用户名: 密码: 验证码:
大豆DREB基因GmDREB1改良紫花苜蓿耐盐性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫严重影响作物和牧草产量。在我国由于水资源日益短缺,干旱半干旱地区土壤干旱和盐渍化问题越发严峻。紫花苜蓿(Medicago sativa. L)作为一种营养丰富的豆科牧草在我国西北干旱半干旱及吉林省西部地区农牧业生产和生态建设中发挥重要作用。可是,大多数苜蓿品种对盐胁迫的耐受能力不强,产量受到很大限制。在改良作物抗逆能力方面,传统育种方法的成功案例并不多。相对而言,应用基因工程技术提高植物抗逆性更快捷更有效。在逆境胁迫下,DREB转录因子以与DRE顺式作用元件特异结合的方式,可以调控一系列逆境相关下游基因表达。此类基因已被证明在改良植物抗逆性方面具有相当重要的应用价值。
     本论文实验以基因工程技术为手段扩增了大豆GmDREB1基因,构建了重组植物表达载体Rd29A:GmDREB1:GFP。将这个表达载体转入农杆菌LBA4404并以农杆菌介导的方法转化到紫花苜蓿栽培种公农1号中,获得了四个株系200株再生苗。PCR、Southern杂交结果表明外源基因已经整合到苜蓿核基因组中,且29A-2,29A-4植株的外源基因整合方式为单拷贝,外源基因在其后代中遗传等为稳定。Northern杂交表明在盐胁迫条件下,外源基因杂交信号明显,而在非盐胁迫条件下,杂交信号很弱,无法检测到。且转基因植株在正常条件下,并没有出现矮化、产量降低的现象,由此证明Rd29A启动子的作用如预期一致。对再生植株的生理检测表明,GmDREB1转基因苜蓿对中度盐胁迫(200mM NaCl)具有很强的耐受性。生理指标分析发现:在盐胁迫处理后,转基因植株的膜透性和光合系统II活性明显好于对照,且累积了大量的游离脯氨酸和可溶糖,使得转基因植株能较好的应对盐胁迫逆境。除此之外,我们确定GmDREB1通过提升转基因植株体内P5CS基因的转录水平而导致大量游离脯氨酸的累积。
     总之,本研究首次将DREB类基因转入苜蓿中,证明转基因植株获得较好的耐盐能力。同时确定以诱导型启动子Rd29A启动子驱动DREB基因表达是提高植物抗逆能力的一个有效手段。这些研究结果为深入研究植物耐盐机制,培育耐盐转基因植株等方面的应用提供了一定的基础和依据。进一步的筛选GmDREB1下游目的基因以及GmDREB1调控下游基因的具体方式等工作正在进行中。
Salt stress adversely affects crop productivity and forage yield. With ingravescent fresh water scarcity, the situation of drought and soil salinity get even worse in the arid and semi-arid areas of China. Alfalfa (Medicago sativa.L) is a protein-riched legume forage, acting an important role in agriculture and animal husbandry and ecological construction in arid and semi-arid areas of western JiLin Province and Northeast of China. However, salt stress at 50-200 mM NaCl significantly limits the productivity of alfalfa. Traditional breeding strategies have generated very few crop varieties with improved stress tolerance. Contrary to the classical breeding approaches, direct introduction of genes by genetic engineering seems a more attractive and quick solution for improving stress tolerance. Dehydration-responsive element binding proteins (DREB), specifically interacting with DRE element, could up-regulation of a whole array of downstream genes in response to stress and are regarded as important genetic resources for improving plant stress tolerance.
     In the current study, a soybean DREB orthologue, GmDREB1, was amplified by using genetic method. Subsequently, we constructed the recombinant expression vectors Rd29A: GmDREB 1:GFP and transformed it into Agrobacterium tumefaciens LBA4404. With Agrobacterium tumefaciens mediated transformation method, GmDREB1 was introduced into alfalfa cultiva, Gongnong1, and thereafter 200 regenerated plants from 4 lines were gained. PCR and Southren blot analysis demonstrated that the exogenous gene had been integrated into the chromosome of all the four transgenic lines. Furthermore, plants from line 29A-2 and 29A-4 carried a single active T-DNA locus and were applied for further analysis. Northern blot analysis shown thant GmDREB1 transcripts were stably detected in salt-treated line 29A-2 and 29A-4 plants. Together with the facts that under normal conditions no morphological differences were found between transgenic plants and wild-type plants, Rd29A promoter was comfirmed to play its role as expected. Moreover, GmDREB1 transgenic plants displayed strong tolerance to moderated salt stress(200mM NaCl). The four physiological indices of transgenic plants were all better than those of wild control under moderated salt stress treatments (200mM NaCl). Northern bolt analysis furthern confirmed thant GmDREB1 increased P5CS transcript levels thus led to more accumulation of free proline in transgenic plants.
