贝壳负载纳米Cu_2O复合光催化材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选用珍珠贝壳作为载体,在不同温度下煅烧活化,采用水解法制备纳米Cu_2O/珍珠贝壳复合材料,并通过催化活性实验和XRD表征手段对材料进行筛选。结果表明,在≥800 oC温度下煅烧的珍珠贝壳,可以作为载体成功负载纳米Cu_2O,其中以1050℃煅烧的珍珠贝壳为载体制备的纳米Cu_2O/珍珠贝壳复合材料具有最强的光催化活性;该复合材料合成过程中,CuCl与活化贝壳粉的最佳质量配比为1:1—2。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)及其能谱(EDS)和紫外-可见漫反射吸收光谱(UV-Vis)对纳米Cu_2O/珍珠贝壳复合光催化材料进行了表征,结果表明,复合材料的主要成分为CaO和Cu_2O,材料表面由于空气氧化作用形成少量无定形CuO薄膜;负载的Cu_2O颗粒呈椭球状并与载体紧密结合,粒径小于100 nm,计算得到理论平均粒径为16.8 nm;珍珠贝壳载体对纳米Cu_2O的光催化性能基本不产生影响,复合材料对紫外光及可见光均有良好的吸收;复合材料中不含有明显的杂质元素,说明利用贝壳自身碱度采用水解法可制备出理想的纳米Cu_2O/珍珠贝壳复合材料。
     用活性大红染料B-3G水溶液作为模拟废水,对纳米Cu_2O/珍珠贝壳复合材料的吸附性能分别进行了热力学和动力学分析。分析结果表明复合材料对B-3G的吸附性能具有纯Cu_2O粉末和贝壳粉载体的特点,其吸附等温线介于Langmuir模型和Freundlich模型的拟合曲线之间,从拟合相关系数上看较为符合Langmuir吸附等温模型,理论饱和吸附量为166.67 mg/g,较纯Cu_2O粉末提高了200%,而实际饱和吸附量还要大于该理论计算值,说明该复合材料具有较强的吸附能力。纳米Cu_2O/珍珠贝壳复合材料对B-3G的吸附过程非常迅速,60 min后吸附基本达到平衡,此时B-3G的吸附去除率达到98.2%;复合材料对B-3G的吸附动力学可以很好地用伪二级动力学模型描述。
     用B-3G模拟废水评价复合材料在可见光和太阳光辐射下的催化性能。结果表明,纳米Cu_2O/珍珠贝壳复合材料的光催化反应可适应pH范围为6.0—12.0的水环境;与纯Cu_2O相比,纳米Cu_2O/珍珠贝壳复合材料具有更高的光催化活性,可催化B-3G模拟废水的浓度高达220 mg/L,B-3G的催化降解脱色率达到98—100%。可见光下的催化反应过程符合伪一级反应动力学模型;太阳光下的催化反应动力学更加符合Langmuir-Hinshewood模型。通过实际印染废水的催化降解实验发现,纳米Cu_2O/珍珠贝壳复合材料可有效降解浓度较低的实际印染废水,其色度和COD去除率分别可达到96.15%和73.05%。
     此外,用傅里叶变换红外光谱(FT-IR)研究了纳米Cu_2O/珍珠贝壳复合材料的合成机理。研究表明,纳米Cu_2O和以CaO为主要成分的贝壳载体之间相互结合并发生物化反应形成了新的化学键,Cu(Ⅰ)分别以纳米Cu_2O粒子和CaCu_2O2化合物的形式负载在贝壳载体上,二者在光催化过程均中发挥重要作用。
In this dissertation, waste pearl shells were activated at different temperatures, and used as carriers to support nano Cu_2O through hydrolysis process. These as-prepared different nano-Cu_2O/pearl shell composites had been selected by photocatalytic experiments and X-ray diffraction (XRD) characterization. The results show that nano-Cu_2O/pearl shell composites can be achieved when pearl shell carriers calcined at the temperature higher than 800 oC. The composites prepared with pearl shells calcined at 1050 oC have the highest photocatalytic activity. The optimal mass ratio of CuCl and calcined pearl shells ranges from 1:1 to 1:2 during the hydrolysis process. The properties of composites were characterized and analyzed by X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), scanning electron microscopy (SEM) and its energy dispersive spectrometer (EDS), and UV-Vis diffuse reflectance spectrometer (UV-Vis). These characterization results show that the main components of nano-Cu_2O/pearl shell composites are CaO and Cu_2O with trace amounts of CuO film oxidized on the outermost surface. Loaded Cu_2O particles, with a calculated theoretical average size of 16.8 nm, are oval in shape and closely integrated with carriers. Nano-Cu_2O/pearl shell composites, successfully prepared through hydrolysis process without significant impurities, have absorption bands in the ultraviolet and visible light region similar to pure Cu_2O powders.
