云南会泽大型铅锌矿床成矿机制及锗的赋存状态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
会泽铅锌矿的矿山厂、麒麟厂矿床是赋存在峨眉山玄武岩附近的下石炭统摆佐组(C_1b)碳酸盐岩地层中的含镓、铟、锗、镉的特富铅锌矿床。本文在学习总结前人工作成果的基础上,对矿山厂、麒麟厂矿床的地质学、矿石学、矿物学、地球化学、同位素年代学等方面特征进行了研究和总结,并探讨了矿床的成矿机制,初步建立了成矿模
     获得的主要认识有:
     1.矿山厂、麒麟厂断裂为导矿构造,矿床受层间断裂构造控制,矿体主要赋存在下石炭统摆佐组(C_1b)碳酸盐岩地层的层间断裂中,矿体顶底板岩性有三种组合类型:灰岩—灰岩型、白云岩—白云岩型、灰岩—白云岩型。
     2.成矿流体改造下石炭统摆佐组(C_1b)地层中的页岩,形成矿体中粘土矿物。
     3.成矿流体中成矿物质浓度较大,并以脉动的形贯入成矿,形成铅锌富矿体;
     4.闪锌矿中的铁元素的含量随着成矿流体的脉动变化,形成闪锌矿的色带现象。
     5.稀土元素和微量元素的组成特征显示了热液成矿的特点;成矿物质和峨眉山玄武岩之间存在一定的物质来源关系。方铅矿、黄铁矿、闪锌矿中的硫同位素为壳源的;脉石方解石的碳、氧同位素特征和围岩碳酸盐岩的相近,显示脉石方解石的碳、氧可能源于围岩;铂族元素特征显示有源于幔源峨眉山玄武岩的物质加入。
     6.方解石的Sm-Nd同位素年代为220±14Ma,经分析显示成矿年代和峨眉山玄武岩活动年代相近。
     7.锗元素以类质同象置换锌元素的方赋存在闪锌矿中。
     推测的成矿过程为:晚二叠世时期,峨眉地幔柱的活动使区域及矿区的构造格局发生了变化,形成了区域及矿区的张性成矿构造环境;在峨眉山玄武岩喷溢的临前期,峨眉山玄武岩浆是良好的热、气、液驱动源,促使区域上形成了大面积的成矿流体活动,同时提供部分成矿物质进入了成矿流体;成矿流体沿断裂运移,进入层间断裂成矿。富含铅锌成矿物质的成矿流体随着峨眉山玄武岩的脉动喷发活动,向碳酸盐岩地层的层间断裂中脉动贯入并成矿,形成了特富铅锌矿体;锗元素进入成矿流体中,以类质同象的方赋存于闪锌矿中。二叠纪以后的晚燕山、喜马拉雅运动形成了区域上的逆冲推覆构造,使矿体的空间形态发生变化。
Kuangshanchang and Qilinchang in Huize, Yunnan province, are the large Pb-Zn depositswith extremely enriched Ga, In, Ge and Cd in the carbonate rocks of the lower CarboniferousBaizuo Formation (C_1b) occurring near the Emeishan basalt. Based on the previews researchresults, the author has further done research on the characteristics of geology, petrology,mineralogy, geochemistry and geochronology in the Huize Pb-Zn ore deposit, concluded anddiscussed the metallogenetic mechanism, and also established a preliminary metallogenetic model.
     The main ideas that the author has are following:.
     1. Mineralization in Kuangshanchang and Qilinchang Pb-Zn deposits was supposed to bemainly controlled by the tectonic activities, and the fratures were the main structure aspassage-way for ore-forming fluid. Orebody mostly occurred in the fractures among carbonaterocks strata of the lower Carboniferous Baizuo Formation (C_1b); hostrocks of the orebody includethree assemblages: limestone-limestone; dolostone-dolostone; limestone-dolostone.
     2. Shale in the strata of the lower Carboniferous Baizuo Formation (C_1b) formed the clayminerals in the orebody after the ore-forming fluid alteration.
     3. The ore-forming fluid with highly concentrated metals, pulsated into the interlayerfractures and formed the extremely rich Pb-Zn orebody.
     4. The conetent of Fe in sphalerite was banded following the pulsation of the ore-formingfluid, and this caused the phenomena of color bands in sphalerite.
     5. The characteristics of the trace elements and rare earth elements suggested that theore-forming elements had the same source and this source might relate to the Emeishan basalt. Thevalue of S isotopes in galena, pyrite and sphalerite showed that the source of S was crust; inaccordance with the similar value of C and O isotopes in calcite and the wall rocks, it suggestedthat the wall rocks might be the source of C and O. The characteristics of platinum group elementsshowed that partial ore-forming elements were from the mantle-related Emeishan basalt.
     6. The isotopic age by Sm-Nd dating of calcite was 220±14Ma, which was close to theepisode of the Emeishan basalt activity.
