负载型Ziegler-Natta催化剂的乙烯、1-已烯聚合体系机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去几十年来,氯化镁负载型钛系催化剂在聚烯烃工业生产中起到了重要的作用。国内外学者对活性中心和聚合机理也开展了深入研究,并提出了许多机理模型。但是有关乙烯-α-烯烃共聚机理,以及内给电子体和氢调等因素影响活性中心结构和性质的微观机理还有一些关键问题没有搞清楚。本论文主要围绕这些问题开展基础研究。
     为了考察内给电子体对催化剂性质的影响,首先利用改进的共沉淀法,原位合成了含有酯类和醚类内给电子体的三种MgCl_2载体醇合物和无内给电子体的MgCl_2载体醇合物,然后利用二次载钛的工艺制备了相应的TiCl_4负载型催化剂。利用这些催化剂研究了:(1)不同内给电子体对乙烯及1-已烯聚合及其共聚反应的影响;(2)建立了一种能够直接、准确的测量活性中心数目的方法—肉桂酰氯淬灭测活性中心数目的方法;(3)不同内给电子体对活性中心分布和性质的影响;(4)不同共单体对聚合特性和活性中心的影响;(5)氢气对聚合特性和活性中心的影响;(6)烷基铝对聚合特性和活性中心的影响等。目的是探索调控Ziegler-Natta催化剂的活性中心分布和聚合物分子量分布、组成分布的新途径,掌握调控原理,为开发线型低密度聚乙烯(LLDPE)和聚丙烯(PP)新产品提供依据。
     在制备醇合物的过程中,加入的苯酐(PA)与乙醇原位反应生成了邻苯二甲酸二乙酯(DEP),DEP起到了内给电子体的作用。DEP(PA)的存在降低了催化剂的钛含量;而苯甲醚(Anisole)的存在却未降低钛含量。制备的四种催化剂分别是TiCl_4/MgCl_2(Cat-1),TiCl_4/DEP/MgCl_2(Cat-2),TiCl_4/Anisole/MgCl_2(Cat-3),TiCl_4/(DEP,Anisloe)/MgCl_2(Cat-4)。在本论文中,所用催化剂为以上四种催化剂和DQ催化剂(含二酯类),助催化剂为三乙基铝(TEA)和三异丁基铝(TIBA);采用淤浆聚合,聚合温度范围0~70℃之间,乙烯压力0.11~0.3 Mpa之间。在乙烯均聚及乙烯与1-已烯共聚反应中,内给电子体的加入提高了催化剂活性;使聚乙烯和乙烯与1-已烯共聚物的熔点提高,结晶度降低(特别是DEP加入催化剂后这种效果更加明显),能提高共聚物的不溶级分(HI)中共单体的含量,使共聚物组成分布变窄,共聚物链结构的嵌段性增强。
     建立了一种能够直接、准确地测量活性中心数(C_p)的方法-肉桂酰氯淬灭直接测活性中心浓度法。通过~1H-NMR检测淬灭产物链端基团及分析淬灭条件对产物中酰基含量的影响,验证了此方法的反应机理和可靠性。利用此方法测量了内给电子体对1-已烯聚合体系活性中心浓度的影响,发现内给电子体的加入导致了活性中心数目有不同程度的增多,特别是Anisole的加入使活性中心数出现最大幅度的增加。同时发现,共单体、氢气的加入都会对聚合中的活性中心数有明显的增强作用;助催化剂浓度、温度的变化也能使聚合中的活性中心数发生显著变化,进而对到聚合的活性和产物的性质产生影响。
     内给电子体对聚合产物的分子量及分子量分布有明显的影响。加入内给电子体后,聚乙烯和聚1-已烯的重均分子量都有不同程度的增大。对MWD曲线进行Flory分峰拟合,发现加入内给电子体并没有改变活性中心种类,但改变了各类活性中心的分子量大小及分布,导致Ⅰ、Ⅱ型的高分子量的活性中心的含量和分子量增大。对酰氯淬灭的聚合产物进行沉淀分级并测定各级分的活性中心数,通过各级分的活性中心数与其分子量的关系发现,DEP的存在导致高分子量部分的活性中心数明显增多,并且减少了低分子量的活性中心数;当Anisole作为内给电子体时,低分子量部分的活性中心数有明显增多。
     分别研究了1-已烯和乙烯作为共单体时,加入到乙烯和1-已烯聚合体系中产生的影响。发现在乙烯或1-已烯聚合中,少量的共单体的加入均能使催化剂活性增加,共聚物的分子量也有不同程度的下降。其他条件不变时,增加共单体的浓度使催化剂的活性逐渐提高。在1-已烯聚合中,加入少量乙烯能增加聚合的活性中心数(C_p),且C_p随着乙烯分压的增加而逐渐增多,而增加的活性中心大多是产生低分子量产物的活性中心。不论是1-已烯均聚物还是1-已烯与少量乙烯的共聚物,级分的等规度都是随着分子量的增加而逐渐增加。加入乙烯后,在高分子量部分的等规度会有所降低。乙烯单元在不同级分中的含量是不同的,在低分子量级分以及高分子级分中含量较高,在中间分子量级分中含量相对较低,这表明乙烯倾向于在生产高分子量或低分子量的活性中心上配位。
     内给电子体在不同共聚体系中的作用有明显差别。在乙烯为主的共聚体系中,内给电子体增加了低分子量活性中心(Ⅲ~Ⅴ)的位阻,使其不易进入休眠态,减弱了共聚中共单体活性增强的作用,并能缓解共聚产物分子量下降的程度。而在1-已烯为主的共聚体系中,内给电子体提高了催化剂的立体定向能力,使2,1-反插减少,导致可激活的休眠种相对减少,以上作用缓解了共聚中活性中心数增加的幅度,减弱了催化剂活性增强的程度,并加剧了共聚产物分子量下降的程度。
     氢气是烯烃聚合中应用最广泛的链转移剂,对不同的烯烃聚合反应产生不同的作用,并影响产物的结构。在乙烯聚合体系中,加氢后聚合活性和产物的分子量都明显下降,分子量分布变窄;而内给电子体的存在加剧了催化剂活性下降和产物分子量下降的程度。而在1-已烯聚合体系中,加入少量的氢气使聚合活性增加,产物的分子量下降,分子量分布变宽;并随氢气浓度的增加,聚合活性逐渐增大并趋于稳定,分子量逐渐下降,达到最低值后有小幅度提高。发现加入少量的氢气能明显增加聚合中活性中心数,并随着加入量的增多,逐渐达到最大值;在高氢气量下,活性中心数会有所降低。加氢对聚乙烯和聚1-已烯两种产物分子量及活性中心分布影响是不同的。加氢降低了聚乙烯的高分子量的活性中心的含量和平均分子量;提高了低分子量的活性中心(Ⅲ~Ⅴ型)的含量和平均分子量,导致产物的分子量分布变窄。而在1-已烯聚合中,氢气的存在可能阻碍了1-已烯单体对Ⅰ型活性中心Ti-H键的插入,使这部分活性中心失活;同时产生了一种分子量很低、含量较高的活性中心(Ⅴ型),导致产物的分子量下降,产物的PDI变宽。
     助催化剂烷基铝浓度的改变对烯烃聚合及活性中心分布有显著影响。研究表明,随着Al/Ti比的增加,1-已烯的聚合活性先增加后降低,产物的分子量逐渐下降,并趋于稳定;1-已烯聚合中活性中心数目先是逐渐增加,达到最大值后有小幅度下降,增加的活性中心主要是低分子量的活性中心(Ⅳ和Ⅴ型)。对MWD曲线进行Flory分峰拟合,发现当烷基铝在低浓度变化(Al/Ti=30-200之间)时,高分子量的活性中心(Ⅰ、Ⅱ型)含量随烷基铝浓度的增加而急剧下降,而低分子量的活性中心(Ⅳ、Ⅴ型)含量会大幅度提高。当高烷基铝用量时(Al/Ti摩尔比超过200),高分子量的活性中心有所增加,导致聚合物的分子量在Al/Ti=300时的分子量反而增大。
     根据实验结果提出了一个活性中心分类及催化机理模型,按照活性中心的性质、共聚能力、立体定向性以及动力学等性质,把活性中心分成两组来讨论。详细探讨了在烯烃均聚和共聚体系中两组活性中心的性质和变化,描述了内给电子体、共单体、氢气等同这些活性中心之间的作用情况。这一模型能很好地解释大部分实验规律,希望能为负载型Ziegler-Natta催化体系的改进和创新提供理论支撑。
     本论文的主要创新点:
     1.建立了一种能够直接、准确地测量Ziegler-Natta催化体系活性中心数的方法-肉桂酰氯淬灭直接测活性中心浓度法。通过~1H-NMR检测淬灭产物链端基团及分析淬灭条件对产物中酰基含量的影响,验证了此方法的反应机理和可靠性,并利用此方法研究了内给电子体、共单体、氢气及烷基铝等因素对催化体系活性中心数、活性中心分布及性质的影响。
     2.系统地考察了TiCl_4/MgCl_2类催化剂中内给电子体的存在与否及其结构变化对其催化乙烯与1-已烯共聚反应的影响。内给电子体的存在增加了乙烯聚合物的分子量和共聚物不溶级分的含量,使乙烯与1-已烯共聚物的沸腾正庚烷不溶级分中1-已烯含量提高,并使该级分中[HH]结构含量增大,共聚物链结构嵌段性增强。不同类型的内给电子体表现出对共聚体系不同的影响。发现二酯类内给电子体导致可溶级分含量显著降低,α-烯烃结合量降低;而含单醚类内给电子体的催化剂所得乙烯-1-已烯共聚,产物可溶级分含量变化不大,但α-烯烃结合量提高。
     3.通过对聚合物MWD的Flory分峰拟合分析,酰氯淬灭法测定活性中心数、聚(1-已烯)沉淀分级级分的活性中心数测定等研究,系统、深入地研究了内给电子体影响活性中心分布和性质的规律,提出了其作用机理。研究发现,在乙烯为主的共聚体系中,内给电子体增加了Group B中心的位阻,使其不易进入休眠态,减弱了共聚中共单体活性增强的作用,并能缓解共聚产物分子量下降的程度。而在1-已烯为主的聚合体系中,内给电子体提高了催化剂的立体定向能力,使2,1-反插减少,导致可被乙烯激活的休眠种相对减少。在1-已烯聚合时,向TiCl_4/MgCl_2类催化剂加入二酯类内给电子体并未使其五种活性中心的本征活性发生显著改变,但明显改变了活性中心分布,使合成高分子量产物的活性中心数目量增大。而单醚类内给电子体使合成低分子量产物的活性中心相对增多,同时使合成中高分子量产物的活性中心的本征活性有所降低。这些发现为正确认识给电子体的作用机理提供了重要线索。
     4.通过对加氢产物的MWD的Flory分峰拟合分析,酰氯淬灭法测定活性中心数、聚(1-已烯)沉淀分级级分的活性中心数测定等研究,系统、深入地研究了氢气影响活性中心分布和性质的规律,提出了其作用机理。在乙烯聚合体系中,少量氢气对高分子的活性中心(Ⅰ、Ⅱ型)起到失活作用;对低分子量的活性中心(Ⅲ~Ⅴ型)有活化作用,将休眠态的中心释放出来。这造成了加氢后催化剂活性降低,产物分子量下降,分子量分布变窄。而对于1-已烯体系,少量的氢气解放了中等位阻活性中心的2,1-反插休眠态,活化了Ⅱ型活性中心;并使部分低价态的活性中心变成了对1-已烯有活性的中心(Ⅴ型),导致了加氢之后活性中心数大大增多,产物分子量下降,并使产物的PDI变宽。这些发现为正确认识氢气的作用机理提供了重要依据。
     5.通过对聚合物MWD的Flory分峰拟合分析,酰氯淬灭法测定活性中心数等研究,研究了助催化剂浓度影响1-已烯聚合体系活性中心分布和性质的规律。在1-已烯聚合中,烷基铝浓度的改变对聚合行为和产物有明显的影响。低的铝钛比(Al/Ti=30)生成了少量的本征活性很高的Ti~(3+)中心;随着Al/Ti比(30~150)的增加,活性中心数增加明显,但新增的活性中心k_p值相对较低。当在高的Al/Ti比(>150)时,部分产生低分子量的Ti~(3+)被还原成无活性的Ti~(2+),导致其k_p值反而增加。由于过量的烷基铝会与活性中心发生络合作用,造成在高的烷基铝浓度下产物的分子量反而增加。这些发现为正确认识助催化剂浓度对聚合的作用机理提供了重要依据。
     6.研究了共单体(主要是乙烯加入1-已烯体系)对活性中心分布和性质的影响,发现加入少量的乙烯对1-已烯聚合行为产生影响。在1-已烯聚合中,加入少量的乙烯也会使聚合活性增大,且活性并随乙烯压力的增加而逐渐增大,产物的分子量减小。发现乙烯引起的活性增加是由于活性中心数增加所致,但增加的活性中心大多是活性较低、产物分子量较低的活性中心,这也使聚合体系中活性中心的平均活性降低。乙烯在不同沉淀分级级分中的含量不同,分布不均匀,在低分子量级分及高分子量级分中含量相对较高。这些发现为正确认识共单体对1-已烯聚合的作用提供了重要线索。
In the past several decades,supported catalysts of the TiCl_4/ID/MgCl_2 type were widely used in polyolefin industry.However,questions concerning the mechanism of ethylene copolymerization withα-olefins,the effect of internal electron donor(ID) and hydrogen on the structure and nature of active centers have not yet found satisfactory answers.In this paper,some work was carried out in these directions.
     Using four kinds of TiCl_4/MgCl_2 catalysts[Cat-1(TiCl_4/MgCl_2),Cat-2(TiCl_4/diethyl phthalate(DEP)/MgCl_2),Cat-3(TiCl_4/Anisole/MgCl_2),Cat-4(TiCl_4/(DEP,Anisole)/MgCl_2)] and DQ Catalyst(TiCl_4/dibutyl(o-)phthalate/MgCl_2),we carried out following studies in this paper:(1) the role of internal electron donor(ID) on ethylene homo-polymerization and copolymerization;(2) A new method for measuring the number of active centers was developed,based on use of cinnamoyl chlorides;(3) the effect of IDs on distribution of active centers;(4) the role of H_2 on polymerization and distribution of active centers;(5) the effect of AlR_3,polymerization temperature on polymerization and distribution of active centers.It was attempted to find the new approach to accommodate the ACD(active center distribution) of Ziegler-Natta catalyst and the MWD(molecular weight distribution),CD (composition distribution) of polyolefins products,and provide the useful information of developing new linear low density polyethylene(LLDPE) and polypropylene(PP) products.