     Reactive red dye B-3G solutions were used as simulated wastewater to investigate adsorption thermodynamics and kinetics. Data show that the adsorption properties of nano-Cu_2O/pearl shell composites, whose adsorption isotherm is located between Langmuir model and Freundlich model fitting curves, have the adsorption characteristics of both pearl shell carriers and pure Cu_2O powders. The theoretical saturated adsorption amount of composies is 166.67 mg/g, which is 200% higher than that of pure Cu_2O powders. However, the actual saturated adsorption capacity is much greater than the theoretical one, indicating that these as-prepared nano-Cu_2O/pearl shell composites have a strong adsorption property. The adsorption process is very fast, and the equilibrium could be achieved in 60 min with 98.2% of B-3G removed. Kinetic regressions show that the adsorption kinetics is more accurately represented by Pseudo second-ordermodel.
     Photocatalytic performances of nano-Cu_2O/pearl shell composites under visible light and sunlight irradiation were assessed by decolorization of reactive red dye B-3G in solutions. Experimental results show that nano-Cu_2O/pearl shell composites keep high photocatalytic activities in solutions with pH ranging from 6.0 to 12.0. These composites have much higher photocatalytic activities than pure Cu_2O powders, for more than 98% of B-3G solutes could be decolorized with B-3G concentration up to 220 mg/L. The photocatalytic reactions under visible light and sunlight follow preudo-first order kinetics model and Langmuir-Hinshewood model, respectively. It was found from the degradation experiments of actual dyeing wastewater that nano-Cu_2O/pearl shell composites could effectively degrade low concentration dyeing wastewater, whose color and COD removal rate could reach 96.15% and 73.05% , respectively.
     Moreover, Fourier transform infrared spectroscopy (FT-IR) was used to discuss formation mechanism of nano-Cu_2O/pearl shell composites. The results show that nano Cu_2O has combined with pearl shell carriers and new chemical bonds have been formed during the hydrolysis process. Cu (Ⅰ) could be loaded on pearl shell carriers in the two forms of nano Cu_2O particles and CaCu_2O2 compounds, and both of them play important roles in photocatalytic process.
引文
[1]李金志.贝壳的综合利用[J].淮海工学院学报, 2001(S1):22-23.
    [2]郝晓敏,谷长生,宋文东,周启明.巴菲蛤壳和白碟贝壳酸解氨基酸及矿物元素成分的分析[J].食品科学, 2008(11):518-520.
    [3]蔡英亚,张英,魏若飞.贝类学概论[M].上海:上海科学技术出版社,1995:327.
    [4]齐鲁晚报.幸福北端搬迁空地垃圾成山.中国烟台政府门户网站, 2009-07-24. http://www.yantai.gov.cn/cn/html/text/jryt/2009-07-24/446029.html
    [5] Nakatani N, Takamori H, Takeda K, Sakugawa H. Transesterification of soybean oil using combusted oyster shell waste as a catalyst[J]. Bioresource Technology, 2009(100):1510-1513.
    [6] Yeom S H, Jung K Y. Recycling wasted scallop shell as an adsorbent for the removal of phosphate[J]. Journal of Industrial and Engineering Chemistry, 2009(15):40-44.
    [7]谢宗万.全国中草药汇编[M].北京:人民卫生出版社, 1996:1050.
    [8]杨晓华,赵星洁,王明珠.牡蛎贝壳制备药用碳酸钙的工艺改进[J].无机盐工业, 2006(11): 43-44.
    [9]赵桂丰,杨林,陈雷,吴琳.微波高温加热法分解贝壳制取葡萄糖酸钙[J].大连工业大学学报, 2009(6):438-440.
    [10]黄广民,黄必春,肖红,陈月兰.双烧法从贝壳中制备葡萄糖酸钙[J].食品工业, 2002(3):24 -26.
    [11]罗威,许为.以贝壳为钙源一次煅烧法制取柠檬酸钙[J].中国食品添加剂, 2007(4):119 -121.
