绒毛白蜡表达谱分析及MYB基因的克隆和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林业在国民经济发展、维护生态平衡、提供高产优质林木方面具有重要作用,而高盐等非生物胁迫因素则严重制约着林木的生长发育及产量。植物耐盐性状通常受多个基因的调控,其应答基因涉及植物生理代谢、离子运输以及物质合成等各个方面。阐明植物的耐盐调控分子机制,对于通过基因工程手段来增强树种耐盐性具有重要的理论指导意义。绒毛白蜡是我国重要的林木种质资源之一,以较强的耐盐、耐旱等特性著称,是优良的盐碱地造林绿化和城市园林绿化树种。目前对于盐胁迫下模式植物的转录组变化等分子生物信息研究相对深入,而对木本植物这方面的研究相对较少。
     本研究以耐盐树种绒毛白蜡为材料,通过高通量测序对不同时间段盐胁迫下的绒毛白蜡幼苗进行表达谱分析,从中获得了大量与盐诱导相关的基因,通过qRT-PCR验证了8个基因在盐胁迫下的表达模式;并在此基础上,克隆了2个MYB转录因子基因及其启动子序列进行功能研究。结果将为深入了解绒毛白蜡耐盐分子机制以及绒毛白蜡树种遗传改良奠定理论基础。主要研究内容及结果如下:
     1.绒毛白蜡盐胁迫下的表达谱分析
     (1)以高盐胁迫下的绒毛白蜡幼苗为材料,采用数字基因表达谱技术对本实验中的6份样品进行序列测定,总共进行了55,525,943次读数。经测序分析,在三组比较中分别得到差异表达的基因数为72、1345、1379个。其中有4个差异表达基因为3个差异文库所共有,每个差异文库特异性表达的基因数目分别为50、317和353个。
     (2)GO显著性富集分析结果发现:NaCl胁迫0.5h后显著上调的GO terms主要集中于氧化胁迫响应、逆境胁迫响应、硝酸盐反应、端粒酶活性调节以及端粒酶正向调控方面。NaCl胁迫24h后,显著上调的GO terms数量明显增多,除包括上述功能外,还包括脱水干旱响应、应激反应、非生物胁迫刺激响应、ABA信号通路的调控等。Pathway显著性富集分析共筛选出20条可能与盐胁迫有关的代谢途径,如植物激素信号转导途径、淀粉和蔗糖代谢途径、植物病原体互作途径、苯丙素生物合成途径、细胞凋亡途径、类胡萝卜素生物合成途径以及戊糖和葡萄糖醛酸酯转换途径等。
     (3)通过分析和比较NaCl胁迫不同时间点绒毛白蜡的基因表达谱,筛选得到许多盐胁迫响应基因。这些基因的功能主要涉及渗透调节与离子平衡、激素信号转导、活性氧清除、转录调控等方面。推测这些基因很可能参与了绒毛白蜡的耐盐胁迫过程。
     (4)为验证测序结果的准确性,选择了8个差异表达基因,利用实时定量qRT-PCR方法验证了上述基因在NaCl胁迫下的基因表达模式,发现在NaCl胁迫0.5h和24h后这些基因表达趋势与表达谱测序结果一致。
     2.绒毛白蜡MYB转录因子基因的克隆及表达分析
     (1)通过RACE手段结合表达谱测序结果,首次克隆到2个绒毛白蜡MYB基因的cDNA全长,命名为FvMYB1和FvMYB2。其中,FvMYB1基因cDNA全长为1203bp,编码301个氨基酸,分子量约为33.38kDa,基因组扩增表明该基因无内含子;FvMYB2基因cDNA全长为1201bp,编码311个氨基酸,分子量约为35.00kDa,基因组序列全长为1476bp,含有3个外显子和2个内含子。
     (2)基因组织表达模式分析结果表明:两者在被检测组织中均有表达,其中FvMYB1基因在茎中表达量最高,在根中表达量最低;FvMYB2基因的表达量在各组织中差异不大。对不同非生物胁迫下的基因表达模式研究表明:在NaCl、PEG和ABA处理下,FvMYB1和FvMYB2基因表达模式存在异同。其中2个基因的表达量最高值分别在各处理12h和6h时出现,但FvMYB1基因只对NaCl和PEG响应,而FvMYB2基因可响应上述三种胁迫。暗示后者可能在植物应对非生物胁迫过程中发挥着更重要的作用。
     (3)亚细胞定位结果表明,FvMYB1和FvMYB2基因编码的蛋白均主要定位于细胞核中。酵母转录激活实验表明,两者均有转录激活活性,能够激活下游报告基因的表达,其中FvMYB2半乳糖苷酶活性高于FvMYB1。
     (4)构建了HIS-FvMYB1和HIS-FvMYB2融合蛋白表达载体并在大肠杆菌BL21中诱导表达,通过SDS-PAGE以及Western杂交分别验证了2个融合蛋白的表达。从而为后续进行转基因植物中目的蛋白的Western杂交提供相应的抗体制备蛋白基础。
     (5)构建了CaMV35S启动子驱动的FvMYB1、FvMYB2基因的植物过表达载体,利用农杆菌介导法转化烟草,对Kan筛选获得的转基因植株进行PCR和Southern杂交检测。并对正常生长条件下转基因植株中胁迫相关基因的表达进行了分析,结果表明NtP5CS、NtLEA5、NtMnSOD的表达量均高于对照。进一步对转基因植株进行盐胁迫处理后的表型及生理生化分析,结果表明,转基因烟草的盐害症状轻于野生型烟草;且盐胁迫条件下,转基因植株在SOD、POD、CAT保护酶活性、脯氨酸含量方面均不同程度的高于野生型,MDA含量低于对照;而叶绿素含量仅FvMYB2转基因烟草高于对照。实验结果表明FvMYB1和FvMYB2基因具有增强植物耐盐性的功能。
     3.绒毛白蜡FvMYB1和FvMYB2启动子克隆及分析
     (1)为进一步鉴定该基因的功能,对FvMYB1和FvMYB2基因的启动子进行克隆及其表达研究。利用染色体步移法(Walking)从绒毛白蜡基因组中克隆到这两个基因起始密码子上游各自l140bp和1600bp的启动子序列。通过Plant CARE分析FvMYB1和FvMYB2启动子中含有的顺式作用元件,表明两者除具有TATA-box、CAAT-box等典型的真核生物顺式调控元件外,还含有大量的光反应相关元件:G-box、GATA-motif、I-box、Box4、GAG-motif、C-box等;胁迫响应元件:盐诱导元件GT1GMSCAM4、ABA响应元件ABRE、MBS干旱诱导元件、水杨酸反应元件TCA、热诱导元件HSE、低温响应元件LTR等。
     (2)为进一步研究各顺式元件的作用,将FvMYB1和FvMYB2启动子序列的不同5’端缺失片段替换植物表达载体pCAMBIA3301的35S启动子,构建了以GUS为报告基因的缺失表达载体,并通过农杆菌转化获得包含不同目的片段的转基因烟草。GUS组织化学染色结果表明:FvMYB1基因3个缺失片段长度的启动子(242bp、523bp和792bp)具有启动功能;FvMYB2基因中858bp和1600bp长度的启动子可使转基因烟草GUS染色呈蓝色。且其中4个启动子缺失片段在盐胁迫后GUS染色加深,表明FvMYB1和FvMYB2启动子均在一定程度上受盐胁迫诱导。
Forestry plays a decisive role in the national economic development, maintaining ecologicalbalance and providing the high yield and good quality trees. However, high salt stress and otherabiotic stress factors severely restrict the growth and yield of trees. The salt tolerance traits ofplants are usually controlled by multiple genes, and their response genes involved in many sides,such as plant physiological metabolism, ion transport and material synthesis, etc.. Clarifying themolecular mechanism of plant salt tolerance has important theoretical guarding significance toenhance the salt resistance of tree species by genetic engineering. Fraxinus velutina Torr., themain greening tree species for saline-alkali land and urban, is one of the important species in theforest, also with strong resistance to salt, drought and other good features. Now the deepresearches in transcriptome and other molecular biology data under salt stress are mainly focus onthe model plants, but the studies of woody plants are very few.