     Overall, we the first to intruduce a DREB gene into alfalfa and improve its salt tolerance. Also we make sure that incorporating a key regulator gene such as DREB gene under the control of Rd29A promoter is an efficient approach to minimize stress damage to crops. Futher study on screening the downstream genes of GmDREB1 and the concrete way of GmDREB1 to affect its downstream genes will be carried out soon in the future.
引文
[1] Boyer J S. Plant Productivity and Environment [J]. Science, 1982, 218: 443-448.
    [2] Yokoi s, Bressan R A, Hasegawa P M. Salt stress tolerance of plant [R]. JIRCAS Working Rep 25-33.
    [3] Flowers T J. Improving crop salt tolerance [J]. J Exp Bot,2004, 55: 307-319.
    [4]王遵亲.中国盐渍土[M].北京科学出版社,1993.
    [5]黄文惠,刘自学.中国苜蓿[M].中国农业出版社, 1995.
    [6] Guo S L, Liu H X, Wang S M. Biomass, persestence, and drought resistance of nine varieties in dryland conditions of west China [J]. Aust J Exp Agr, 2005,45: 59-64.
    [7] Bekki A, Trinchant J C, Rigaud J. Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress [J]. Physiol Plant, (1987), 71: 61-67.
    [8] Dunwell J M. Transgenic approaches for corp improvement [J]. J Exp Bot, 2000,51:487-496.
    [9] Deak M, Kiss G, Koncz C, et al. Transformation of Medicago by Agrobacterium-mediated gene transfer [J]. Plant Cell Rep, 1986, 5: 97-100.
    [10]李玉全,张海艳,沈法富.作物耐盐性的分子生物学研究进展[J].山东科学,2002,15(2):8-14
    [11] Zhu J K. Plant salt tolerance [J]. TRENDS in Plant Science, 2001, 6 (2):66-71.
    [12] Asish K R, Anath B D. Salt tolerance and salinity effects on plants: a review [J]. Ecotoxi Environ Safety, 2005, 60: 324-329.
    [13] Yamaguchi-Shinzaki K, Shinzaki K. Rice biotechnology: improving yield,stress tolerance an grain quality[R]. Wiley, Chichester, 2001, p176-189.
    [14] Haregawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular response to high salinity [J]. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51:436-499
    [15] Rhodes D, Hanson A D. Quaternary ammonium and tertiary sulphonium compounds in higher plants [J]. Plant Mol Biol, 1993, 44:357-384.
    [16] Saneoka H, Nagasaka C, Hahn D T, et al. Salt tolerance of glycinebetaine deficient and containing maize lines [J]. Plant Physiol, 1995, 107:631-638.
    [17] Allard F, Houde M, Krol M, et al. Betane improves freezing tolerance in wheat[J].. Plant Cell Physiol, 1998, 39:11194-1202.
    [18] Hayashi H H, Alia, Sakamoto A, et al. Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (cod A) for choline oxidase [J]. J Plant Res,1998,111:357-362.
    [19] Kumar S, Dhingra A, Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cell, roots, and leaves confers enhanced salt tolerance [J]. Plant Physiol, 2004,136(1): 2843-2854.
    [20] Lin c c, Hsu Y T, Kao C H. The effect of NaCl on proline accumulation in rice leaves [J]. Plant Growth Regul, 2202,36: 275-285.
    [21] Khatkar D, Kuhad M. Short-term salinity induced changes in two wheat cultivars at different growth stages [J]. Biol Plant, 2000,43: 629-632.
    [22] Singh N K, Handa A K, Hasegawa P M et al. In vitro growth and leaf composition of gragevine cultivars as affected by sodium chloride [J]. Biol Plant, 2000, 43:283-286.