     In the preparation of the supported catalysts,MgCl_2·nEtOH/ID adducts as the precursor of the support were prepared in situ by novel co-precipitation method.Four kinds of MgCl_2·nEtOH/ID adducts were prepared in situ by novel co-precipitation method,and the catalysts of TiCl_4 anchored on the supports were prepared.FT-IR spectra of the catalysts and PA as well as DEP were also recorded.DEP was found to be the actual ID existing in the final catalyst prepared based on MgCl_2·nEtOH/PA.Titanium content of the catalysts containing different internal donors is different:DEP decreases the Ti content and Anisole as internal donor didn't decreases the Ti content.
     Four kinds of catalysts(Cat-1,Cat-2,Cat-3 and Cat-4) were applied to ethylene polymerization and ethylene-co-1-hexene copolymerization.The addition of IDs increased activity of catalyst and the T_m of products,especially when the catalyst contains DEP as ID. 1-hexene content of the HI(boiling n-heptane insoluble) fraction increased,the difference in 1-hexene content of the HI fraction and the HS fraction decreased,and the blockiness of HI fractions increased.
     A new method for determining the number of active centers(C_p) in supported Ziegler-Natta catalysts based on quenching by cinnamoyl chlorides was developed.The optimal quenching conditions were found to be:n(Cinnamoyl chloride/Al)=3~5;t_(quenching)=10 min;T_(quenching)=20℃~40℃.The change of C_p by adding IDs in the catalyst were studied by this method.The introduction of IDs,especially anisole,increased the number of active center in 1-hexene polymerization.
     It was found that the introduction of IDs in the catalyst during its preparation can enhance the molecular weight(MW).The Flory non-linear-fitting of products MWD curves showed that the addition of ID didn't change the type of active centers,but change the ACD (active center distribution),increase both the MW and the number of active centerⅠandⅡ. From distribution of the number of active centers determined by quenching and fractionation, the addition of PA increases the amount and C_p of fraction with high molecular weight.
     In this paper,the change from homo-polyethylene to ethylene copolymerization with small amount of 1-hexene,from homo-poly(1-hexene) to 1-hexene copolymerization with small amount of ethylene were studied,respectively.Adding small amount of 1-hexene in ethylene polymerization caused marked activation of the low molecular weight components of the polymer.In 1-hexene polymerization system,the activity can also be greatly enhanced by introducing small amount of ethylene.The total number of active centers is markedly increased by adding small amount of ethylene in 1-hexene polymerization,but the average activity of the active centers decreased.The broad composition distribution of the ethylene-1-hexene copolymer can be well understood from the ACD of catalyst and its dependence on the monomer.Adding small amount of ethylene markedly increase the number of active centers that produce polymer with low molecular weight.There is a nearly linear increase of isotacticity with molecular weight of the polymer fraction obtained by precipitationed fraction.However,the addition of small amount of ethylene in 1-hexene polymerization decreased the isotacticity of the fractions with high molecular weight.The distribution of ethylene content in fractions was broad.The content of ethylene in both the low MW and high MW fractions were higher than that of others.So,ethylene tends to be incorporated in both the low MW and high MW active centers in 1-hexene polymerization.
     Hydrogen(H_2) has been used as a standard chain transfer agent in industrial polyolefin production.Hydrogen played different roles in ethylene and propylene/α-olefin polymerization.In ethylene polymerization system,the addition of small amount of hydrogen markedly decreased catalyst efficiency and the molecular weight of polymers,and increased the polydispersity index(PDI) of polymers.In 1-hexene polymerization system, the addition of small amount of hydrogen caused a marked increased in polymerization rate and a decrease in the molecular weight of polymers.The total number of active centers is markedly increased by adding small amount of H_2 in 1-hexene polymerization.The Flory non-linear-fitting of polyethylenes MWD curves showed that the addition of H_2 decreased both the M_w and the amount of active centerⅠandⅡ,meanwhile increased both the MW and the amount of active centerⅢ~Ⅴ,which caused decrease in PDI.In 1-hexene polymerization, however,a new type of active center(Ⅴ) with low molecular weight product emerged after adding H_2,which decreased the MW and broaden the PDI of the products.
     In 1-hexene polymerization,the change of cocatalyst concentration markedly influences the polymerization behaviors and distribution of active centers.With the concentration of TEA rising,the catalyst activity increased and the molecular weight of products decreased gradually.When the ratio of Al/Ti rising at low TEA concentration,the number of active centers is increased,which mainly increase the active centers producing polymer with low molecular weight.
     A new model of two group active centers in polymerization was proposed in this paper, in which the interactions between active centers and IDs,comonomer,hydrogen were elaborated.This model can exactly explain the results in this paper.This model afford deep understand of mechanism of olefin polymerization and provide a new approach to improving and modifying the performance of the supported Ziegler-Natta catalyst.
引文
[1] Soga K, Shiono T. Ziegler-Natta catalysts for olefin polymerizations. Progress in Polymer Science (Oxford) 1997:22(7): 1503-1546.
    