    [12] Yu Y, Wu R P, Clark M. Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell[J]. Journal of Colloid and Interface Science, 2010(350):538-543.
    [13]王瑞芳,文达,谢兴益,钟银屏.纳米羟基磷灰石骨修复复合材料的研究进展[J].生物医学工程学杂志, 2008(25):1231-1234.
    [14]林英光,李伟,程江,杨卓如.掺锶羟基磷灰石及其在口腔保健领域中的应用[J].日用化学工业, 2006(3):182-186.
    [15]姜礼燔.贝壳矿物质在饲料添加剂中的应用[J].水产科技情报, 2005(6):278-279.
    [16]江志阳,何随成.一种海洋生物活性环保肥料及其使用方法[P].中国专利: 200910011024.6
    [17] Naruse I, Nishimura K, Ohtake K, Kawabe T. Characteristics of desulfurization reaction by shells[J]. Kagaku Kogaku Ronbunshu, 1995(21):904-909.
    [18]王永征,路春美,潘新元,赵建立.贝壳为燃煤固硫剂的固硫特性分析[J].热能动力工程, 2002(3):244-247.
    [19]张雷,路春美,程世庆.贝壳类新型钙基脱硫剂的试验研究[J].环境科学学报, 2003(5): 647-651.
    [20] Yoon G L, Kim B T, Kim B O, Han S H. Chemical-mechanical characteristics of crushed oyster-shell[J]. Waste Management, 2003(23):825-834.
    [21]张立功,于春生.以贝壳粉为主要成分的内墙涂料[P].中国专利: 201010030813.
    [22]段杉,陈海梅,林秋峰,王爱青,杨丽静,林土丹.贝壳煅烧物的防腐作用研究[J].中国食品添加剂, 2007(6):74-78.
    [23]魏巍,贺淹才.从扇贝壳制取活性氧化钙及其抑菌效果初探[J].生物技术, 2005(5):77-78.
    [24]胡学寅,周丽丽,齐兴义.贝壳吸附材料的制备与表征[J].应用科技, 2008(3):70-72.
    [25] Jeon D J, Yeom S H. Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate[J]. Bioresource Technology, 2009(100):2646-2649.
    [26] Namasivayam C, Sakoda A, Suzuki M. Removal of phosphate by adsorption onto oyster shell powder-kinetic studies[J]. Journal of Chemical Technology and Biotechnology, 2005(80):356-358.
    [27] Comninellis C. Electrocatalysis in the electrochemical conversion/combution of organic pollutants for waste-water treatment[J]. Electrochimica Acta, 1994(39):1857-1862.
    [28] Comninellis C, Pulgarin C. Anodic-oxidation of phenol for waste-water treatment[J]. Journal of Applied Electrochemistry, 1991(21):703-708.
    [29] Serikawa R M, Isaka M, Su Q, Usui T, Nishimura T, Sato H, Hamada S. Wet electrolytic oxidation of organic pollutants in wastewater treatment[J]. Journal of Applied Electrochemistry, 2000(30):875-883.
    [30] Kim K, Son S H, Kim Y C. Environmental effects of supercritical water oxidation (SCWO) process for treating transformer oil contaminated with polychlorinated biphenyls (PCBs)[J]. Chemical Engineering Journal, 2010(165):170-174.
    [31] Sogut O O, Akgun M. Treatment of dyehouse waste-water by supercritical water oxidation: a case study[J]. Journal of Chemical Technology and Biotechnology, 2010(85):640-647.
    [32] Jiang H F, Zhou Z X, Liu X Q, Meng G Y. Preparation of LiF-doped TiO_2 and its photocatalytic performance for degradation of methylene blue[J]. Chinese Journal of Catalysis, 2007(28):377-382.
    [33] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972(238):37-38.
    [34]胡春,王怡中,汤鸿霄.多相光催化氧化的理论与实践发展[J].环境污染治理技术与设备, 1995(1):55-64.
    [35]张彭义.半导体光催化剂及其改性技术进展[J].环境科学进展, 1997(3):1-10.
    [36] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis[J]. Chemistry Review, 1995(95):69-96.
    [37]郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究进展[J].环境污染治理技术与设备, 1996(3):1-17.
    [38] Sun Y F, Pignatello J J. Evidence for a surface dual hole-radical mechamism in the TiO_2 photocatalytic oxidation of 2,4-dichlorophenaxyacetic acid[J]. Environmental Science and Technology. 1995(29):2065-2072.