     In this study, we analyzed the gene expression profile of Fraxinus velutina Torr. under differentperiods of salt stress through high-throughput sequencing technologies and selected a largenumber of genes related to salt induced. Besides these, expression differences of eight genesunder salt stress were verified by qRT-PCR. On this basis, we cloned and analyzed the functionsof two MYB transcription factor genes and their promoters, pointed out the possible regulationapproaches of the two genes involved in plant salt resistance. The results will provide insight intothe salt-tolerant molecular mechanism and lay a theoretical foundation for genetic improvementof Fraxinus velutina Torr.. The main results of this study were as follows:
     1.Gene expression profile analysis of Fraxinus velutina Torr. under salt stress
     (1) In this study, digital gene-expression (DGE) technologies were used to investigate theglobal gene expression profiles of Fraxinus velutina Torr. seedlings under salt stress. All the amounts of the data obtained from the six groups of Fraxinus velutina Torr. were around fifty-sixmillion reads after processing. By sequencing analysis,72,1345and1379differentially expressedgenes were detected, respectively. Among them,4differentially co-expressed genes were incommon,50,317and353were special expression genes in each library.
     (2) GO analysis indicated that, after0.5h NaCl stress, the significant increased GO termsmainly included oxidation stress response, adversity stress response, nitrate response, telomeraseactivity regulation and positive regulation of telomerase activity. And the number of GO termsincreased significantly after24h NaCl stress, which included dehydration drought response,stress response, response of stress stimulation and ABA signaling regulation, etc.. In addition,20pathways maybe related to salt stress were identified by KEEG analysis, which mainly includedplant hormone signal transduction, starch and sucrose metabolism, plant-pathogen interaction,phenylpropanoid biosynthesis pathway, apoptosis pathway, carotenoid biosynthetic pathway andpentose and glucuronate interconversions pathway, etc..
     (3) By gene expression profile analysis, a large number of salt stress response genes wereobtained and the main functions of these genes involved in osmotic regulation and ion balance,hormone signal transduction, reactive oxygen removal, transcription regulation and so on. Theresult showed that these genes are likely to participate in the salt-resistance process of Fraxinusvelutina Torr..
     (4) In order to test the accuracy of the sequencing results, eight differentially expressed geneswere selected to analyze the expression patterns using qRT-PCR. The results were consistent wellwith those obtained from expression profile sequencing.
     2. Cloning and expression analysis of MYB genes from Fraxinus velutina Torr.
     (1) Two cDNAs encoding MYB genes were cloned from Fraxinus velutina Torr. by RACEand designed as FvMYB1and FvMYB2. Sequence analysis of FvMYB1showed that it was1203bp long and encoded301amino acids, with a calculated molecular mass of33.38kDa, and thegene had no introns. FvMYB2encoding311amino acids was1201bp in full length, with a calculated molecular mass of35.00kDa, and the genomic DNA contained three exons and twointrons.
     (2) The expression patterns of FvMYB1and FvMYB2in different organs of Fraxinus velutinaTorr. were analyzed by semi-quantitative RT-PCR. The results showed that both of them werewidely distributed in all the tested tissues. It was also found that the expression level ofFvMYB1was highest in stem and lowest in root while FvMYB2gene expression showed noobvious differences in all the tested tissues. Further, the gene expression patterns of MYB genesunder abiotic stresses (salt, drought and ABA) were also analyzed. Results indicated that therewere some similarities and differences between them. For example, the highest amountexpression time of FvMYB1and FvMYB2was around12h or6h. However, FvMYB2couldresponse to all the stresses above while FvMYB1could not response to ABA. The resultssuggested that FvMYB2may play a more important role than FvMYB1in the process of plantresponse to abiotic stress.
     (3) The subcellular localization of FvMYB1and FvMYB2showed that both were mainlylocalized in nucleus and the results were consisted with the studies of other transcription factors.In addition, the transcriptional activities of FvMYB1and FvMYB2were analyzed using yeastone-hybrid system. Results indicated that both of them could activate the expression ofdownstream report genes and β-Galaetosidase activity assay showed that FvMYB2has highertranscriptional activity than FvMYB1.
     (4) The prokaryotic expression vectors of HIS-FvMYB1and HIS-FvMYB2were constructedand expressed in E.coli BL21. Further SDS-PAGE and western blot were carried out to test thesuccess expression of FvMYB1and FvMYB2fusion protein, respectively. This result would lay afoundation for preparing effective antibodies used for western blot of transgenic plants.
     (5) To further investigate the functions of FvMYB1and FvMYB2genes, twoplant over-expression vectors pROKII-35S-FvMYB1and pROKII-35S-FvMYB2wereconstructed and introduced into tobacco genome respectively by Agrobacterium-mediated transformation. The transgenic tobaccos after Kan selection were obtained and examined by PCRand Southern blot. In normal conditions, some stress-related genes, such as NtP5CS, NtLEA5andNtMnSOD, expressed more in the transgenic tobaccos than the wild plants. Resistance analysisshowed that the salt injury symptoms of strains over-expressing FvMYB1or FvMYB2gene werelighter than the wild strains, and the concentration of SOD, POD, CAT and free proline of thetransgenic plants were higher than control, and the concentration of MDA was reduced aftertreated with NaCl for24h. In addition, the chlorophyll content of FvMYB2transgenic strains wasincreased in comparison with the control. These results indicated the roles of FvMYB1andFvMYB2in salt stress regulation.