    [2] Galli P, Vecellio G. Technology: driving force behind innovation and growth of polyolefins. Progress in Polymer Science 2001:26(8):1287-1336.
    
    [3] Kashiwa N FH, Tokuzumi Y. Ethylene, propylene and 1-butene polymerization catalysts. JP Patent, 1968.
    
    [4] Kashiwa N. The discovery and progress of MgCl2-Supported TiCl4 catalysts. J Polym Sci Pol Chem 2004:42(1): 1-8.
    
    [5] Giannini Y. Polymerization of olefins with high activity catalysts. Macromol Chem Phys Suppl 1981:5:216-229.
    
    [6] Gupta VK. Magnesium stearate based titanium catalyst systems for propene polymerization. Die Makromolekulare Chemie 1992:193:1043-1047.
    
    [7] Roger Spitz LDAG. Supported Ziegler-Natta catalysts for propene polymerization: Grinding and co-grinding effects on catalyst improvement. Die Makromolekulare Chemie 1988:189(3):549-558.
    
    [8] Maria Nowakowska KB. Ethylene polymerization on a high activity supported catalyst: MgCl_2 (THF)2/TiCl_4/AlEt2Cl. Die Makromolekulare Chemie 1992:193(4):889-895.
    
    [9] Honglan Lu SX. Highly isospecific SiO2/MgCl2 bisupported catalyst for propene polymerization. Die Makromolekulare Chemie 1993:194(7):2095-2102.
    
    [10] Tominaga Keii ESMTMMYD. Propene polymerization with a magnesium chloride-supported ziegler catalyst, 1. Principal kinetics. Die Makromolekulare Chemie 1982:183(10):2285-2304.
    