    [23] Kishor P B K, Hong Z, Miao G H, et al.Overexpression ofΔ1-pyrroline-5-caroxylase synthase increase proline production and confers osmotolerance in transgenic plants [J]. Plant Physiol, 1995, 108:1387-1394.
    [24] Smirnoff N, Cubes Q J. Hydroxyl radical scavenging activity of compatible solutes [J]. Nes Phytol, 1989,72: 769-782.
    [25] Guo Z F, Loescher W H. Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mammitol and a glucosyl-mannitol dimmer [J]. Plant Cell Environ, 2003, 26: 275-283.
    [26] Rausch T, Kirsch M, Low R, et al. Salt stresses responses of higher plant: the role of proton pumps and Na+/H+ antiporters [J]. J Plant Physiol, 1996, 148:425-433.
    [27] Flowers T J, Troke P F, Yeo A R. The mechanism of salt tolerance in halophytes [J]. Annu Rev Plant Physiol, 1977, 28: 89-121.
    [28] Ratner A, Jacoby B. Effect of K+ :its counter anion and PH on sodium efflux from barley roots [J]. J Exp Physiol, 1976, 148: 425-433.
    [29] Gaxida R A, Rao R, Sherman A, et al. The Arapidopsis thaliana proton transporter, AtNhx1 and Avp1, can function in cation detoxification in yeast [J]. Proc Natl Acad Sci USA, 1999, 96:1480-1485.
    [30] Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of a Na+/H+ exchanger gene in Oryza sativa [J]. Bioch Biophy Acta, 1999, 1446:149-155.
    [31] Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis [J]. Science, 1999, 285:1256-1258.
    [32] Dure LIII. Developmental biochemistry of cotton seed embryogenesis and germination: changing mRNA populations as shown in vitro and in vivo protein synthesis [J].Biochemistry, 1981, 20:4162-4168.
    [33] Xu D, Duan X L, Wang B Y, et al. Expression of late embryogenesis abundant protein, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice [J]. Plant Physiol, 1996, 110(1): 249-257.
    [34] Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nat Biotechnol, 1999, 17: 287– 291
    [35] Fridovich I. Biological effects of the superoxide radical [J]. Arch Biochem Biophys,1986, 247:1-11.
    [36] Imlay J A, Linn S. DNA damage and oxygen radical toxicity [J]. Science,1988,240: 1302-1309.
    [37] McKersie B D, Chen Y, Beus M D, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa ( Medicago sativa L.) [J]. Plant Physiol, 1993, 103: 1155-1163.
    [38] Skriver, Muddy. Gene expression in response to abscisic acid and osomotic stress [J]. Plant Cell, 1990,2:503-512.
    [39] Bray E A. Plant response to water deficit [J]. Trends Plant SCI, 1997,2: 48-54.
    [40]刘强,张贵友,陈受益.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    [41] Shinozaki K, Dennis E S. Cell signalling and gene regulation global analyses of signal transduction and gene expression profiles [J]. Current Opinion in Plant Biology, 2003,6:405-409.
    [42]龚继明.植物DREB转录因子研究[D]. 2000.
    [43] Boulikas T Putative nuclear localization signal in protein transcription factor [J]. J Cell Biochem, 1994,55:32-58.
    [44] Shinozaki K, Yamaguchi-Shinozaki. Gene expression and signal transduction in water stress response [J]. Plant Physiol, 1999,119:1157-1164.
    [45] Martin C, Paz-Ares J. MYB transcription factors in plants [J]. Trends Genet 1997, 13: 67-73.
    [46] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 and AtMYB2 function as transcritpional activators in abscisic acid signaling [J]. Plant Cell, 2003, 15: 63-78
    [47] Abe H, Urao T, Iwasaki T, et al. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid regulated gene expression [J]. Plant Cell, 1997, 9: 1859-1868.
    [48] Goodrich J, Carpenter R, Coen E S. A common gene regulates pigmentation pattern in diverse plant species [J]. Cell, 1992, 68:955-964.
    [49] Shinozaki K, Yamaguchi-shinozaki K. Molecular response to drought and cold stress [J]. Plant Biotechnology, 1996, 7: 161-167.