     3. FvMYB1and FvMYB2promoter cloning and analysis of Fraxinus velutina Torr.
     (1) For further identified the function of FvMYB1and FvMYB2, two promoters of l140bp and1600bp were cloned from Fraxinus velutina Torr. genomic DNA based on genomic walkingprocedure. By Plant Care software analysis of the DNA sequences showed that many basic motifswere found in the FvMYB1and FvMYB2promoters, besides, there were some light-response andstress-response motifs including GT1GMSCAM4, ABRE, MBS, TCA, HSE, LTR, etc..
     (2) To investigate the characterizations of the FvMYB1and FvMYB2promoters, differentpromoter fragments were used to replace the35s promoter of pCAMBIA3301to construct plantdeletion expression vectors. The results of GUS histochemical staining of transgenic plants withdifferent deletion vectors showed that three of FvMYB1promoter sequences could drive the GUSgene expression, which were242bp,523bp and792bp in length. The transgenic plants withFvMYB2promoters of858bp and1600bp length showed blue color after GUS staining. Besides,the GUS stainings of all of the four fragments after salt induced were raised. Therefore, thepromoters of FvMYB1and FvMYB2could be induced by salt stress to some extent.
引文
[1]梁烨,陈双燕,刘公社.新一代测序技术在植物转录组研究中的应用,遗传,2011,33(12):1317-1326.
    [2]Zhong W, Mark G, Michael S, et al. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet,2009,10(1):57-63.
    [3]Popova OV, Yang O, Dietz KJ, et al. Differential transcript regulation in Arabidopsis thaliana and thehalotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation[J]. Gene,2008,423:142-148.
    [4]Diedhiou CJ, Popova OV, Golldack D, et al. Transcript profiling of the salt-tolerant Festuca rubra ssp.litoralis reveals a regulatory network controlling salt acclimatization[J]. J Plant Physiol,2009,166:697-711.
    [5]Sara Z, Alberto F, Enrico G, et al. Characterization of transcriptional complexity during berry developmentin Vitis vinifera using RNA-Seq[J]. Plant Physiol,2010,52(4):1787-1795.
    [6]Yang SS, Tu ZJ, Cheung F, et al. Using RNA-Seq for gene identification, polymorphism detection andtranscript profiling in two alfalfa genotypes with divergent cell wall composition in stems[J]. BMCGenomics,2011,12:199.
    [7]Yang X, Zhang X, Yuan D, et al. Transcript profiling reveals complex auxin signalling pathway andtranscription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesisin cotton[J]. BMC Plant Biol,2013,12:110.
    [8]LI XH, WU M, YU JW, et al. Transcriptome analysis of early developing cotton fiber by RNA-Seq[J].Cotton Science,2013,25(3):189-196.
    [9]李余良,刘建华,郑锦荣,等.高温胁迫下甜玉米雌穗发育基因差异表达谱分析作物学报[J].2013,39(2):269-279.
    [10]Chen LM, Zhou XA, Li WB. Genome-wide transcriptional analysis of two soybean genotypes underdehydration and rehydration conditions[J]. BMC Genomics,2013,14:687.
    [11]Shan J, Song W, Zhou J, et al. Transcriptome analysis reveals novel genes potentially involved inphotoperiodic tuberization in potato[J]. Genomics,2013,102(4):388-396.
    [12]Ogata K, Kanei-Ishii C, Sasaki M, et al. The cavity in the hydrophobic core of Myb DNAbinding domain isreserved for DNA recognition and trans-activation[J]. Nat. Struct. Biol,1996,3:178-187.
    [13]Jia L, Clegg MT, Jiang T, et al. Evolutionary dynamics of the DNA-binding domains in putativeR2R3-MYB genes identified from rice subspecies indica and japonica genomes[J]. Plant Physiol,2004,134:575-585.
    [14]陈俊,王宗阳.植物MYB类转录因子研究进展[J].植物生理与分子生物学学报,2002,28(2):81-88.
    [15]Christian D, Ralf S, Erich G, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science,2010,15:573-581.
    [16]Ito M. Conservation and diversification of three-repeat Myb transcription factors in plants[J]. Journal ofPlant Research,2005,118:61-69.
    [17]Haga N, Kato K, Murase M, et al. R1R2R3-Myb proteins positively regulate cytokinesis through activationof KNOLLE transcription in Arabidopsis thaliana[J]. Development,2007,134:1101-1110.
    [18]Lu SX, Knowles SM, Andronis C, et al. CIRCADIAN CLOCK ASSOCIATED1and LATE ELONGATEDHYPOCOTYL function synergistically in the circadian clock of Arabidopsis[J]. Plant Physiol,2009,150:834-843.
    [19]Hosoda K, Imamura A, Katoh E, et al. Molecular structure of the GARP family of plant Myb-related DNAbinding motifs of the Arabidopsis response regulators[J]. Plant Cell,2002,14:2015-2029.
    [20]Kerstetter RA, Bollman K, Taylor RA, et al. KANADI regulates organ polarity in Arabidopsis[J]. Nature,2001,411:706-709.
    [21]Waters MT, Wang P, Korkaric M, et al. GLK transcription factors coordinate expression of thephotosynthetic apparatus in Arabidopsis[J]. Plant Cell,2009,21:1109-1128.
    [22]Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphatestarvation signaling both in vascular plants and in unicellular algae[J]. Genes&development,2001,15:2122-2133.
    [23]Jiang C, Gu X, Peterson T, et al. Identification of conserved gene structures and carboxy-terminal motifs inthe Myb gene family of Arabidopsis and Oryza sativa L. ssp. indica[J]. Gen Bio,2004,5: R46.
    [24]Cao ZH, Zhang SZ, Wang RK, et al. Genome wide analysis of the apple MYB transcription factor familyallows the identification of MdoMYB121gene confering abiotic stress tolerance in plants[J]. PLoS One,2013,8(7): e69955.
    [25]Martin C and Paz-Ares J. MYB transcription factors in plants[J]. Trends Genet,1997,13:67-73.
    [26]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr. Opin.Plant Biol,2001,4:447-456.
    [27]Chen YH, Yang XY, He K, et al. The MYB transcription factor superfamily of Arabidopsis: expressionanalysis and phylogenetic comparison with the rice MYB family[J]. Plant Mol Bio,2006,60:107-124.