    [11] Rokicki G JP. Polycarbonates from cyclic carbonates, arbantons, and dihalo compounds. Polymer Journal 1988:20:499-509.
    
    [12] Kang KS, Ok MA, Ihm SK. Effect of Internal Lewis-Bases on Recrystallized Mgcl2-Ticl4 Catalysts for Polypropylene. Journal of Applied Polymer Science 1990:40(7-8): 1303-1311.
    
    [13] Tuula T. Pakkanena EV, Tapani A. Pakkanena, Eero Iiskola and Pekka Sormunen. Modification of olefin polymerization catalysts. III. A 13C CP-MAS NMR study of adsorption of silyl ethers on MgCl2-supported Ziegler-Natta catalysts. J Catal 1990:121 (2):248-161.
    
    [14] Galli P LL, Cechin G. Advances in the polymerization of polyolefins with Coordination catalysts. Angewandte Makromolekulare Chemie 1981:94:63-89.
    
    [15] Paolo Galli PCB, Luciano Noristi. High yield catalysts in olefin polymerization. General outlook on theoretical aspects and industrial uses Angewandte Makromolekulare Chemie 1984:120:73.
    
    [16] Sacchi MC, Forlini F, Tritto I, Locatelli P, Morini G, Baruzzi G, Albizzati E. Stereochemistry of the Initiation Step in Ziegler-Natta Catalysts Containing Dialkyl Propane Diethers - a Tool for Distinguishing the Role of Internal and External Donors. Macromolecular Symposia 1995:89:91-100.
    
    [17] Roger Spitz CB, Marie-France Llauro-Darricades and Alain Guyot. Mechanistic aspects in propene polymerization using mgcl2-supported ziegler-natta catalysts: behaviour of silane as an external lewis base Journal of Molecular Catalysis 1989:56:156-169.
    
    [18] Yang CB, Hsu CC, Park YS, Shurvell HF. Infrared Characterization of Mgcl2 Supported Ziegler-Natta Catalysts with Monoester and Diester as a Modifier. European Polymer Journal 1994:30(2):205-214.
    
    [19] Utko JS, P.; Lis, J. The crystal structure of tetrachloro(diethylphtalate)titanium(IV). J Organomet Chem 1987:334:341-345.
    [20]肖士镜,蔡世绵,刘焕勤,陈增波.齐格勒-纳塔载体型催化剂络合物的光谱性质.催化学报1985:6(4):358-363.
    [21]曾金龙,郑荣辉,陈祖炳,叶苏榕,陈慧玲,郑宗敏.EB对负载型Ti-Mg系丙烯聚合催化剂特性的影响.厦门大学学报(自然科学版)1989:28:509.
    [22]Vincenzo Busico PCAFAP.Polymerization of propene in the presence of MgCl2-supported Ziegler-Natta catalysts,3.Catalyst deactivation.Die Makromolekulare Chemic 1986:187(5):1125-1130.
    [23]徐君庭,封麟先,杨士林.丙烯聚合高效负载型Ziegler-Natte催化剂Ⅱ.Al/Ti比和聚合温度的影响.石油化工 1998:27:172-414.
    [24]Piero Pino RM.Stereospecific Polymerization of Propylene:An Outlook 25 Years After Its Discovery.Angewandte Chemie International Edition in English 1980:19:857-875.
    [25]Barb'e PC CG,Noristi L.The catalytic system Ti-Complex/MgCl2.Advances in Polymer Science 1987:81:1-81.
    [26]Kazuo Soga TSYD.Influence of internal and external donors on activity and stereospecificity of ziegler-natta catalysts.Die Makromolekulare Chemic 1988:189(7):1531-1541.
    [27]James C.W.Chien YHJCV.Superactive and stereospecific catalysts.Ⅳ.Influence of structure of esters on MgCl2 supported olefin polymerization catalysts.Journal of Polymer Science Part A:Polymer Chemistry 1990:28(2):273-284.
    [28]Kakkonen H J,Pursiainen J,Pakkanen TA,Ahlgren M,liskola E.Ticl4 Diester Complexes-Relationships between the Crystal-Structures and Properties of Ziegler-Natta Catalysts.J Organomet Chem 1993:453(2):175-184.
    [29]封麟先,范志强,徐君庭,杨士林.异相Ziegler-Natta催化剂聚合机理若干研究进展.高分子通报1998:3:24.
    [30]Iiskola E PA,Kakkonen H J,Pursiainen J,Pakkanen T A.A novel MgCl2-supported Ziegler-Natta catalyst composition:stereospecific polymerization of propene without external donor.Die Makromolekulare Chemic,Rapid Communications 1993:14:133-137.
    [31]Xu D,Liu Z,Zhao J,Han S,Hu Y.Highly active MgCl2-supported catalysts containing novel diether donors for propene polymerization.Macromolecular Rapid Communications 2000:21(15):1046-1049.
    [32]Xu J,Feng L,Wang S,Yang S.Supported catalyst without external electron donor for propylene polymerization Ⅱ.Tacticity distribution and microstructure of polypropylene.Chinese Journal of Polymer Science(English Edition) 1998:16(1).
    [33]Sacchi MC,Forlini F,Tritto I,Locatelli P,Morini G,Noristi L,Albizzati E.Polymerization stereochemistry with Ziegler-Natta catalysts containing dialkylpropane diethers:A tool for understanding internal/external donor relationships.Macromolecules 1996:29(10):3341-3345.
    [34]Morini G,Albizzati E,Balbontin G,Mingozzi I,Sacchi MC,Forlini F,Tritto I.Microstructure distribution of polypropylenes obtained in the presence of traditional phthalate/silane and novel diether donors:A tool for understanding the role of electron donors in MgCl2-supported Ziegler-Natta catalysts.Macromolecules 1996:29(18):5770-5776.
    [35]Albizzati E,Giannini U,Morini G,Galimberti M,Barino L,Scordamaglia R.Recent Advances in Propylene Polymerization with Mgcl2 Supported Catalysts.Macromolecular Symposia 1995:89:73-89.
    [36]Albizzati E,Giannini,U,Morini,G.,Smith,A.,Ziegler,R.Ziegler Catalyst.Springer-Verlag,1995.
    [37]Giulio B MG.Components and catalysts for the polymerization of olefins.2000.
    [38]Cecchin G,Morini G,Pelliconi A.Polypropene product innovation by reactor granule technology.Macromolecular Symposia 2001:173:195-209.
    [39]Gao M,Liu H,Wang J,Li C,Ma J,Wei G.Novel MgCl2-supported catalyst containing diol dibenzoate donor for propylene polymerization. Polymer 2004:45(7):2175-2180.
    
    [40] Kashiwa N, Yoshitake J, Toyota A. Studies on Propylene Polymerization with a Highly-Active Mgcl2 Supported Ticl4 Catalyst System. Polymer Bulletin 1988:19(4):333-338.
    
    [41] Luciani JVSMHL. Effect of the structure of external alkoxysilane donors on the polymerization of propene with high activity Ziegler-Natta catalysts. Die Makromolekulare Chemie 1989:190:2535-2550.
    