    [50] Choi H I, Hong J H, Ha J O, et al. ABFs, a family of ABA-responsive element binding factors [J]. J Biol Chem, 2000, 275: 1781-1787.
    [51] Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 of Arabidopsis DREB transcriptional factors involved in dehydration and cold inducible gene [J]. Biochem Biophys Res Commun, 2002, 290: 998-1009.
    [52] Okamuro J K, Caster B, Villarroel R. The AP2 domain of APETALA2 define a large new family of DNA binding protein in Arabidopsis [J]. Proc Natl Acad Sci USA, 1997,94 (13): 7076-7081.
    [53] Agarwal P K, Agarwal P, Reddy M K, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep, 2006, 25: 1263-1274.
    [54] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- andlow-temperature-responsive gene expression, respectively, in Arabidopsis [J]. Plant Cell, 1998, 10: 1391-1406.
    [55] Cao Z F, Li J, Chen F, et al. Effect of two conserved amino-acid residues on DREB1A function [J]. Biochemistry,2007, 66:623-627.
    [56] Yamaguchi-shinozaki K, Shinozaki K, Urao S, et al. Molecular cloning and characterization of nine cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence anaysis of one cDNA clone that encodes a putative transmembrane channel protein [J]. Plant Cell Physiol, 1992, 33: 217-224.
    [57] Baker S S, Wilhelm K S, Thomashow M F. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression [J].Plant Mol Biol,1994, 24: 701-713.
    [58] Jaglo K R, Kleff S, Amundsen K L, et al. Components of the Arabidopsis C-repeat /dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species [J]. Plant Physiol, 2001,127: 910-917.
    [59] Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit [J]. Proc Natl Acad Sci USA, 1997, 94: 1035-1040.
    [60] Gilmour S J, Zarka D G, Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression [J].Plant J, 1998, 16: 433-442.
    [61] Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration [J]. Plant Physiol, 1999, 119:463-469.
    [62] Haake V, Cook D, Riechmann J L, et al. Transcriptional factor CBF4 is a regulator of drought adaptation in Arabidopsis [J]. Plant Physiol, 2002, 130:639-648.
    [63] Choi D W, Rodriguez E M, Close T J Barley Cbf3 gene identification, expression pattern, and map location [J]. Plant Physiol,2002, 129: 1781-1787.
    [64] Park J M, Park C J, Lee S B, et al. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco [J]. Plant Cell, 2001, 13:1035-1046.
    [65] Dubouzet J G, Sakuma Y, Ito Y, et al.(2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expressionb [J]. Plant J, 2003, 33:751-763.
    [66] Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factorinvolved in cold-responsive gene expression in Zea mays L [J]. Plant Cell Physiol,2004,45: 1042-1052.
    [67] Li X P, Tian A G, Luo G Z, et al. Soybean DRE-binding transcription factors that are responsive to abiotic stress [J]. Thero Appl Genet, 2005, 110:1355-1362.
    [68] Chen M, Xu Z S, Xia L Q, et al. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.) [J]. J Exp Bot,2009, 60: 121-135.
    [69] Chen M, Wang Q Y, Cheng X G, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants[J]. Biochem Biophys Res Commun,2007, 353: 299-305
    [70] Shen Y G, Zhang W K,Yan D Q, et al. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis [J]. Theor Appl Genet, 2003,107: 155-161.
    [71] Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulatory of cold-induced transcritome and freezing tolerance in Arabidopsis [J]. Genes Dev, 2003,17:1043-1054.
    [72] Novillo F, Alonso J M, Ecker J R,et al.CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis [J]. Proc Natl Acad Sci USA, 2004, 101 (11):3985-3990.
    [73] Hsieh T H, Lee J T, Charng Y Y, et al. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress [J]. Plant Physiol, 2002, 130: 618-626.
    [74] Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice [J]. Plant Cell Physiol, 2006, 47: 141-153.
    [75] Pellegrineschi A, Reynolds M, Pacheco M, et al. Stressed-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions[J]. Genome, 2004, 47: 493-500.
    [76] Oh S J, Song S I, Kim Y S, et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth [J]. Plant Physiol,2005, 138: 341-351.
    [77] McKersie BD, Chen Y, de Beus M, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.) [J]. Plant Physiol, 1993,103: 1155-1163.
