藏东松宗—然乌地区MVT铅锌矿床地质地球化学及资源潜力评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松宗-然乌地区位于冈底斯-念青唐古拉板片中南段,近年发现了沙拢弄和多依弄巴大、中型铅锌矿床。成矿地质条件初步显示,该区可能成为藏东地区一个重要的铅锌资源集中区。
     本文从典型矿床地质特征入手,首先详细研究了区内地层与成矿的关系,指出泥盆系碳酸盐岩既是矿源层又是赋矿层,其中白云岩控矿作用明显,铅锌矿化具有层控和岩控特征;对区内不同级别的构造在成矿中的作用进行了较为详细的分析,指出巴康-马拉此(F1)和恶鲁弄巴(F2)韧性剪切带控制着区内矿化的类型,区域性的八弄-玉普、玉普-毗弄和修拉则-仲沙断裂控制着成矿带的展布。次一级伴生断裂控制着矿体的空间形态;同时对铅锌矿床的微量元素、REE、S、Pb、D、O同位素地球化学特征进行了研究,指出矿质来源于松宗组碳酸盐岩,成矿时代属燕山晚期-喜山早期,成矿热液为下渗的大气降水演化而成。
     首次对成矿物理化学条件进行了研究,指出成矿温度变化范围为130~240℃,成矿流体属SO_4~(2-)-Cl~--F~-/Na~+-Ca~+-Mg~+类型;热液成矿期Ⅰ、Ⅱ、Ⅲ阶段密度分别为0.857、0.904、1g/cm~3;PH分别为4.80、4.60、4.40;Eh分别为-0.066、0.015、0.092;压力分别为120×10~5Pa、80×10~5Pa、30×10~5Pa;fO_2分别为-34.610、-42.318、-53.313;fS_2分别为-9.188、-12.80、-18.54。成矿作用是在弱酸及中等密度条件下进行的,fS_2和α_(ΣS)远大于fO_2、fco_2和α_(ΣC)。矿质迁移以ZnCl_3~-、PbCl_3~-形的氯阴离子络合物为主。
     在理论研究基础上,作者得出区内铅锌矿床的成因类型当属密西西比河谷型(MVT),同时建立了矿床成因模。最后结合GIS技术,以找矿信息加权模型为基础,进行资源潜力评价,预测出3处Ⅰ级和3处Ⅱ级找矿远景区。
Songzhong-Ranwu district located in eastern area of Tibet, which is belongs to the middle-south sub-plate of the Gangdishi-Nianqintanggula tectonic plate geologically. From this area towards east direction is the River Nujiang, and to the west is the River Yaluzhangbu., The research work of this PhD thesis is based on many works from the project both in the field and the analytical results. The project for mineral resource potential assessment in Songzhong-Ranwu district, financially supported by China Geological Survey, has been carried out from the year of 2000 to 2002. The greatest achievement during that time is Salonglong and Duoyilongba MVT Pb-Zn deposits have been found. The geological setting of mineralization has already shown that the study area would be an important and new area of lead and zinc resource.
    This PhD thesis studied carefully on geological characters of Salonglong and Duoyilongba Pb-Zn deposit firstly. The following works mainly focused in relations between the regional strata and mineralization. Metallogenetic process is quite differing from the stratigraphies. The carbonates of Songzhong formation ( Middle-Upper Devonian to Lower Carboniferous) not only provides the materials for ore-deposit, but also is the host rock. Especially, the dolomite of the carbonate rocks in the formation is most important. The carbonate formation is the cap-rock of the ore-forming fluid as well. The stratigraphy was one of important factor to control the Pb-Zn deposits in the metallogenetic process. But, the tectonic faults were the most important one to control the mineralization. The tectonic shear zones, such as Bakang-Malachi (F_1) and Elulongba (F_2) control the mineralization type, and the regional tectonic, such as Balong-Yubu, Yubu-Bilong and Xiulazhe-Zhongsha etc are the leading tectonics; and control the shape of ore-bodies. According to the analytical results of the trace element, rare earth element, and S, Pb, H, O isotopic data, the thesis have concluded that the ore-forming substances came from the carbonate rocks and the water in hydrothermal fluid was derived from
引文
[1] 马冠卿.西藏区域地质基本特征[J].西藏地质:1993,(3):43-49.
    [2] 郑明华.现代成矿学导论[M].重庆:重庆大学出版社,1988.
    [3] 郑明华,张寿庭,刘家军,等.西南天山穆龙套型金矿床产出地质前景与成矿机制[M].北京:地质出版社,2001.