    [42] Sacchi MC, Tritto I, Locatelli P. The Function of Amines in Conventional and Supported Ziegler-Natta Catalysts. European Polymer Journal 1988:24(2): 137-140.
    
    [43] Sacchi MC, Tritto I, Shan CJ, Mendichi R, Noristi L. Role of the Pair of Internal and External Donors in Mgcl2-Supported Ziegler-Natta Catalysts. Macromolecules 1991:24(26):6823-6826.
    
    [44] Sacchi MC, Shan CJ, Locatelli P, Tritto I. Stereochemical Investigation of the Initiation Step in Mgcl2-Supported Ziegler-Natta Catalysts - the Lewis Base Activation Effect. Macromolecules 1990:23(2):383-386.
    
    [45] James C. W. Chien SWYH. Magnesium chloride supported catalysts for olefin polymerization. XIX. Titanium oxidation states, catalyst deactivation, and active site structure. Journal of Polymer Science Part A: Polymer Chemistry 1989:27(5): 1499-1514.
    
    [46] James C. W. Chien YH. Superactive and stereospecific catalysts. III. Definitive identification of active sites by electron paramagnetic resonance. Journal of Polymer Science Part A: Polymer Chemistry 1989:27(3):897-913.
    
    [47] Antonio Proto LO, Claudio Pellecchia, Andrew J. Sivak, Leonard A. Cullo. Isotactic-specific polymerization of propene with supported catalysts in the presence of different modifiers Macromolecules 1990:23(11):2904.
    
    [48] 张旺辉,肖士镜.给电子体在丙烯聚合MgCl_2载体催化剂体系中的作用.高分子学报1991:5:532-538.
    
    [49] Sacchi MC, Tritto I, Shan C, Mendichi R, Noristi L. Role of the pair of internal and external donors in MgCl2-supported Ziegler-Natta catalysts. Macromolecules 1991:24(26):6823-6826.
    
    [50] Kazuo Soga TS, Yoshiharu Doi. Influence of internal and external donors on activity and stereospecificity of ziegler-natta catalysts Angewandte Makromolekulare Chemie 1988:189:1531.
    
    [51] T. Xie KM, J.C.C. Hsu, and D.W. Bacon,. Gas Phaser Ethylene Polymerization: Production Processes. Polymer Properties, and Reactor Modeling. Industrial and Engineering Chemistry Research 1994:33:449-479.
    
    [52] DUSSEAULT J. Mgcl2-Supported ziegler-natta Catalysts for Olefin Polymerization- Basic Structure, Mechanism, and Kinetic-Behavior. J Macromol Sci Rev Macromol ChemPhys 1993:C33:103.
    
    [53] Kim SH, Somorjai GA. Model Ziegler-Natta polymerization catalysts fabricated by reactions of Mg metal and TiCl4: Film structure, composition, and deposition kinetics. Journal of Physical Chemistry B 2000:104(23):5519-5526.
    
    [54] Magni E, Somorjai GA. Preparation and surface science characterization of model Ziegler-Natta catalysts. Role of undercoordinated surface magnesium atoms in the Chemisorption of TiCl4 on MgCl2 thin films. Journal of Physical Chemistry B 1998:102(44):8788-8795.
    
    [55] Kim SH, Somorjai GA. Stereospecific Ziegler-Natta model catalysts produced by electron beam-induced deposition of TiCl4: Deposition kinetics, film structure, and surface structure. Journal of Physical Chemistry B 2002:106(6):1386-1391.
    
    [56] Magni E, Somorjai GA. Preparation of a model Ziegler-Natta catalyst: Electron irradiation induced titanium chloride deposition on magnesium chloride thin films grown on gold. Surface Science 1996:345(1-2):1-16.
    [57] Boero M, Parrinello M, Terakura K. First principles molecular dynamics study of Ziegler-Natta heterogeneous catalysis. J Am Chem Soc 1998:120(12):2746-2752.
    
    [58] Seth M, Margl PM, Ziegler T. A density functional embedded cluster study of proposed active sites in heterogeneous Ziegler-Natta catalysts. Macromolecules 2002:35(20):7815-7829.
    
    [59] Boero M, Parrinello M, Weiss H, Hu?ffer S. A first principles exploration of a variety of active surfaces and catalytic sites in Ziegler-Natta heterogeneous catalysis. Journal of Physical Chemistry A 2001:105(21):5096-5105.
    
    [60] Boero M PM, HUffer S, Weiss H. First principles study of propene polymerization in Ziegler-Natty heterogeneous catalysis. J Am Chem Soc 2000:122(3):501-509.
    
    [61] Poonia M S BAV. A theoretical investigation of the binding of TiCln to MgCl2. Surface Science 2001:490(3):237-250.
    
    [62] Puhakka E PTT, Pakkanen T A. A. Theoretical investigations on heterogeneous Ziegler-Natta catalysts supports: stability of the electron donors at different coordination sites of MgCIZ. Journal of Physical Chemistry A 1997:101(34):6063-6068.
    
    [63] Busico V CP, Martino L D, Proto A. Polymerization of propene in the presence of MgCl2-supported Ziegler-Natta catalysts. I. Effects of the co-catalyst composition. Makromol. Chem. Makromol Chem 1986:187:1115.
    
    [64] Soga K PJR, Shiono T. A direct evidence for the improvement of isospecificity in Ziegler-Natta catalyst by ethyl benzoate. Makromol Chem, Rapid Commun 1990:11:117.
    
    [65] Soga K UT, Park J R, Shiono T. Recent development in stereo chemical control of heterogenous of Ziegler-Natty catalysts. Macromol Symp 1992:63:219.
    
    [66] Busico V, Corradini P, Demartino L, Proto A, Albizzati E. Polymerization of Propene in the Presence of Mgcl2-Supported Ziegler-Natta Catalysts .2. Effects of the Cocatalyst Composition. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1986:187(5): 1115-1124.
    
    [67] Noristi I BPC, Baruzzi G. Effect of the internal/external donor pair in high-yield catalysts for propylene polymerization, 1 Catalyst-cocatalyst interaction. Makromol Chem 1991:192(2): 1115.
    
    [68] Busico V, Cipullo R, Monaco G, Talarico G, Vacatello M, Chadwick JC, Segre AL, Sudmeijer O. High-resolution C-13 NMR configurational analysis of polypropylene made with MgCl2-supported Ziegler-Natta catalysts. 1. The "model" system MgCl2/TiCl4-2,6-dimethylpyridine/Al(C2H5)(3). Macromolecules 1999:32(13):4173-4182.
    
    [69] James C. W. Chien C-IK. Magnesium chloride supported high-mileage catalysts for olefin polymerization. X. Effect of hydrogen and catalytic site deactivation. Journal of Polymer Science Part A: Polymer Chemistry 1986:24(11):2707-2727.
    
    [70] Rishina LA, Vizen EI, Sosnovskaja LN, Dyachkovsky FS. Study of the Effect of Hydrogen in Propylene Polymerization with the Mgcl2-Supported Ziegler-Natta Catalyst. 1. Kinetics of Polymerization. European Polymer Journal 1994:30(11):1309-1313.
    