    [39] Sun L Z, Bolton J R. Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO_2 suspensions[J]. Journal of Physical Chemistry, 1996(100):4127-4134.
    [40] Gibson J F, Ingram D J E, Symons M C R, Townsend M G. Electron resonance studies of different radical species formed in rigid solutions of hydrogen peroxide after UV irradiation[J]. Transactions of the Faraday Society, 1957(53):914-920.
    [41]赵清华,全学军,谭怀琴,桑雪梅. La掺杂TiO_2光催化剂的制备与表征[J].催化学报, 2008(3):269-274.
    [42]郭志峰,田硕,王凌勇,张丽霞,宋彩瑜.直接沉淀法制备纳米氧化锌晶体及其光催化降解性能研究[J].硅酸盐通报, 2010(2):229-333.
    [43] Yu J G, Zhang L J, Cheng B, Su Y R. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania[J]. Journal of Physical Chemistry C, 2007(111):10582-10589.
    [44] Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-mesoporous titania[J], Advanced Functional Materials, 2007(17):1984-1990.
    [45] Chen Z J, Zhao G L, Li H, Zhang J J, Song B, Han G R. Preparation of Nanocrystalline TiO_2by Sol-Gel-Method at Room Temperature[J]. Chinese Journal of Inorganic Chemistry, 2010(26): 860-866.
    [46]孙晓君,井立强,蔡伟民,周德瑞.掺V的TiO_2纳米粒子的制备和表征及其光催化性能[J].硅酸盐学报, 2002(S1):26-30.
    [47]任学昌,李虎,史载锋,孔令仁,陈学民,展宗诚. Fe~(3+)改性纳米TiO_2薄膜的制备及其光催化性能[J].中国给水排水, 2008(13):70-73.
    [48] Su Y Y, Yang P S, Zhu X B. Preparation, Characterization and Photocatalytic Performance of Nano-TiO_2/Diatomite[J]. Advanced Materials Research, 2009(79-82):357-360.
    [49]宋爱君,高发明. LaFeO3溶胶凝胶合成和光催化性能[J].稀土, 2004(1):25-27.
    [50]戈磊,张宪华.微乳液法合成新型可见光催化剂BiVO4及光催化性能研究[J].无机材料学报, 2009(3):453-455.
    [51]牛新书,许亚杰,张学治,刘国光,蒋凯.微乳液法制备纳米二氧化钛及其光催化活性[J].功能材料, 2003(3):548-552.
    [52] Zheng J P, Jow T R. Anew charge storage mechanism for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1995(142):6-8.
    [53]樊丽霞,邓培昌,王海增,孙宝维,于艳伟.溴掺杂TiO_2光催化剂的制备与性能研究[J].环境工程学报, 2010(2):417-421.
    [54]于爱敏,武光军,严晶晶,郑春明,章福祥,杨雅莉,关乃佳.水热法合成可见光响应的B掺杂TiO_2及其光催化活性[J].催化学报, 2009(2):137-141.
    [55] Xu C, Wang X, Yang LC, Wu Y P. Fabrication of a graphene-cuprous oxide composite[J]. Journal of Solid State Chemistry, 2009(182):2486-2490.
    [56] Zhang H, Cui Z L. Solution-phase synthesis of smaller cuprous oxide nanocubes[J]. Materials Research Bulletin, 2008(43):1583-1589.
    [57] Reddy K R, Sin B C, Yoo C H, Park W J, Ryu K S, Lee J S, Sohn D W, Lee Y I, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles[J], Scripta Materialia, 2008(58):1010-1013.
    [58] Xu H L, Wang W Z, Zhu W, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties[J]. Journal of Physical Chemistry B, 2006(110):13829-13834.
    [59] Yu Y, Ma L L, Huang W Y, Li J L, Wong P K, Yu J C. Coating MWNTs with Cu_2O ofdifferent morphology by a polyol process[J]. Journal of Solid State Chemistry, 2005(178):1488 -1494.
    [60]刘忠伟.建筑玻璃在公共建筑节能设计中的选.中国幕墙工程网, 2008-08-30. http://www.cncwe.net/docs/boli/2008-08-30/1220105813184.html
    [61]贝德莱特太阳能工程.中国地表面辐射平衡和热量平衡.武汉赛鹏机械精密制造有限公司, 2009-12-16. http://blog.163.com/wzywxl@126/blog/static/1347464162009111664956533/
    [62] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systerms[J]. Chemistry Review, 1995(95):49-68.