     7. Ge occurred in sphalerite as Zn's isomorph.
     The metallogenetic process that the author proposed was: in the late Permian Period, theactivities of Emei mantle plume changed the tectonic pattern of this region and the mining district,and caused the tensional tectonic environment there; before the effusion of the Emeishan basalt,the Emeishan basaltic magma heated this region, drove the migration of the gas and liquid,impelled a large amount of ore-forming fluid to move and made some ore-elements dissolve in theore-forming fluid; ore-forming fluid followed the fratures and metals deposited in the layeredfractures among the carbonate rocks under the fit conditions. Following the pulsation of Emeishanbasalt, the ore-forming fluid pulsated into the interlayer fractures among the carbonate rocks and formed the pretty rich Pb-Zn ore; Ge entered the ore-forming fluid and then went into sphaleriteoccurring in sphalerite as Zn's isomorph.. Tectonic activities after Permian Period, such asIndosinian and Himalayan orogeny, formed the regional thrust nappe structure and changed thespacial shape of the orebody.
引文
安伟,曹志敏,郑建斌.2004.成矿年龄的测定方法及其新进展.地质找矿论丛,19(3):156~172
    白国平.2000.伊利石K—Ar测年在确定油气成藏期中的应用.石油大学学报(自然科学版),24(4):100~104
    蔡劲宏,周卫宁,张锦章.1996.江西银山铅锌多金属矿床闪锌矿的标型特征.桂林工学院学报:16(4):372~375
    陈光远.1988成因矿物学与找矿矿物学.重庆:重庆出版社
    陈光远,孙岱生,殷辉安.1988.成因矿物学与找矿矿物学.四川:重庆出版社
    陈进.1993.麒麟厂铅锌硫化矿床矿床成因及成矿模探讨.有色金属矿床与勘查,2(2):85~89
    陈启良.2002.滇东北渔户村组富铅锌矿成矿地质特征及找矿标志.地质与勘探,38(1):22~26
    陈士杰.1986.黔西滇东北铅锌矿成因探讨.贵州地质,3(3):211~222
    陈永享,王道德.1993.陨石中Ge的宇宙地球化学.地质地球化学,(3):57~61
    地球科学国际交流.1994.硫化物和硫盐矿物的晶体化学及其相平衡.地质科学院
    地质矿产部矿床地质研究所.1985.层控贱金属矿床及其成矿作用.国外矿床地质.增刊
    付绍洪.2004.扬子地块西南缘铅锌矿成矿作用与分散元素镉镓锗富集规律[D].成都理工大学博士论文
    冯仕章.1988.青海省锡铁山铅锌矿床地质特征.青海省地矿局五队
    管士平,李忠雄.1999.康滇地轴东缘铅锌矿床铅硫同位素地球化学研究.地质地球化学,27(4):45~54
    韩润生,刘丛强,黄智龙,等.2000.云南会泽铅锌矿矿床控矿构造及断裂构造岩稀土元素组成特征.矿物岩石,20(4):11~18
    韩润生,刘丛强,黄智龙,等.2001.论云南会泽富铅锌矿床成矿模.矿物学报,2l(4):674~680
    胡彬,韩润生.2003.毛坪铅锌矿构造控矿及找矿方向.云南地质,22(3):295~303
    黄智龙,陈进,韩润生,李文博,赵德顺,刘从强.2001.云南会泽铅锌矿脉石矿物方解石REE地球化学.矿物学报,31(4):659~666
    黄智龙,陈进,韩润生等.2004.云南会泽超大型铅锌矿床地球化学及成因.北京:地质出版社
    金灵芬.1999.锗的研究开发和利用.兰州教育学院学报,(3):59~60
    拉姆多尔.P.金属矿物及其交生学.长春地质学院图书馆.1986
    李发源,顾雪祥,付绍洪,章明.2003,MVT铅锌矿床定年方法评述.地质找矿论丛,18(3):57~63
    李厚民,毛景文,徐章宝,陈毓川,张常青,许虹.2004.滇黔交界地区峨眉山玄武岩铜矿化蚀变特征.地球学报,25(5):495~502
    李文博,黄智龙,陈进,许成,管涛,尹牡丹.2004.云南会泽铅锌矿矿床硫同位素和稀土元素地球化学研究.地质学报,(8):507~518