    [78]韩利芳,张玉发.烟草MnSOD基因在保定苜蓿中的转化[J].生物技术通报,2004,(1):39-46.
    [79] McCaslin M. The commercial potential for genetic engineering in alfalfa[J]. The 38th Report of the North American Alfalfa Improvement Conference, Sacramento, CA, 2002: 27-31.
    [80] Thomas J C, Wasmann C C, Echt C, et al. Introduction and expression of an insect proteinase inhibitor in alfalfa(Medicago sativa L.) [J]. Plant Cell Reports, 1994,14:31-36.
    [81]卢广,张青文,田颖川.转抗蚜GNA基因苜蓿的研究[J].植物保护,2004,30,(6):15-19.
    [82] Wandelt C L, Khan M R, Craig S, et al. Vicilin with Carbory-terminal KDE is retained in the endoplasmic Reticulum and accumulates to high levels in the leaves of transgenic plants [J]. Plant J, 1992,(2):181-192.
    [83] Suman B, Angela A, Nina K, et al. Genetic engineering ruminal stable high methionien protein in thefoliage of alfalfa [J]. Plant Sci, 2004, (166): 273-283.
    [84] Tal A, Hanna B, Shmuel G, et al. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine-synthase gene[J].Plant Biotechnology Journal, 2005,3:71-79.
    [85]吕德扬,范云六,余梅敏,等.苜蓿高含硫氨酸蛋白转基因植株再生[J].遗传学报,2000,27(4):331-337.
    [86] Oberschall A, Deak M, Torok K, et al. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses [J]. Plant J,2000, 24: 437-446.
    [87] Lutts S, Kiner J M, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance [J]. Ann. Bot,1996 78: 389-398.
    [88] Bates L E, Waldren R P, Teare I D. Rapid determination of free proline for water stress studies [J]. Plant Soil, 1973, 39: 205-207.
    [89] Dubois M, Gilles K A, Hamilton J K. Colorimetric method for determination of sugars and related substances [J]. Anal Chem,1956, 28: 350-35
    [90]李进军,吴跃明,朱诚等.苜蓿遗传转化的研究进展[J].牧草科学,2005,112(3):20-23.
    [91] Deak M, Kiss G, Koncz C, et al. Transformation of Medicago by Agrobacterium-mediated gene transfer [J]. Plant Cell Rep, 1986, 5: 97-100.
    [92] Chabaud M, Passiatore J E, Cannon F, et al. Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation [J]. Plant Cell Rep, 1988, 7:512-516.
    [93] Austin S E T, Bingham E, Mathews M N, et al. Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase [J].Euphytica, 1995, 85:381-393.
    [94] Barone M, Bernard-Vailhe M A, Chabbert B, et al. Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa and the effect on lignin composition and digestibility[J]. Plant Cell Rep, 1999,27:893-901.
    [95] Desgagnes R, Laberge S, Allard G, et al. Genetic transformation of commercial breeding lines of alfalfa [J]. Plant Cell Tissue Organ Cult, 1995, 42:129-140.
    [96]吕德扬,曹学远,唐顺学,等.紫花苜蓿外源基因共转化植株的再生[J].中国科学(C辑),2000,30(4):342-348.
    [97] Kasuga M, Miura S, Shinozaki K, et al. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer [J]. Plant Cell Physiol, 2004, 45:346-350.
    [98] Seki M, Narusaka M, Abe H, et al. Monitoring the expression of pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray [J]. Plant Cell, 2001, 13: 61-72.
    [99] Maruyama K, Sakuma Y, Kasuga M, et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray system [J]. Plant J,2004, 38: 982-993.
    [100]Yoshiba Y, Kiyosue T, Nakashima K, et al. Regulation of levels of proline as an osmolyte in Plants under water stress [J]. Plant Cell Physiol, 1997,38: 1095-1102.
    [101]Gilmour S J, Sebolt A M, Salazar M P, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation [J]. Plant Physiol ,2000, 124: 1854-1865.
    [102]Kerepesi I, Galiba G. Osmotic and salt stress induced alteration in soluble carbohydrate content in wheat seedlings [J]. Crop Sci, 2000, 40: 482-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700