    [4] 郑明华,周渝峰,刘建明,顾雪祥,等.喷流型与浊流型层控金矿床[M].四川成都:成都科学技术出版社,1994.
    [5] 郑明华,刘建明.浙江治岭头金.银矿床形成的物理化学条件及成矿过程分析[J].地质学报:1987,(3):254-266.
    [6] 刘建明,顾雪祥,陈建平,等.矿床学理论与实践[M].北京:科学出版社,2004.
    [7] 赵鹏大,胡旺亮,李紫金.矿床统计预测[M].北京:地质出版社,1994.
    [8] 王育民,欧阳昌泰,陈遇灏,等.中国铅锌矿床地质勘探问题研究[M].湖南:湖南省地质矿产,1984.
    [9] 王增,丁朝建.藏东花岗岩类及其成矿矿作用[M].成都:四川交通大学出版社,1995.
    [10] 青海省地球化学勘查队.1:20万,八宿县幅、松宗幅地球化学图说明书[M].1992.
    [11] 西藏地矿局.西藏自治区区域地质志[M].北京:地质出版社,1993.
    [12] 杜光树,等.西藏金矿地质[M].四川成都:西南交通大学出版社,1992.
    [13] 罗建宁,等.三江特提斯沉积地质与成矿[M].北京:地质出版社,1991.
    [14] 刘朝基,等.川西藏东特提斯地质[M].四川成都:西南交通大学出版社,1996.
    [15] 刘增乾,等.怒江、澜沧江、金沙江地区构造岩浆岩带的划分与主要有色金属、贵金属矿产分布规律[M].成都地质矿产研究所,1990.
    [16] 刘增乾,李兴振,等.三江地区构造岩浆带划分与矿产分布规律[M].北京:地质出版社,1993.
    [17] 裴荣富,等.中国矿床模[M].北京:地质出版社,1995.
    [18] 地质矿产部航空物探总队.川西藏东地区航磁概查报告[M].1985.
    [19] 沈敢富,等.西南三江地区新生代侵入岩的成岩与成矿[M].北京:地质出版社,2000.
    [20] 朱裕生,等.成矿预测方法[M].北京:地质出版社,1997.
    [21] 吴美德,等.含金剪切带金矿床[M].地质矿产情报研究所,1989.
    [22] 刘玉山,林盛中,李九玲.成矿作用实验研究[M].北京:北京科学技术出版社,1990:105-106.
    [23] 朱赖民,胡瑞忠,袁海华,栾世伟,等.热液改造成矿机制—四川底苏铅锌矿床成矿作用研究[J].四川省地质学报:1997,17(3):182-190.
    [24] 杨应选,柯成熙,林方成,等.康滇地轴东缘铅锌矿床成因及成矿规律[M].成都:四川科学技术出版社,1994.[25] 张云湘,骆耀南,杨崇喜等.攀西裂谷[M].北京:地质出版社,1988.
    [26] 夏文杰.中国南方震旦纪岩相古地理文集[M].成都:成都科技大学出版社,1989:12-148.
    [27] 翟裕生.关于构造-流体-成矿作用的几个问题[J].地学前缘:1996,(3-4).
    [28] 张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993.
    [29] 袁海华.康滇地轴结晶基地的时代归属[J].成都地质学院学报:1986,(4):26-32.
    [30] 夏文杰,杜森官,徐新煌,等.中国南方震旦纪岩相古地理与成矿作用[M].北京:地质出版社,1994:1-120.
    [31] 柳贺昌,林文达.滇东北铅锌银矿规律研究[M].昆明:云南大学出版社,1999:90-98.
    [32] 朱志澄,宋鸿林.构造地质学[M].武汉:中国地质大学出版社,1990.
    [33] G.M.安德森.密西西比河谷型矿床[J].国外地质科技.北京:地质出版社.
    [34] F.M.比尔斯.研究密西西比河谷型矿床的地层学方法[J].国外地质科技.北京:地质出版社.
    [35] 潘桂棠,徐强,侯增谦,等.西南“三江”多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社,2005.
    [36] 陈国达.成矿构造研究法[M].北京:地质出版社,1978.
    [37] 邱家骧.岩浆岩岩石学[M].北京:地质出版社,1983.
    [38] 王奖臻,李朝阳,李泽琴,等.川滇黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比[J].矿物岩石地球化学通报:2002,21(2):127-132.