    [28]Wilkins O, Nahai H, Foong J, et al. Expansion and diversification of the Populus R2R3-MYB family oftranscription factors[J]. Plant physiol,2009,149:981-993.
    [29]Matus JT, Aquea F, Patricio AJ, et al. Analysis of the grape MYB R2R3subfamily reveals expanded winequality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes[J].BMC Plant Biol,2008,8:83.
    [30]Rosinski JA and Atchley WR. Molecular evolution of the Myb family of transcription factors: evidence forpolyphyletic origin[J]. Journal of Molecular Evolution,1998,46:74-83.
    [31]Jiang C, Gu J, Chopra S, et al. Ordered origin of the typical two-and three repeat Myb genes[J]. Gene,2004,326:13-22.
    [32]Rabinowicz PD, Braun EL, Wolfe AD, et al. Maize R2R3Myb genes: Sequence analysis revealsamplification in the higher plants[J]. Genetics,1999,153:427-444.
    [33]Cedroni ML, Cronn RC, Adams KL, et al. Evolution and expression of MYB genes in diploid andpolyploidy cotton[J]. Plant Molecular Biology,2003,51:313-325.
    [34]Paz-Ares J, Ghosal D, Wienand U, et al. The regulatory c1locus of Zea mays encodes a protein withhomology to myb proto-oncogene products and with structural similarities to transcriptional activators[J].The EMBO Journal,1987,6:3553-3558.
    [35]Du H, Zhang L, Liu L, et al. Biochemical and molecular characterization of plant MYB transcription factorfamily[J]. Biochemistry (Mosc),2009,74:1-11.
    [36]Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcriptionfactors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J,2007,50:660-677.
    [37]Nakatsuka T, Saito M, Yamada E, et al. Isolation and characterization of GtMYBP3and GtMYBP4,orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentianflowers[J]. J Exp Bot,2012,63(18):6505-6517.
    [38]刘蕾,杜海,唐晓凤,等. MYB转录因子在植物抗逆胁迫中的作用及其分子机理[J].遗传,2008,30(10):1265-1271.
    [39]Cone KC, Cocciolone SM, Moehlenkamp CA, et al. Role of the regulatory gene pl in the photocontrol ofmaize anthocyanin pigmentation[J]. Plant Cell,1993,5(12):1807-1816.
    [40]Franken P, Schrell S, Peterson PA, et al. Molecular analysis of protein domain function encoded by themyb-homologous maize genes C1, Zml and Zm38[J]. Plant J,1994,6:21-30.
    [41]Solano R, Nieto C, Avila J, et al. Dual DNA binding specificity of a petal epidermis-specific MYBtranscription factor (MYB-Ph3) from Petunia hybrida[J]. EMBO J,1995,14:1773-1784.
    [42]Moyano E, Martinez-Garcia JF, Martin C. Apparent redundancy in myb gene function provides gearing forthe control of flavonoid biosynthesis in antirrhinum flowers[J]. Plant Cell,1996,8(9):1519-1532.
    [43]Gonzalez A, Zhao M, Leavitt J, et al. Regulation of the anthocyanin biosynthetic pathway by theTTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. Plant J,2008,53:814-827.
    [44]Lepiniec L, Debeaujon I, Routaboul JM, et al. Genetics and biochemistry of seed flavonoids[J]. Annu Rev,Plant Biol,2006,57:405-430.
    [45]Lena GF, Alan GS, Mirco M, et al. An R2R3MYB transcription factor determines red petal colour in anActinidia (kiwifruit) hybrid population[J]. BMC Genomics,2013,14:28.
    [46]David C, Kui LW, Richard VE, et al. An Ancient Duplication of Apple MYB Transcription Factors IsResponsible for Novel Red Fruit-Flesh Phenotypes[J]. Plant Physiol,2013,161:225-239.
    [47]Gonzalez A, Mendenhall J, Huo Y, et al. TTG1complex MYBs, MYB5and TT2, control outer seed coatdifferentiation[J]. Dev Biol,2009,325:412-421.
    [48]Jin H, Cominelli E, Bailey P, et al. Transcriptional repression by AtMYB4controls production ofUV-protecting sunscreens in Arabidopsis[J]. The EMBO Journal,2000,19:6150-6161.
    [49]Baumann K, Perez RM, Bradley D, et al. Control of cell and petal morphogenesis by R2R3MYBtranscription factors[J]. Development,2007,134:1691-1701.
    [50]Zhang YF, Cao GY, Li J, et al. Characterization of Arabidopsis MYB transcription factor gene AtMYB17and its possible regulation by LEAFY and AGL15[J]. Genet Genomics,2009,36:99-107.
    [51]Kang YH, Kirik V, Hulskamp M, et al. The MYB23gene provides a positive feedback loop for cell fatespecification in the Arabidopsis root epidermis[J]. Plant Cell,2009,21:1080-1094.
    [52]Jakoby MJ, Falkenhan D, Mader, et al. Transcriptional profiling of mature Arabidopsis trichomes revealsthat NOECK encodes the MIXTAlike transcriptional regulator MYB106[J]. Plant Physiol,2008,148:1583-1602.
    [53]Lee MM and Schiefelbein J. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependentregulator of epidermal cell patterning[J]. Cell,1999,99:473-483.
    [54]Tominaga-Wada R, Nukumizu Y, Sato S, et al. Control of plant trichome and root-hair development by atomato (Solanum lycopersicum) R3MYB transcription factor[J]. PLoS One,2013,8(1): e54019.
    [55]Xie Z, Lee E, Lucas JR, et al. Regulation of cell proliferation in the stomatal lineage by the ArabidopsisMYB FOUR LIPS via direct targeting of core cell cycle genes[J]. Plant Cell,2010,22(7):2306-2321.
    [56]Makkena S, Lee E, Sack FD, et al. The R2R3MYB transcription factors FOUR LIPS and MYB88regulatefemale reproductive development[J]. J Exp Bot,2012,63(15):5545-5558.
    [57]Wang S, Wang JW, Yu N, et al. Control of plant trichome development by a cotton fiber MYB gene[J].Plant Cell,2004,16(9):2323-2334.
    [58]Walford SA, Wu Y, Llewellyn DJ, et al. GhMYB25-like: a key factor in early cotton fibre development[J].Plant J,2011,65(5):785-797.
    [59]Zhou J, Lee C, Zhong R, et al. MYB58and MYB63are transcriptional activators of the lignin biosyntheticpathway during secondary cell wall formation in Arabidopsis[J]. Plant Cell,2009,21:248-266.
    [60]Zhong R, Richardson EA, Ye ZH, et al. The MYB46transcription factor is a direct target of SND1andregulates secondary wall biosynthesis in Arabidopsis[J]. Plant Cell,2007,19:2776-2792.