    廖文.1984.滇东、滇西Pb—Zn金属区S、Pb同位素组成特征与成矿模探讨.地质与勘探,(1):1~6
    刘侦德,谢雪飞,伍敬峰等.2002.凡口铅锌矿稀散金属选矿回收实践.有色金属,(2):9~12
    柳贺昌.1995.滇、川、黔铅锌成矿区的构造控矿.云南地质,14(3):173~189
    柳贺昌.1995.峨眉山玄武岩与铅锌成矿.地质与勘探,31(4):1~6
    柳贺昌,林文达.1999.滇东北铅锌银矿床规律研究.昆明:云南大学出版社
    马鸿文.2001.结晶岩热力学概论.北京:高等教育出版社
    马喆生,施倪承.1995.x射线晶体学———晶体结构分析基本理论及实验技术.北京:中国地质大学出版社
    毛景文,王志良,李厚民,王成玉,陈毓川.2003.云南鲁甸地区二叠纪玄武岩中铜矿床的碳氧同位素对成矿过程的指示.地质论评,49(6):610~615
    牛树银.1996.幔枝构造及其成矿规律.北京:地质出版社
    牛树银.2001.地幔热柱多级演化及其成矿规律.北京:地质出版社
    牛树银.2002.幔枝构造理论与找矿实践.北京:地震出版社
    彭建堂,胡瑞忠,林源贤等.2002.锡矿山锑矿床热液方解石的Sm—Nd同位素定年.科学通报,47(10):789~792
    孙志伟.1998.会泽麒麟厂铅锌矿床隐伏矿体的发现及其预测的基础与方法.云南地质,17(2):159~167
    王登红.1998.地幔柱及其成矿作用.北京:地震出版社
    王登红,骆耀南,刘凤山,付德明,楚萤石,罗辅勋.2003.峨眉地幔柱与杨柳坪铜镍铂族元素矿床.北京:兵器工业出版社
    王集磊.1996.中国秦岭型铅锌矿床.北京:地质出版社
    王书来,王京彬,彭省临,郭正林,仇银江.2004.新疆可可塔勒铅锌矿成矿流体稀土元素地球化学特征.中国地质,31(3):308~314
    武汉地质学院.1984.成因矿物学应用.武汉:武汉地质出版社
    谢家荣.1964.中国矿床学总论.北京:学术书刊出版社
    薛君治.1985.成因矿物学.武汉:武汉地质出版社
    颜丹平,宋鸿林,付昭仁等.1996.扬子地台西缘变质核杂岩带.北京:地质出版社
    颜丹平.1997.扬子地台西缘变质核杂岩.北京:地质出版社
    叶庆桐.1987.赣东北铅锌矿床成矿系列和成矿预测.北京:科学出版社
    袁见齐,朱上庆,翟裕生.1984.矿床学.北京:地质出版社
    云南省地质矿产局.1980.云南省区域地质调查报告(东川幅).北京:地质出版社
    云南省地质矿产局.1990.云南省区域地质志.北京:地质出版社
    张长青,毛景文,刘峰,李厚民.2005.云南会泽铅锌矿床粘土矿物K—Ar测年及其地质意义.矿床地质,24(3):(待刊)
    张立生.1998.康滇地轴东缘以碳酸盐岩为主岩的铅—锌矿床的几个地质问题.矿床地质,17:182~190
    张树页等.1985.变质岩结构构造图册.北京:地质出版社
    张位及.1984.试论滇东北Pb—Zn矿床的沉积成因和成矿规律.地质与勘探, (7):11~16
    张云湘,洛耀南,杨崇喜,等.1988.攀西裂谷.北京:地质出版社
    赵准.1995.滇东、滇东北地区铅锌矿床成矿模.云南地质,14(4):364~376
    赵振华.1997.微量元素地球化学原理.北京:科学出版社中国科学院地球化学研究所.1998.高等地球化学[M].北京:科学出版社
    郑庆鳌.1997.云南会泽矿山厂、麒麟厂铅锌矿床对流循环成矿及热水溶硐赋存块状富铅锌矿体的实践于认识。西南矿产地质,11(1~2):8~16
    郑能瑞.1998.锗的应用与市场分析.广东微量元素科学,5(2):12~18
    郑永飞,陈江峰.2000.稳定同位素地球化学.北京:科学出版社
    《中国矿床》编委会.1994.中国矿床.北京:地质出版社
    朱华平,张德全.2004.陕西南秦岭志留系中铅锌矿床地质地球化学特征研究.地质找矿论丛,119(2):76~82
    庄汉平,刘金钟,付家谟,卢家烂.1997.临沧超大型锗矿床有机质与锗矿化的地球化学特征.地球化学,(4):44~52
    庄汉平,卢家烂,付家谟,刘金钟.1998.临沧超大型锗矿床元素地球化学及金属元素有机/无机结合状态.自然科学进展,8(3):319~325
    庄汉平,卢家烂,付家谟,刘金钟,任炽刚,邹德刚.1998.临沧超大型锗矿床锗赋存状态的研究.中国科学(D辑),(28):37~42
    D.P.考克斯,D.A.辛格.1990.矿床模.北京:地质出版社
    Faure G.1977.Principles of Isotope geology.John Wiley and Sons,New York H.L.BARNE主编.1985.热液矿床地球化学.北京:地质出版社
    Hughes C J. 1982. Igneous Petrology. Netherlands:Elsevier Scientific Publishing Company
    Zhou C X, Wei C S, Guo J Y. 2001. The source of metals in the Qilinchang Pb—Zn deposit, Northeastern Yunnan, China:Pb—Sr istope constrains. Econ Geol, 96:583~598

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700