    [39] 孙邦东.广西铅锌矿矿源层探讨[J].广西地质:2002,(15)1:37-42.
    [40] 王力,彭省临,龙永珍等.广东凡口铅锌矿多成复成成矿作用[J].桂林工学院学报:2003,23(2):149-153.
    [41] 王奖臻,李朝阳,李泽琴,等.川滇黔交界地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨[J].地质地球化学:2003,29(2):41-45.
    [42] 陈进,韩润生,高德荣,等.云南会泽铅锌矿床地质特征及找矿方法模[J].地质地球化学:2003,29(3):124-129.
    [43] 邵世才,李朝阳.扬子地块西缘灯影组层控铅锌矿床成因的地球化学论证[J].矿物岩石地球化学通报:1997,16(1):30-34.
    [44] 龙训荣,徐新煌.赤普铅锌矿床成矿物理化学条件研究[J].四川地质学报:1997,17(1):29-35.
    [45] 韩润生,刘丛强,黄智龙,等.云南会泽铅锌矿床构造控矿及断裂构造岩稀土元素组成特征[J].矿物岩石:2000,20(4):11-18.
    [46] 柳贺昌.滇、川、黔成矿区的铅锌矿源层(岩)[J].地质与勘探:1996,32(2):12-15.
    [47] 方维萱.陕西凤县铅硐山大型铅锌矿床矿物地球化学研究[J].矿物学报:1999,19(2):198-205.
    [48] 韩润生,陈进,李元,等.云南会泽麒麟石铅锌矿床构造地球化学及定位预测[J].矿物学??报:2001,21(4):667-673.
    [49] 李发源,顾雪祥,付绍洪,等.MVT铅锌矿床定年方法评述[J].地质找矿论丛:2003,18(3):163-167.
    [50] 郑来林,金振民,潘桂棠,等.喜马拉雅造山带东、西构造结的地质特征与对比[J].地球科学:2004,29(2):269-108.
    [51] 顾雪祥,郑明华,姚鹏.特提斯—喜马拉雅成矿区域成矿特征概论.矿床学理论与实践.北京:科学出版社,2004:45-57.
    [52] 张理刚.稳定同位素在地质科学中的应用-金属活化热液成矿作用及找矿[M].陕西:陕西科学技术出版社,1985.
    [53] 袁海华.同位素地质年代学[M].重庆:重庆大学出版社,1987.
    [54] Appold M.S,Garver G.The hydrology of one formation in in the southeast Missouri district Lnumerical model of topography-driven fluid during the Ouachita Orogeny[J].Economic Geology, 1999,92:913-916.
    [55] Applld MS,Garven G. The hydrology of ore formation in the southeast Mmissouri district:nu merical models of topography-driven fluid during the Ouachita Orogeny[J].Economic Geology, 1999,92:913-916.
    [56] Appld M.S.and Garven G.,The hydrology of ore formation in the Southeast Missouri District:Numerical Models of topography-driven fluid flow during the Ouachita Orogeny, Economic Geology, 1999,94:913~936.
    [57] Bethke C.M and Marshak S.. Brine migration arcoss North America?the plate tectonics of ground water. Annuak Review of Earth and Planet Science, 1990,18:287-315.
    [58] Barton, P.B., Jr., Bethkc, P.M.and Rocdder, E.,1977,Environment of ore deposition in the Creede Mining district San Juan Mountains, Colorado: PartⅢ. Progress toward interpretation of the chemistry of the ore-forming fluid for the OH Vein,Econ.Geol.,Vol.72,No. 1, pp. 1-23.
    [59] Beales F w. Precipitation mechanisms for Mississippi Valley-Type ore deposits[J].Econ.Geol., 1975,70:943-948.
    [61] Bames,H.L., 1979,Solubilities of ore minerals, In Barnes,H.L.ed., Geochemistry of Hydrothermal Ore deposits, New York, John Wilcy& Sons, Second edition,PP.404-454.
    [62] Bjorlukke K.Fluid flow in sedimentary basins. Sedimentary Geology, 1993,86:137~158.
    [63] Chritensen J N,Halliday A N,Leigh K E,et al. Direct dating of sulfides by Rb-Sr:A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit[J].Geochim..Cosmchim Acta, 1995,59:5191-5197.