    [63]梁宇宁,黄智,覃思晗,甘庆华. Cu_2O光催化降解水中对硝基苯酚的研究[J].环境污染治理技术与设备, 2003(10):36-39.
    [64] Somasundaram S, ChenthamarakshaC R N, Tacconi N R, Rajeshwar K, Photocatalytic production of hydrogen from electrodeposited p-Cu_2O film and sacrificial electron donors[J], International Journal of Hydrogen Energy, 2007(32):4661-4669.
    [65] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001(293):269-271.
    [66] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO_2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. Journal of Physical Chemistry B, 2002(106):5029-5034.
    [67] Gopidas K R, Bohorquez M, Kamat P V. Photoelectrochemistry in semiconductor particulate systems. 16. photophysical and photochemical aspects of coupled semiconductors-charge-transfer processes in colloidal CDS-TiO_2 and CDS-AGIsystems[J]. Journal of Physical Chemistry, 1990(94):6435-6440.
    [68]闫世成,罗文俊,李朝升,邹志刚.新型光催化材料探索和研究进展[J],中国材料进展, 2010(1):1-9.
    [69] Ching W Y, Xu Y N, Wong K W. Ground-stage and optical-properties of Cu_2O and CuO crystals[J]. Physical Review B, 1989(40):7684-7695.
    [70] Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo J N, Domen K. Cu_2O as a photocatalyst for overall water splitting under visible light irradiation[J]. Chemical Communications, 1998:357-358.
    [71] Kakuta S, Abe T. A Novel Example of Molecular Hydrogen Generation from Formic Acid atVisible-Light-Responsive Photocatalyst[J]. ACS Applied Materials & Interfaces, 2009(1): 2707- 2710.
    [72] Kakuta S, Abe T. Photocatalytic activity of Cu_2O nanoparticles prepared through novel synthesis method of precursor reduction in the presence of thiosulfate[J]. Solid State Sciences, 2009(11):1465-1469.
    [73] Huang L, Peng F, Yu H, Wang H J. Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion[J]. Solid State Sciences, 2009(11):129-138.
    [74] Chen J Y, Zhou P J, Li J L, Wang Y. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light[J]. Carbohydrate Polymers, 2008(72): 128-132.
    [75] Helaili N, Bessekhouad Y, Bouguelia A, Trari M. Visible light degradation of Orange II using xCu(y)O(z)/TiO_2 heterojunctions[J]. Journal of Hazardous Materials, 2009(168):484-492.
    [76] Xu Y H, Liang D H, Liu M L, Liu D Z. Preparation and characterization of Cu_2O-TiO_2: Efficient photocatalytic degradation of methylene blue[J]. Materials Research Bulletin, 2008(43): 3474-3482.
    [77] Bessekhouad Y, Robert D, Weber J V. Photocatalytic activity of Cu_2O/TiO_2, Bi2O3/TiO_2 and ZnMn2O4/TiO_2 heterojunctions[J]. Catalysis Today, 2005(101):315-321.
    [78] Li J L, Liu L, Yu Y, Tang Y W, Li H L, Du F P. Preparation of highly photocatalytic active nano-size TiO_2-Cu_2O particle composites with a novel electrochemical method[J]. Electrochemistry Communications, 2004(6):940-943.
    [79] J. Katayama, K. Ito, M. Matsuoka, J. Tamaki, Performance of Cu_2O/ZnO solar cell prepared by two-step electrodeposition, Journal of Applied Electrochemistry, 34 (2004) 687-692.
    [80] Siripala W, Ivanovskaya A, Jaramillo T F, Baeck S H, McFarland E W. A Cu_2O/TiO_2 heterojunction thin film cathode for photoelectrocatalysis[J], Solar Energy Materials and Solar Cells, 2003(77):229-237.
    [81]魏宏斌,李田,严煦世.水中有机污染物的光催化氧化[J].环境污染治理技术与设备, 1994(3):50-57.
    [82]黄占林,邓桦,潘红琴,周文良.织物负载TiO_2光催化剂的制备及其对活性红MS光催化动力学[J].工业水处理, 2010(10):37-41.
    [83]黄占林,邓桦,王德虎,宁苑.负载纳米TiO_2薄膜光催化降解活性红MS[J].印染, 2009(18): 14-17.