    [71] Kojoh S, Kioka M, Kashiwa N, Itoh M, Mizuno A. A study of chain-end structures of polypropylene prepared with MgCl2-supported titanium catalyst. Polymer 1995:36(26):5015-5018.
    
    [72] Natta G MG, Longi P, Bernardini F. Influenza dell'idrogeno sulla polimerizzazione anionica coordinata del propilene e dell'etilene. La Chimica E L'Industria 1959:41:519-526.
    
    [73] Keii T DY, Suzuki E, Tamura M, Murata M, Soga K. Propene polymerization with a magnesium chloride-supported Ziegler catalyst,2: Molecular weight distribution. Macromol Chem Phys 1984:185:1537.
    
    [74] Hindryckx F, Ph. Dubois, R. Jerome, Marti MG. Ethylene polymerisation by a high activity MgCl2 supported Ti catalyst in the presence of hydrogen and/or 1-octene. Polymer 1998:39:621-629.
    [75] Kissin YV, Mink RI, Nowlin TE, Brandolini AJ. Kinetics and mechanism of ethylene homopolymerization and copolymerization reactions with heterogeneous Ti-based Ziegler-Natta catalysts. Topics in Catalysis 1999:7(1-4):69-88.
    
    [76] Garoff T, Johansson S, Pesonen K, Waldvogel P, Lindgren D. Decrease in activity caused by hydrogen in Ziegler-Natta ethene polymerisation. European Polymer Journal 2002:38(1): 121-132.
    
    [77] Kissin YV, Rishina LA. Hydrogen effects in propylene polymerization reactions with titanium-based Ziegler-Natta catalysts. I. Chemical mechanism of catalyst activation. Journal of Polymer Science, Part A: Polymer Chemistry 2002:40(9): 1353-1365.
    
    [78] Kissin YV, Rishina LA, Vizen EI. Hydrogen effects in propylene polymerization reactions with titanium-based Ziegler-Natta catalysts. II. Mechanism of the chain-transfer reaction. Journal of Polymer Science, Part A: Polymer Chemistry 2002:40(11): 1899-1911.
    
    [79] Kojoh SI, Tsutsui T, Kashiwa N, Itoh M, Mizuno A. Effect of an external donor upon chain-transfer reactions in propylene polymerization with a MgCl2-supported titanium catalyst system. Polymer 1998:39(25):6309-6313.
    
    [80] Al-haj Ali M, Betlem B, Roffel B, Weickert G. Hydrogen response in liquid propylene polymerization: Towards a generalized model. Aiche J 2006:52(5):1866-1876.
    
    [81 ] Chadwick JC, Morini G, Balbontin G, Busico V, Talarico G, O. S. Advances in propene polymerization using magnesium chloridesupported catalysts. ACS Symposium Series : Olefin Polymerization Emerging Frontiers 2000:749:50-65.
    
    [82] Parsons I. W., Al-Turki T. M. On the mechanism of action of hydrogen added to propene polymerizations using supported titanium chloride catalysts with a phthalate ester/silane stereoregulating donor pair. Polymer Communications 1989:30(3):72-73.
    
    [83] Bukatov GD, Goncharov VS, Zakharov VA. Number of Active-Centers and Propagation Rate Constants in the Propene Polymerization on Supported Ti-Mg Catalysts in the Presence of Hydrogen. Macromolecular Chemistry and Physics 1995:196(5): 1751-1759.
    
    [84] James C. W. Chien TN. High activity magnesium chloride supported catalysts for olefin polymerization. XXIX. Molecular basis of hydrogen activation of magnesium chloride supported Ziegler-Natta catalysts. Journal of Polymer Science Part A: Polymer Chemistry 1991:29(4):505-514.
    
    [85] Chadwick JC, Morini G, Albizzati E, Balbontin G, Mingozzi I, Cristofori A, Sudmeijer O, Van Kessel GMM. Aspects of hydrogen activation in propene polymerization using MgCl2/TiCl4/diether catalysts. Macromolecular Chemistry and Physics 1996:197(8):2501 -2510.
    
    [86] Chadwick JC, Vankessel GMM, Sudmeijer O. Regiospecificity and Stereospecificity in Propene Polymerization with Mgcl2-Supported Ziegler-Natta Catalysts - Effects of Hydrogen and the External Donor. Macromolecular Chemistry and Physics 1995:196(5): 1431 -1437.
    
    [87] Chadwick JC, Miedema A, Sudmeijer O. Hydrogen Activation in Propene Polymerization with Mgcl2-Supported Ziegler-Natta Catalysts - the Effect of the External Donor. Macromolecular Chemistry and Physics 1994:195(1): 167-172.
    
    [88] Corradini P, Busico V, Cipullo R. Hydrooligomerization of Propene - a Fingerprint of a Ziegler-Natta Catalyst .2. a Reinterpretation of Results for Isospecific Homogeneous Systems. Makromolekulare Chemie-Rapid Communications 1992:13(1):21-24.
    
    [89] Mori H, Terano M. Stopped-flow techniques in olefin polymerization. Trends in Polymer Science 1997:5(10):314-321.
    
    [90] Soares JBP, Hamielec AE. Kinetics of propylene polymerization with a non-supported heterogeneous Ziegler-Natta catalyst - Effect of hydrogen on rate of polymerization, stereoregularity, and molecular weight distribution. Polymer 1996:37(20):4607-4614.
    
    [91] Kouji Imaoka SI, Masanori Tamura, Motozou Yoshikiyo, Takefumi Yano. Effects of hydrogen on the polymerization of propylene with a magnesium chloride supported Ziegler-Natta catalyst. Journal of Molecular Catalysis 1993:82(1):37-44.
    
    [92] John C. Chadwick GMMVKOS. Regio- and stereospecificity in propene polymerization with MgCl2-supported Ziegler-Natta catalysts: effects of hydrogen and the external donor. Macromolecular Chemistry and Physics 1995:196(5): 1431-1437.
    
    [93] Chadwick JC, Morini G, Balbontin G, Mingozzi I, Albizzati E, Sudmeijer O. Propene polymerization with MgCl2-supported catalysts: Effects of using a diether as external donor. Macromolecular Chemistry and Physics 1997:198(4): 1181-1188.
    
    [94] Fregonese D, Mortara S, Bresadola S. Ziegler-Natta MgCl2-supported catalysts: relationship between titanium oxidation states distribution and activity in olefin polymerization. Journal of Molecular Catalysis A: Chemical 2001:172:89.
    
    [95] 黄葆同,沈之荃.烯烃双烯烃配位聚合进展.1998.
    
    [96] James C. W. Chien TN. Ethylene-hexene copolymerization by heterogeneous and homogeneous Ziegler-Natta catalysts and the ?comonomer? effect. Journal of Polymer Science Part A: Polymer Chemistry 1993:31(1):227-237.
    
    [97] JOHANNES A. M. AWUDZA PJTT. The "Comonomer Effect" in Ethylene/a-Olefin Copolymerization Using Homogeneous and Silica-Supported Cp2ZrCl2/MAO Catalyst Systems: Some Insights from the Kinetics of Polymerization, Active Center Studies, and Polymerization Temperature. Journal of Polymer Science Part A: Polymer Chemistry 2008:46:267-277.
    