    [64] Collins,P.L.F., 1979,Gashydrates in CO_2-bearing fluid inclusions and the use of freexing data for estimation ofsalinity, Econ.Geol,Vol.74,No.6.pp. 1437.[65] Chetty D,Frimmel H E. The role of evaporates in the genesis of base metal sulphide mineralisation in the North Platform of the Pan-African Damara Belt, Namibia:geochemical and fluid inclusion evidence from carbonate wall rock alteration[J].Mineralium Deposita,2000,35:364~376.
    [66] Garven G.The role of regional fluid flow in the genesis of the Pine Point deposit, Western Canada Sedimentary basin.Economic Geology, 1985,80:307-324.
    [67] Garven G,Continental-scale ground-water and geological process. Annual Revie w of Earth and plant Science, 1995,23:89-117.
    [68] Garven G. Ge S.and Person M. A., Genesis of stratabound ore deposits in the mid continental basins of North America. I. The role of regional ground-water flow. American Journal of Science, 1993,293:497~568.
    [69] Goldhaber M B,Church S E,Doe B R,et al. Lead and sulfur isotope investigation of the United States:Implications for paleohydrology and one genesis of the Southeast Missouri lead belts[J].Econ.Geol,1995,90:I875-1910.
    [70] Garvin G,Person M A,Sverjensky D A. Genesis of stratabound ore deposits in the mid-contioent basins of north America. 1 .The role of regional groundwater flow[J]. American Journal of Science, 1993,293:497-568.
    [71] Garven.G,Person M.A,Sverjensky K.A. Genesis of stratabound ore deposits in the mid-continent basins of north America. 1 .The role of regional groundwaster flow[J] .American Journal of Science, 1993,293:497-1910.
    [72] Leach D L, plumlee G S, Hofstra A H,et al.Oring of late dolomite cement by co_2-saturated deep basin brines:Evidence from the Ozark region,central United States[J]. Geology, 1991, 19: 348- 351.
    [73] Helgeson,H.C. 1969.Thermodynamics of hydrothermal systems at elevated temperatures and pressures,Am.Jour.Sci.,Vol.267,pp.729-804.
    
    [74] Helgeson,H.C.1964,Complexing and hydrothermal ore deposition,Pergamon,New York.
    [75] Liaghat S,Moore F, Jami M. The Kulre-Surmeh mineralization,acarbonate-hosted Zn-Pb deposit in the simply folded belt of the Zagros Moutains,S W lran[J].Mineralium Deposita,2000, 35: 72-78.
    [76] Lithow-Berteloni and Richards M.A.Cenozoic plate driving forces.Geophy sical Research Letters, 1995,22:1317-1320.
    [77] Oliver J. Fluids expelled tectonically from orogenic belts:Their role in hydrocarbon migration and other geologic phenomenon[J].Geology,1986,14:99-102.
    [78] Oliver J. . Fluids expelled tectonicallyfrom orogenic belts: Their role in hydrocarbon migrationand other geological phenomena. Gelogy,1986,14:99~102.
    [79] Johnston J D. Regional fluid flow and the genesis of Irish carboniferousbade metal deposits[J].Mineralium Deposita,1999,34:571-598.
    [80] Spangenberg J E,Fontbote L,MackoS A. An evaluation of the inorganic and organic geoche mistry of the San Vicente Mississippi Valleytype zinc-lead ditrict,Central Peru:Implications for one fluid composition,mixing processes,and sulfate reduction[J],Economic Geology, 1999,94: 1067-1092.
    [81] Symons D T A, Lewchuk MT,Sangster DF. Laramide orogenic fluid flow into the Western Canada sedimentary basin:Evidence from paleomagnetic dating of the Kicking Horse Mississippi Valley-Type ore deposit[J].Econ.Geol., 1998,93:68-83.
    [82] Tompkins L A, Rayner M J,Groves D I. Evaporites:In Situ sulfur source for rhythmically banded ore in hhe Cadjebut Mississippi Valley- Type Zn-Pb deposits.western Australia[J].Econ,Geol.,1994,89:467-492.
    
    [83] Wood,C.A.,Creraak,D.A.and Brocsik,M.P.,1987,Solubitiby of the assemblage pyritepyrrhotite- magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argentite-molybdenite in H_2O—NaCl—CO_2 solutions from 200℃ to 300 ℃,Econ.Geol.,Vol.82,No.7,pp. 1864-1884.
    [84] Zhou Chaoxia,wei Chunsheng,Guo Jiyun,et al. The source of metal in the Oilinchang Zn Pb deposit,Northeastern Yunnan,China:Pb-Srisotope eonstrains[J].Economic Geology,2001, 96: 583-598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700