    [84]董永春,白志鹏,张利文,王宗爽,朱坦.纳米TiO_2负载织物对室内空气中氨的净化[J].中国环境科学, 2005(S1):26-29.
    [85]刘磊,肖艳波,王洋.薄膜负载型TiO_2光催化降解乙酸[J].化工环保, 2009(5):471-474.
    [86] Thostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: a review[J]. Composites Science and Technology, 2001(61): 1899-1912.
    [87]马丽丽,余颖,黄文娅,朱路平,李家麟,庄源益,漆新华.多元醇法制备Cu2O/CNTs复合材料的研究[J].化学学报, 2005(18):1641-1645.
    [88] Chang H, Kao M J, Huang K D, Hsieh T J, Chien S H. Application of TiO_2 Nanoparticles Coated Multi-Wall Carbon Nanotube to Dye-Sensitized Solar Cells[J]. Journal of Nanoscience and Nanotechnology, 2010(10):7671-7675.
    [89] Zahmakiran M, Ozkar S. Preparation and characterization of zeolite framework stabilized cuprous oxide nanoparticles[J]. Materials Letters, 2009(63):1033-1036.
    [90]钟爱国.负载氧化亚铜可见光催化分解亚甲基蓝[J].科学技术与工程, 2006(17):2733 -2734.
    [91] Ramirez-Ortiza J, Ogura T, Medina-Valtierra J, Acosta-Ortiz S E, Bosch P, Reyes J A, Lara V H. A catalytic application of Cu2O and CuO films deposited over fiberglass[J]. Applied Surface Science, 2001(174):177-184.
    [92] Peill N J, Hoffmann M R. Chemical and physical characterization of a TiO_2-coated fiber optic cable reactor[J]. Environmental Science & Technology, 1996(30):2806-2812.
    [93] Peill N J, Hoffmann M R. Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis[J]. Environmental Science & Technolog, 1998(32):398-404.
    [94] Peill N J, Hoffmann M R. Development and optimization of a TiO_2 coated fiberoptic calbe reactor-photocatalytic degradation of 4-chlorophenol[J]. Environmental Science & Technolog, 1995(29):2974-2981.
    [95] Palkar V R, Ayyub P, Chattopadhyay S, Multani M. Size-induced structural transitions in the Cu-O and Ce-O systems[J]. Physical Review B, 1996(53):2167-2170.
    [96]郭鹏,刘春燕,高敏,王祥生,郭洪臣. ZSM-5晶粒度对其负载的TiO_2光催化剂性能的影响[J].催化学报, 2010(5):573-578.
    [97] Koper O, Lagadic I, Klabunde K J. Destructive adsorption of chlorinated hydrocarbons on ultrafine (nanoscale) particles of calcium oxide[J]. Chemistry of Materials, 1997(9):838-848.
    [98] Carrier M, Perol N, Herrmann J M, Bordes C, Horikoshi S, Paisse J O, Baudot R, Guillard C. Kinetics and reactional pathway of Imazapyr photocatalytic degradation Influence of pH and metallic ions[J]. Applied Catalysis B-Environmental, 2006(65):11-20.
    [99] Bouzaida I, Ferronato C, Chovelon J M, Rammah M E, Herrmann J M. Heterogeneous photocatalytic degradation of the anthraquinonic dye, Acid Blue 25 (AB25): a kinetic approach[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2004(168):23-30.
    [100] Borgohain K, Murase N, Mahamuni S. Synthesis and properties of Cu_2O quantum particles[J]. Journal of Applied Physics, 2002(92):1292-1297.
    [101] Balamurugan B, Mehta B R, Avasthi D K, Singh F, Arora A K, Rajalakshmi M, Raghavan G, Tyagi A K, Shivaprasad S M. Modifying the nanocrystalline characteristics-structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation[J]. Journal of Applied Physics, 2002(92):3304-3310.
    [102] Xu J F, Ji W, Shen Z X, Tang S H, Ye X R, Jia D Z, Xin X Q. Preparation and characterization of CuO nanocrystals[J]. Journal of Solid State Chemistry, 1999(147):516-519.
    [103] Deschanvres J L, Jimenez C, Rapenne L, McSporran N, Servet B, Durand O, Modreanu M. Growth and characterisation of CaCu_2Ox thin films by pulsed injection MOCVD[J]. Thin Solid Films, 2008(516):1461-1463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700