    [98] Chien JCW, Nozaki T. Ethylene Hexene Copolymerization by Heterogeneous and Homogeneous Ziegler-Natta Catalysts and the Comonomer Effect. J Polym Sci Pol Chem 1993:31(1):227-237.
    
    [99] Karol FJ. Studies with High Activity Catalysts for Olefin Polymerization Catalysis Reviews Science and Engineering 1984:26:557.
    
    [100] Koivumaki J, Fink G, Seppala JV. Copolymerization of Ethene 1-Dodecene and Ethene 1-Octadecene with the Stereorigid Zirconium Catalyst Systems Ipr[Flucp]Zrcl2 Mao and Me(2)Si[Ind]2zrcl2 Mao - Influence of the Comonomer Chain-Length. Macromolecules 1994:27(22):6254-6258.
    
    [101] Kissin YV, Mink RI, Nowlin TE. Ethylene polymerization reactions with Ziegler-Natta catalysts. I. Ethylene polymerization kinetics and kinetic mechanism. Journal of Polymer Science, Part A: Polymer Chemistry 1999:37(23):4255-4272.
    
    [102] Kissin YV, Mink RI, Nowlin TE, Brandolini AJ. Ethylene polymerization reactions with Ziegler-Natta catalysts. III. Chain-end structures and polymerization mechanism. Journal of Polymer Science, Part A: Polymer Chemistry 1999:37(23):4281-4294.
    
    [103] Kissin YV, Brandolini AJ. Ethylene polymerization reactions with Ziegler-Natta catalysts. II. Ethylene polymerization reactions in the presence of deuterium. Journal of Polymer Science, Part A: Polymer Chemistry 1999:37(23):4273-4280.
    
    [104] Gennadii D. Bukaton SHS, Vladimir A. Zukharoii,, Sergei A. Sergeell YIY. Propylene Polymerization on Titanium-Magnesium Catalysts Determination of the Number of Active Centers and Propagation Rate Constants. Die Makromolekulare Chemie 1982:183:2657.
    
    [105] Marques MM, Tait PJT, Mejzlik J, Dias AR. Polymerization of ethylene using high-activity Ziegler-type catalysts: Active center determination. J Polym Sci Pol Chem 1998:36(4):573-585.
    
