J., Oumar Niang. Empirical mode decomposition:an analytical approach for sifting process. IEEE Signal Processing Letters.2005,12 (11):764-767
    [100]申丽然Hilbert-Huang变换及其在含噪语音信号处理中的应用研究.哈尔滨工程大学博士学位论文.2006:78-96
    [101]Hansen, J. H. L., B. L. Pellom. An effective quality evaluation protocol for speech enhancement algorithms. in Proc. Int. Conf on Spoken Language Processing (ISCA).1998:194-199
    [102]Comon P. Independent component analysis, a new concept. Signal Processing, 1994,36:287-314
    [103]ChengM Y, Su K H, Wang S F. Contourerror reduction for free form contour following tasks ofbiaxial motion control system. Robotics and Computer Integrated Manufacturing,2009,25:323-333
    [104]Lee T w, Girolami M, Sejnowski T J. Independent Component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sourees. Neural Computation,1999,11:417-441
    [105]刘据,何振亚.利用高阶累积量和独立分量分析网络进行盲均衡与系统辨识.数据采集与处理.1998,13(3):201-205
    [106]P.Comon.Independent component analysis. Internat. Signal Processing workshop on High-order Statistics, Chamrousse, Franee,1991, (7):111-120
    [107]Li Wenguo, Luo ZhizengWavelet Transform and Independent Component Analysis Application to Multi-channel SEMG Processing. International Conference on Information and Automation 2008,20-23
    [108]Du X, Li Y, Zhu Y, et al. Removal of artifacts from EEG signal. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2008,25 (2):464-467,471
    [109]Hyvarinen A and Oja E. A fast fixed-point algorithm for independent component analysis.Neural Computation,1997,9 (7):1483-1492
    [110]Hyvarinen A. Fast and robist fixed-point algorithm for independent component analysis. IEEE Trans. On Neural Networks,1999,10(3):626-634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700