    [61]Monica G, Eric L, Sylvain L, et al. EgMYB2, a new transcriptional activator from Eucalyptus xylem,regulates secondary cell wall formation and lignin biosynthesis[J]. The Plant Journal,2005,43(4):553-567.
    [62]McCarthy, Ryan LZ, Ruiqin F, et al. The Poplar MYB Transcription Factors, PtrMYB3and PtrMYB20, areInvolved in the Regulation of Secondary Wall Biosynthesis[J]. Plant and cell physiology,2010,51(6):1084-1090.
    [63]Yang C, Xu Z, Song J, et al. Arabidopsis MYB26/MALE STERILE35regulates secondary thickening inthe endothecium and is essential for anther dehiscence[J]. Plant Cell,2007,19:534-548.
    [64]Zhong R, Lee C, Zhou J. et al. A battery of transcription factors involved in the regulation of secondary cellwall biosynthesis in Arabidopsis[J]. Plant Cell,2008,20:2763-2782.
    [65]Liang YK, Dubos C, Dodd IC, et al. AtMYB61, an R2R3-MYB transcription factor controlling stomatalaperture in Arabidopsis thaliana[J]. Current Biology,2005,15:1201-1206.
    [66]Brownfield L, Hafidh S, Borg M, et al. A plant germline-specific integrator of sperm specification and cellcycle progression[J]. PLoS Genet,2009,5: e1000430.
    [67]Millar AA and Gubler F. The Arabidopsis GAMYB-like genes, MYB33and MYB65, are microRNA-regulated genes that redundantly facilitate anther development[J]. Plant Cell,2005,17:705-721.
    [68]Müller D, Schmitz G, Theres K, et al. Blind homologous R2R3Myb genes control the pattern of lateralmeristem initiation in Arabidopsis[J]. Plant Cell,2006,18:586-597.
    [69]Keller T, Abbott J, Moritz T, et al. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1controls aleaf axil stem cell niche and modulates vegetative development[J]. Plant Cell,2006,18:598-611.
    [70]李少锋,苏晓华,张冰玉.林木基因克隆研究进展[J].植物学报,2011,46(1):79-107.
    [71]Li Y, Jiang J, Du ML, et al. A cotton gene encoding MYB-like transcription factor is specifically expressedin pollen and is involved in regulation of late anther/pollen development[J]. Plant Cell Physiol,2013,54(6):893-906.
    [72]Li L, Yu X, Thompson A, et al. Arabidopsis MYB30is a direct target of BES1andcooperates with BES1to regulate brassinosteroid-induced gene expression[J]. Plant J,2009,58:275-286.
    [73]De VM, Denekamp M, Dicke M, et al. The Arabidopsis thaliana transcription factor AtMYB102functionsin defense against the insect herbivore Pierisrapae[J]. Plant Signal Behav,2006,1:305-311.
    [74]Cominelli E, Sala T, Calvi D, et al. Over-expression of the Arabidopsis AtMYB41gene alters cell expansionand leaf surface permeability[J]. Plant J,2008,53:53-64.
    [75]Cominelli E, Galbiati M, Vavasseur A, et al. A guard-cell-specific MYB transcription factor regulatesstomatal movements and plant drought tolerance[J]. Current Biology,2005,15:1196-1200.
    [76]Seo PJ, Xiang F, Qiao M, et al. The MYB96transcription factor mediates abscisic acid signaling duringdrought stress response in Arabidopsis[J]. Plant Physiol,2009,151:275-289.
    [77]Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptionalactivators in abscisic acid signaling[J]. Plant Cell,2003,15:63-78.
    [78]Agarwal M, Hao Y, Kapoor A, et al. A R2R3type MYB transcription factor is involved in the coldregulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem,2006,281:37636-37645.
    [79]Mengiste T, Chen X, Salmeron J, et al. The BOTRYTIS SUSCEPTIBLE1gene encodes an R2R3MYBtranscription factor protein that is required for biotic and abiotic stress responses in Arabidopsis[J]. PlantCell,2003,15:2551-2565.
    [80]Liao Y, Zou HF, Wang HW, et al. Soybean GmMYB76, GmMYB92, and GmMYB177genes confer stresstolerance in transgenic Arabidopsis plants[J]. Cell Research,2008,18:1047-1060.
    [81]Chen BJ, Wang Y, Hu YL, et al. Cloning and characterization of a drought-inducible MYB gene from Boeacrassifolia[J]. Plant Sci,2005,168:493-500.
    [82]Park MR, Yun KY, Mohanty B, et al. Expression of the cold-regulated OsMyb4transcription factor intransgenic rice changes the complexity of transcriptional network with major effects on stress tolerance andpanicle development [J]. Plant Cell&Environment,2010,33(12):2209-2230.
    [83]He Y, Li W, Lv J, et al. Ectopic expression of a wheat MYB transcription factor gene,TaMYB73, improvessalinity stress tolerance in Arabidopsis thaliana[J]. J Exp Bot,2012,63(3):1511-1522.
    [84]Yang O, Popova OV, Suthoff U, et al. The Arabidopsis basic leucine zipper transcription factor AtbZIP24regulates complex transcriptional networks involved in abiotic stress resistance[J]. Gene,2009,436:45-55.
    [85]Zheng Y, Ren N, Wang H, et al. Global identification of targets of the Arabidopsis MADS domain proteinAGAMOUS-Like15[J]. Plant Cell,2009,21:2563-2577.
    [86]Palaniswamy K, James S, Sun H, et al. AGRIS and AtRegNet: a platform to link cis-regulatory elementsand transcription factors into regulatory networks[J]. Plant Physiol,2006,140:818-829.
    [87]Lippold F, Sanchez DH, Musialak M, et al. AtMyb41regulates transcriptional and metabolic responses toosmotic stress in Arabidopsis[J]. Plant Physiol,2009,149:1761-1772.
    [88]Liu YG, Norihiro M, Teruko O, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insertjunctions by thermal asymmetric interlaced PCR[J]. The Plant Journal,1995,8(3):457-463.
    [89]Joshi CP. An inspection of the domain between putative TATA box and translation start site in79plantgenes[J]. Nucleic Acids Research,1987,15(16):6643-6653.
    [90]Bezhani S, Sherameti I, Pfannschmidt T, et al. A repressor with similarities to prokaryotic and eukaryoticDNA helicases controls the assembly of the CAAT box binding complex at a photosynthesis genepromoter[J]. J Biol Chem,2001,276(26):23785-23789.