    [106] MARIA MERCE^S MARQUES PJTT, JIRI' MEJZLI'K,ALBERTO ROMA~O DIAS. Polymerization of Ethylene Using High-Activity Ziegler-Type Catalysts: Active Center Determination Journal of Polymer Science,Part A:Polymer Chemistry 1998:96:573.
    [107]范志强,封麟先,杨士林.用乙酰氯淬灭法测定Ziegler—Natta催化剂的活性中心数.高分子学报 1991:4:503.
    [108]范志强,封麟先,杨士林.用乙酰氯淬灭法测定Ziegler—Natta催化剂的活性中心数.高分子学报 1991:4:503.
    [109]范志强,封麟先,杨士林.异相Ziegler—Natta催化剂的活性中心多分散性(1)-钛系催化体系聚合物分子量分布的研究.高等学校化学学报1991:12:1681.
    [110]Fan ZQ,Feng LX,Yang SL.Distribution of active centers on TiCl4/MgCI2 catalyst for olefin polymerization.J Polym Sci Pol Chem 1996:34(16):3329-3335.
    [111]范志强,封麟先.TiCl4/MgCl2负载型烯烃聚合催化剂活性中心性质的研究.高分子学报1993:6:691-697.
    [112]Fan Z,Carmela Sacchi M,Locatelli P.Effects of external donor on active center distribution of supported ziegler-natta catalyst.Chinese Journal of Polymer Science(English Edition) 1997:15(3):217.
    [113]Kissin YV.A new method for measuring the number of active centers in heterogeneous Ziegler-Natta catalysts.J Catal 2001:200(2):232-240.
    [114]范志强,封麟先,杨士林.异相Ziegler—Natta催化剂的活性中心多分散性(1)-钛系催化体系聚合物分子量分布的研究.高等学校化学学报1991:12:1681.
    [115]范志强,封麟先,杨士林.异相Ziegler—Natta催化剂的活性中心多分散性(Ⅱ):4种活性中心的动力学参数.高等学校化学学报1992:13:137.
    [116]Tominaga Keii MT,Kouhei Kimura,Kazuhiro Ishii.A kinetic argument for a quasi-living polymerization of propene with a MgCl2-supported catalyst.Die Makromolekulare Chemie,Rapid Communications 1987:8:583.
    [117]Liu BP,Matsuoka H,Terano M.Stopped-flow techniques in Ziegler catalysis.Macromolecular Rapid Communications 2001:22(1):1-24.
    [118]王亚丽 张斌,王秀绘,李玉龙,韩雪梅,孙淑坤.线性低密度聚乙烯催化剂研究进展.工业催化2007:15:15.
    [119]程曾越.通用树脂实用技术手册.中国石化出版社,北京 1999:97-98.
    [120]Kissin YV.Molecular weight distributions of linear polymers:detailed analysis from GPC data.Journal of Polymer Science,Part A:Polymer Chemistry 1995:33(2):227-237.
    [121]Kissin YV,Chadwick JC,Mingozzi I,Morini G.Isoselectivity distribution of isospecific centers in supported titanium-based Ziegler-Natta catalysts.Macromolecular Chemistry and Physics 2006:207(15):1344-1350.
    [122]Kissin YV,Mirabella FM,Meverden CC.Multi-center nature of heterogeneous Ziegler-Natta catalysts:TREF confirmation.Journal of Polymer Science,Part A:Polymer Chemistry 2005:43(19):4351-4362.
    [123]Kissin YV,Ohnishi R,Konakazawa T.Propylene polymerization with titanium-based Ziegler-Natta catalysts:Effects of temperature and modifiers on molecular weight,molecular weight distribution and stereospecificity.Macromolecular Chemistry and Physics 2004:205(3 SPEC.ISS.):284-301.
    [124]Kissin YV.Multicenter nature of titanium-based Ziegler-Natta catalysts:Comparison of ethylene and propylene polymerization reactions.Journal of Polymer Science,Part A:Polymer Chemistry 2003:41(12):1745-1758.
    [125]Fan ZQ,Sacchi MC,Locatelli P.Effects of external donor on active center distribution of supported Ziegler-Natta catalyst.Chinese Journal of Polymer Science 1997:15(3):217-225.
    [126]Chen YP,Fan ZQ,Liao JH,Liao SQ.Molecular weight distribution of polyethylene catalyzed by Ziegler-Natta catalyst supported on MgCl2 doped with AlCl3.Journal of Applied Polymer Science 2006:102(2):1768-1772.
    [127]Xu J,Xu X,Feng L,Chen L,Chen W.Characterization of intramolecular composition heterogeneity of metallocene-based and conventional ethylene-butene copolymers using TREF/DSC.Macromolecular Chemistry and Physics 2001:202(9):1524-1530.
    [128]Xu JT,Fu ZS,Fan ZQ,Feng LX.Temperature rising elution fractionation of PP/PE alloy and thermal behavior of the fractions.European Polymer Journal 2002:38(9):1739-1743.
    [129]Xu JT,Feng LX,Yang SL,Yang YQ,Kong XM.Influence of electron donors on the tacticity and the composition distribution of propylene-butene copolymers produced by supported Ziegler-Natta catalysts.Macromolecules 1997:30(25):7655-7660.
    [130]Xu JT,Feng LX.Application of temperature rising elution fractionation in polyolefins.European Polymer Journal 2000:36(5):867-878.
    [131]Zhu HJ,Monrabal B,Han CC,Wang DJ.Phase structure and crystallization behavior of polypropylene in-reactor alloys:Insights from both inter-and intramolecular compositional heterogeneity.Macromolecules 2008:41(3):826-833.
    [132]Xu J,Feng L.Application of temperature rising elution fractionation in polyolefins.European Polymer Journal 2000:36(5):867-878.
    [133]Wallace W.Yau DG.New approaches using MW-sensitive detectors in GPC-TREF for polyolefin characterization.Polymer 2001:42(21):8947-8958.
    [134]Zhong CF,Gao MZ,Mao BQ.Effect of high polymerization temperature on the microstructure of isotactic polypropylene prepared using heterogeneous TiCl4/MgCl2 catalysts.Journal of Applied Polymer Science 2003:90(14):3980-3986.
    [135]拉贝克著;吴世康,漆宗能等译瑞JF.高分子科学实验方法-物理原理与应用.科学出版社,1991.
    [136]R.Koningsveld AJS.Polymer fractionation.I.The preparative problem.Journal of Polymer Science Part A-2:Polymer Physics 1968:6(2):367-381.
    [137]R.Koningsveld AJS.Polymer fractionation.Ⅱ.The analytical problem.Journal of Polymer Science Part A-2:Polymer Physics 1968:6(2):383-406.
    [138]Chen YP,Fan ZQ.Ethylene/1-hexene copolymerization with TiCl4/MgCl2/AlCl3 catalyst in the presence of hydrogen.European Polymer Journal 2006:42(10):2441-2449.
    [139]王航.丙烯/1-丁烯共聚物的制备及其结构与性能的研究.浙江大学硕士学位论文,2007
    [140]Zhang LT,Fan ZQ,Deng QT,Fu ZS.Gel formed during the solid-state graft copolymerization of styrene and spherical polypropylene granules.I.Influence of reaction conditions on the gelation and its mechanism.Journal of Applied Polymer Science 2007:104(6):3682-3687.
    [141]张乐天.苯乙烯在聚丙烯原生态球形粒子中固相接枝聚合的研究.浙江大学硕士学位论文,2004.
    [142]邓青田.苯乙烯在聚丙烯粒子中的固相接枝聚合及基体聚集态结构对反应的调控作用.浙江大学博士学位论文,2008.
    [143]Kakugo M,Miyatake T,Mizunuma K.Chemical composition distribution of ethylene-1-hexene copolymer prepared with TiCl3-Al(C2H5)2Cl catalyst.Macromolecules 1991:24(7):1469-1472.
    [144]徐君庭.烯烃聚合负载型催化剂研究及聚合物表征.浙江大学博士学位论文,1996.
    [145]Y.Feng JNH.The characterisation of random propylene-ethylene copolymer.Polymer 1998:39:6589-6596.
    [146]Kyung-Jun Chu JBPSAPS-KI.The influence of the Ti3+ species on the microstructure of ethylene/1-hexene copolymers.Macromolecular Chemistry and Physics 1999:200(6):1298-1305.
    [147]Joao B.P.Spares BM,Jesus Nieto,Javier Blanco.Crystallization analysis fractionation(CRYSTAF)of poly(ethylene-co-1-octene) made with single-site-type catalysts:A mathematical model for the dependence of composition distribution on molecular weight.Macromolecular Chemistry and Physics 1998:199(9):1917-1926.
    [148]J.Nieto TOFBJBPSBM.Crystallizability of ethylene homopolymers by crystallization analysis fractionation.Journal of Polymer Science,Part B:Polymer Physics 2001:39(14):1616-1628.
    [149]Benjamin M.Crystallization analysis fractionation:A new technique for the analysis of branching distribution in polyolefins.Journal of Applied Polymer Science 1994:52(4):491-499.
    [150]毛炳全,杨菊秀,李珠兰等.烯烃聚合用球形催化剂.CN 1091748A,1994.
    [151]汪昆华,罗传秋,周啸.聚合物近代仪器分析.北京:清华大学出版社,2000.
    [152]Hu Y,Chien JCW.Superactive and Stereospecific Catalysts.I.Structures and Productivity.Journal of Polymer Science,Part A:Polymer Chemistry 1988:26(8):2003-2018.
    [153]Chien JCW,Hu Y,Vizzini JC.Superactive and stereospecific catalysts.Ⅳ.Influence of structure of esters on MgCl2 supported olefin polymerization catalysts.Journal of Polymer Science,Part A:Polymer Chemistry 1990:28(2):273-284.
    [154]Chien JCW,Wu JC,Kuo CI.Magnesium-Chloride Supported High-Mileage Catalysts for Olefin Polymerization.4.Ftir and Quantitative-Analysis of Modifiers in the Catalysts.J Polym Sci Pol Chem 1983:21(3):725-736.
    [155]Nowlin TE,Kissin YV,Wagner KP.High Activity Ziegler-Natta Catalysts for the Preparation of ethylene Copolymers..Journal of Polymer Science,Part A:Polymer Chemistry 1988:26(3):755-764.
    [156]Hsieh ET,Randall JC.Monomer sequence distributions in ethylene-1-hexene copolymers.Macromolecules 1982:15(5):1402-1406.
    [157]Seger MR,Maciel GE.Quantitative 13C NMR analysis of sequence distributions in poly(ethylene-co-1-hexene).Anal Chem 2004:76(19):5734-5747.
    [158]Chadwick JC.Advances in propene polymerization using MgCl2-supported catalysts.Fundamental aspects and the role of electron donors.Macromolecular Symposia 2001:173:21-35.
    [159]泉美治(日).《仪器分析导论》第一册(第二版).化学工业出版社,2005.
    [160]范志强.Alpha-烯烃Ziegler-Natta聚合动力学与机理研究.浙江大学博士学位论文,1987.
    [161]杨柯.助催化剂调节负载Ziegler-Natta催化剂活性中心分布的作用及其机理.浙江大学硕士学位论文,2003.
    [162]邓绍学.聚乙烯新产品的开发及研究.浙江大学硕士学位论文,1992.
    [163]Busico V,Cipullo R.Microstructure of polypropylene.Progress in Polymer Science(Oxford)2001:26(3):443-533.
    [164]Ross JF.Hydrogen as a chain terminator in continuous gas phase polymerization of propylene.Journal of Polymer Science:Polymer Chemistry Edition 1984:22:2255-2263.
    [165]蒋学.掺杂载体Ziegler-Natta催化剂的制备及聚丙烯分子量分布调控的研究.浙江大学博士学位论文.2004.
    [166]陈永平.掺杂MgCl2载体负载型Ziegler-Natta催化剂及其催化乙烯、丙烯聚合的研究.浙江大学博士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700