    [91]Kusnetsov V, Landsberger M, Meurer J, et al. The assembly of the CAAT box binding complex at aphotosynthesis gene promoter is regulated by light, cytokinin, and the stage of the plastids[J]. J Biol Chem,1999,274(50):36009-36014.
    [92]Odell JT, Knowlton S, Willy L, et al. Properties of an isolated transcription stimulating sequence derivedfrom the cauliflower mosaic virus35S promoter[J]. Plant Mol Biot,1988,10:263-272.
    [93]Benfey PN, Ren L, Chua NH. Ttssue-specific expression from CaMV35S enhancer subdomains in earlystages of plant development[J]. EMBO J,1990,9(6):1677-1684.
    [94]Xie YQ, Liu Y, Meng M, et al. Isolation and identification of a super strong plant promoter from cotton leafcurl Multan virus[J]. Plant Molecular Biology,2003,53:1-14.
    [95]Bruce WB, Christensen AH, Klein T, et al. Photoregulation of a phytochrome gene promoter from oattransferred into rice by particle bombardment[J]. Proc Natl Acad Sci USA,1989,86:9692-9696.
    [96]Mcelroy D and Brettell R. Foreign gene expression in transgenic ereals[J]. Trends Biotechna1,1994,12:62-68.
    [97]Awinder KS, Jacquelinea P, Gareth IJ, et al. The promoter of a Brassicanapus lipid transfer protein gene isactive in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis[J]. PlantMolecular Biology,1999,41:75-87.
    [98]李为民,王志兴,裴新梧,等.中棉光诱导基因Gacab启动子的克隆及功能分析[J].农业生物技术学报,2004,12(3):253-257.
    [99]Christensen AH, Shan'ock RA, Qual PH, et al. Maize polyubiquitin gene:structure,thermal perturbation ofexpression and transcript splicing, and promoter activity following transfer to protoplasts byeleetroporation[J]. Plant Mot Biol,1992,18:675-689.
    [100]Lu JL, Sivamani E, Li XG, et al. Activity of the50regulatory regions of the rice polyubiquitin rubi3genein transgenic rice plants as analyzed by both GUS and GFP reporter genes[J]. Plant Cell Rep,2008,27:1587-1600.
    [101]Angenon G, Vanmontagu M, Depicker A, et al. Analysis of the step codon in context in plant nucleargenes[J]. FEBS Lett,1990,271(12):144-146.
    [102]Yuriko O, Keishi O, Vincent LC, et al. Characterization of the tissue-specific expression of phenylalanineammonia-lyase gene promoter from loblolly pine (Pinus taeda) in Nicotiana tabacum[J]. Plant Cell Rep,2009,28:1309-1317.
    [103]Miyata LY, Harakava R, Stipp LC, et al. GUS expression in sweet oranges (Citrus sinensis L. Osbeck)driven by three different phloem-specific promoters[J]. Plant Cell Rep,2012,31:2005-2013.
    [104]杨英军,周鹏.番木瓜proteinase omega基因启动子的克隆及功能初步研究[J].云南植物研究,2005,27(5):545-551.
    [105]Yamamoto YT, Taylor CG, Acedo GN, et al. Characterization of cis-acting sequences regulatingroot-specific gene expression in tobacco[J]. Plant Cell,1991,3:371-382.
    [106]Liu J J and Ekramoddoullah AK. Root-specific expression of a western white pine Pr10gene is mediatedby different promoter regions in transgenic tobacco[J]. Plant Mol Biol,2003,52(1):103-120.
    [107]Suzuki A, Suzuki T, Tanabe F, et a1. Cloning and expression of five myb-related genes from rice seed[J].Gene,1997,198(12):393-398.
    [108]Borisjuk NC. Production of recombinant proteins in plant root exudates[J]. Nature Biotech,1999,17:466.
    [109]杨予涛,杨国栋,刘石娟,等.一个光合组织特异表达强启动子的分离及功能分析[J].中国科学C辑,2003,33(4):298-306.
    [110]Marraccini P, Courjault C, Caillet V, et al. Rubisco small subunit of Coffee arabica: cDNA sequence, genecloning and promoter analysis in transgenic tobacco plants[J]. Plant Physiol Biochem,2003,41:17-25.
    [111]Taniguchi M, Izawa K, Ku MS, et al. Promoter for the maize C4Pyruvate, orthophosphate dikinase genedirects cell and tissue-specific transcription in transgenic maize plants[J]. Plant Cell Physiol,2000,41(1):42-48.
    [112]Str mvik MV, Sundararaman VP, Vodkin LO, et al. A novel promoter from soybean that is active in acomplex developmental pattern with and without its proximal650base pairs[J]. Plant Molecular Biology,1999,41:217-231.
    [113]Skadsen RW, Sathish P, Federico ML, et al. Cloning of the promoter for a novel barley gene, Lem1, andits organ-specific promotion of Gfp expression in lemma and palea[J]. Plant Molecular Biology,2002,49:545-555.
    [114]Annadana S, Beekwilderm, KulPersQ, et al. Cloning of the chrysanthemum UEPl promoter andcomparative expression in florets and leaves of Dendranthem grandiflora[J]. Transgenic Res,2002,11(4):437-445.
    [115]Mariani C, De Beuckeleer M, Tmettner J, et al. Induction of male sterility in plants by a chimaericribonuclease gene[J]. Nature,1990,347:737-741.
    [116]Mariani C, Gossele V, Debeuckeleer M, et al. A chimaeric ribonuclease-inhibit or gene restores fertility tomale sterile plants[J]. Nature,1992,357:384-387.
    [117]张宪银,薛庆中.水稻胚乳特异性启动子Gtl的克隆及其功能验证[J].作物学报,2002,28(1):110-114.
    [118]Sandhu JS, Krasnyanski SF, Domier LL, et al. Oral immunization of mice with transgenic tomato fruitexpressing respiratory syneytial virus-F protein induces asystemic immune response[J]. Transgenic Res,2000,9:127-135.
    [119]Yaraagata H, Yonesu IL, Hiram A, et al. TGTCACA motif is a novel cis-regulation enhancer elementinvolved in fruit-specifie expression of the cucnmisin gene[J]. J Biol Chem,2002,277(13):11582-11590.
    [120]Agius F, Amaya I, Botella MA, et al. Functional analysis of homologous and hetorologous promoters instrawberry fruits using transient expression[J]. J Exp Bot,2005,6(409):37-46.
    [121]财音青格乐,李明春,蔡易,等.大豆种子特异性启动子的分离及结构分析[J].中国农业科学,2005,38(3):454-461.
    [122]Yamaguchi-Shinozaki K and Shinozaki K. A novelcis-acting element in an Arabidopsis gene is involvedin responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell,1994,6:251-264.
    [123]张俊莲,王蒂,张金文,等.用绿色荧光蛋白和洋葱表皮细胞检测拟南芥rd29A基因启动子活性的方法[J].植物生理学通讯,2005,41(6):815-819.
    [124]Schaeffer HJ, Forstheoefel NR, Cushman JC, et al. Identification of enhancer and silencer regionsinvolved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultativehalophyte Mesembryanthemum crystallinum[J]. Plant Mol Biol,1995,28(2):205-218.
    [125]Park HC, Kim ML, Kang YH, et al. Pathogen-and NaCl-induced expression of the SCaM-4promoter ismediated in part by a GT-1box that interacts with a GT-1-like transcription factor[J]. Plant physiol,2004,135(4):2150-2161.
    [126]Park HC, Kim ML, Kang YH, et al. Functional analysis of the stress-inducible soybean calmodulinisoform-4(GmCaM-4) promoter in transgenic tobacco[J]. Plants Mol Cells OT,2009,30:475-480.
    [127]Yin X, Zhao Y, Luo D, et al. Isolating the promoter of a stress-induced gene encoding betaine aldehydedehydrogenase from the halophyte Atriplex centralasiatica Iljin[J]. Biochim Biophys Acta,2002,1577(3):452-456.
    [128]Zhang Y, Yin H, Li D, et al. Functional analysis of BADH gene promoter from Suaeda liaotun-gensis K[J].Plant Cell Rep,2008,27(3):585-592.
    [129]李婵娟,杨世湖,武亮,等. pib基因启动子及其诱导启动性初探[J].遗传,2006,28(6):689-694.
    [130]Li QL, Yin H, Li D, et al. Isolation and Characterization of CMO Gene Promoter from Halophyte Suaedaliaotungensis K[J]. Journal of Genetics and Genomics,2007,34(4):355-361.
    [131]Nazmul HB, Akira H, Nana Y, et al. Regulation of betaine synthesis by precursor supply and cholinemonooxygenase expression in Amaranthus tricolor[J]. J Exp Bot,2007,58(15-16):4203-4212.
    [132]Linga RG and Arjula RR. Rice DREB1B promoter shows distinct stress-specific responses, and theoverexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance[J]. Plant Mol Biol,2008,68:533-555.
    [133]Pasqualina W, Giovanni P, Loredana F, et al. Ttd1a promoter is involved in DNA-protein binding by saltand light stresses[J]. Mol Biol Rep,2011,38:3787-3794.
    [134]Li T, Kwon SY, Kim SH, et al. Enhanced tolerance of transgenic potato plants expressing both superoxidedis-mutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature[J]. PlantCell Rep,2006,25(12):1380-1386.
    [135]Ganesan G, Sankararamasubramanian HM, Harikrishnan M, et al. A MYB transcription factor from thegrey mangrove is induced by stress and confers NaCl tolerance in tobacco[J]. J Exp Bot,2012,63(12):4549-4561.
    [136]Maria AC, Concepciln A, Terry L, et al. Differential regulation of small heat-shock genes in plants:analysis of a water stress inducible and developmentally activated sunflower promoter[J]. Plant Mol Biol,1996,31:863-876.
    [137]Ralf P and Fritz S. Heat shock elements are involved in heat shock promoter activation during tobaccoseed maturation[J]. Plant Mol Biol,1996,31:157-162.
    [138]Rojas Anabel, Almoguera Concepción, ordano Juan J, et al. Transcriptional activation of a heat shockgene promoter in sunflower embryos: synergism between ABI3and heat shock factors[J]. The Plant Journal,1999,20(5):601-610.
    [139]Catherine Navarre, Adrienne Sallets, Emilie Gauthy, et al. Isolation of heat shock-induced Nicotianatabacum transcription promoters and their potential as a tool for plant research and biotechnology[J].Transgenic Res,2011,20:799-810.
    [140]Kim H J, Kim YK, Park JY, et al. Light signalling mediated by phytoehrome plays an important role incold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) inArabidopsis thaliana[J]. The Plant Journal,2002,29(6):693-704.
    [141]Dunn MA, Whitel AJ, Vural S, et a1. Identification of promoter elements in a low-temperature responsivegene (blt4.9) from barley(Hordeum vulgare L.)[J]. Plant Molecular Biology,1998,38:551-564.
    [142]Brown APC, Dunn MA, Godddard NJ, et al. Identification of a novel low-temperature response element inthe promoter of the barley(Hordeum vulgare L.)gene bhl01.1[J]. Planta,2001,213:770-780.
    [143]Zarka DG, Vogel JT, Cook D, et al. Cold induction of Arabidopsis CBF genes involves multipleICE(inducer of CBF expression)promoter elements and a cold-regulatory circuit that is desensitized by lowtemperature[J]. Plant Physiol,2003,133:910-918.
    [144]Dolferus R, Jacobs M, Peacock WJ, et al. Differential interactions of promoter stress responses of theArabidopsis elements in Adh gene[J]. Plant Physiol,1994,105:1075-1087.
    [145]Nordin K, Heino P, Palva ET. Separate signal pathways regulate the expression of a low-temperatureinduced gene in Arabidopsis thaliana(L.)[J]. Heynh Plant Mol Biol,1991,16:1061-1072.
    [146]杜娟,朱祯,李晚忱,等.植物逆境诱导启动子mwcs120的克隆及表达特性研究[J].作物学报,2005,31(10):1328-1332.
    [147]Takumi S, Koike A, Nakata M, et al. Cold specific and light-stimulated expression of a wheat (Triticumaestivum L.)Cor gene Wcorl5encoding a chloroplast targeted protein[J]. J Exp Bot,2003,54:2265-2274.
    [148]Kasuga M, Miura S, Shinozaki K, et al. A combination of the Arabidopsis DREB1A gene andstress-inducible RD29A promoter improved drought and low-temperature stress tolerance in tobacco bygene transfer[J]. Plant Cell Physiol,2004,45(3):346-350.
    [149]Xu D, Mcelroy D, Thomburg RWW, et al. Systemic induction of a potato pin2promoter by wounding,methyl jasmonate, and abscisic acid in transgenic rice plants[J]. Plant Mol Biol,1993,22(4):573-588.
    [150]Leung J and Girauda TJ. Abscisic acid signal transduction[J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:199-222.
    [151]Taylor JE, Renwick KF, Webb AA, et al. ABA-regulated promoter activity in stomatalguard cells[J]. PlantJ,1995,7(1):129-134.
    [152]Narusaka Y, Nakashima K, Shinwari ZK, et al. Interaction between two cis-acting elements, ABRE andDRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration andhigh-salinity stresses[J]. Plant J,2003,34:137-148.
    [153]Rai M, He CK, Wu R., et al. Comparative functional analysis of three abiotic stress-inducible promoters intransgenic rice[J]. Transgenic Res,2009,18(5):787-799.
    [154]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt and freezing tolerance by gene transfer of asingle stress-inducible transcription factor[J]. Nat Biotechnol,1999,17:287-291.
    [155]朱丽萍,于壮,邹翠霞,等.植物逆境相关启动子及功能[J].遗传,2010,32(3):229-234.
    [156]Muzna Z, Asma M, Muhammad I, et al. Functional analysis of cotton small heat shock protein promoterregion in response to abiotic stresses in tobacco using Agrobacterium-mediated transient assay[J]. Mol BiolRep,2009,36:1915-1921.
    [157]Xiao FH and Xue GP. Analysis of the promoter activity of late embryogenesis abundant protein genes inbarley seedlings under conditions of water deficit[J]. Plant Cell Rep,2001,20(7):667-673.
    [158]Lamppa G, Nagy F, Chua NH, et al. Ligh-tragulated and organ-specific expression of a wheat Cab gene intransgenic tobacco[J]. Nature,1985,316:750-752.
    [159]Tada Y, Sakamoto M, Matsuoka M, et al. Expression of a monocot LHCP promoter in transgenic rice[J].Embo J,1991,10(7):1803-1808.
    [160]王念捷,程奇,任延国,等.水稻4CL基因启动子引导的GUS在紫外诱导下的组织特异性表达[J].中国农业科学,1996,29(1):73-77.
    [161]Inaba T, Nagano Y, Reid J B, et al. DEl: a12bp cis-regulatory element sufficient to confer dark-inducibleand light down-regulated expression to a minimal promoter in pea[J]. J Biol Chem,2000,275:19723-19727.
    [162]Welsch R, Medina J, Giuliano G, et al. Structural and functional characterization of the phytoene synthasepromoter from Arabidopsis thaliana[J]. Planta,2003,216:523-534.
    [163]Li J, Liang D, Li M, et al. Light and abiotic stresses regulate the expression of GDP-L-galactosephosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive andstress-inducible cis-elements in their promoters[J]. Planta,2013,238(3):535-547.
    [164]Yoon IS, Park DH, Mori H, et al. Characterization of an auxin-inducible1-aminocyclopropane-1-carboxylate synthase gene, VR-ACS6, of mungbean (Vigna radiata (L.) Wilczek) and hormonal interactionson the promoter activity in transgenic tobacco[J]. Plant Cell Physiol,1999,40(4):431-438.
    [165]Liu ZB, Zm U, Xianggang S, et al. Soybean GH3promoter contains multiple auxin-inducible elements[J].Plant Cell,1994,6(5):645-657.
    [166]Wang XH, Replogle A, Davis EL, et al. The tobacco Cel7gene promoter is auxin-responsive and locallyinduced in nematode feeding site of heterologous plan [J]. Molecular Plant Pathology,2007,8(4):423-436.
    [167]Song FM and Goodman RM. Cloning and identification of the promoter of the tobacco Sar8.2b gene,agene involved in systemic acquired resistance[J]. Gene,2002,290:115-124.
    [168]Li A, Chen LL, Ren HY, et al. Analysis of the essential DNA region for OsEBP-89promoter in responsetomethyl jasmonic acid[J]. Science in China Series C: Life Sciences,2008,51(3):280-285.
    [169]Coutos TP, Poinssot B, Bonomelli A, et al. In vitro tolerance to Botrytis cinerea of grapevine41Brootstock in transgenic plants expressing the stiibene synthase Vstl gene under the control of a pathogeninducible PR10promoter[J]. J Exp Bot,2001,52:901-910.
    [170]Peng JL, Bao ZL, Li P, et al. HanpinXoo and its functional domains activate pathogen-inducible plantpromoters in Arabidopsis[J]. Acta Botanica Sinica,2004,46(9):1083-1090.
    [171]Sa Q, Wang Y, Li W, et al. The promoter of an antifungal protein gene from Gastrodia elata conferstissue-specific and fun GUS-inducible expression patterns and responds to both salicylic acid and jasmonicacid[J]. Plant Cell Rep,2003,22(1):79-84.
    [172]李云锋,朱蕊,谢龙旭,等.大麦β-1,3-葡聚糖酶基因(GIII)启动子在转基因水稻中的诱导表达[J].植物生理与分子生物学学报,2005,31(2):143-148.
    [173]Hirschi KD. Vacuolar H+/Ca2+transport: who’s directing the traffic?[J]. Trends Plant Sci,2001,6:100-104.
    [174]韩宁,邵群,王宝山,等.盐地碱蓬液泡膜Ca2+/H+逆转运蛋白SsCAX1N末端原核表达和多克隆抗体的制备[J].植物生理学通讯,2006,42(4):717-720.
    [175]Luo GZ, Wang HW, Huang J, et al. A Putative Plasma Membrane Cation/proton Antiporter from SoybeanConfers Salt Tolerance in Arabidopsis[J]. Plant Molecular Biology,2005,59(5):809-820.
    [176]Chowdhury MAM, Moseki B, Bowling DJF, et al. A method for screening rice plants for salt tolerance[J].Plant and Soil,1995,171:317-322.
    [177]赵可夫.植物耐盐生理.北京:中国科学技术出版社,1993:73-79.
    [178]Zhao FG and Qin P. Protective effect of exogenous polyamines on root tonoplast functions against saltstress in barley seedlings[J]. Plant Growth Regular,2004,42:97-103.
    [179]沈义国,阎冬青.榆钱菠菜脯氨酸转运蛋白基因的克隆及转基因拟南芥的耐盐性[J].植物学报,2002,44(8):956-962.
    [180]Bratton DL. Polyamine inhibition of transbilayer movement of plasma membrane phospholipids in theerythrocyte ghost[J]. J Biol Chem,1994,269:22517-22523.
    [181]Krishnamurthy R and Bhagwat KA. Polyamines as modulators of salt tolerance in rice cultivars[J]. PlantPhysiol,1989,91:500-504.
    [182]张以顺,黄上志,傅家瑞.种子中的棉子糖半乳糖苷系列寡糖研究进展[J].植物学通报,2001,18(1):16-22.
    [183]Tyerman SD, Niemietz CM, Bramley H, et al. Plant aquaporins multifunctional water and solute channelswith expanding roles[J]. Plant Cell Environ,2002,25:173-194.
    [184]Fotiadis D. Structural characterization of two aquaporins isolated from native apinach leaf plasmamembrances[J]. J Boil Chem,2001,276(3):1707-1714.
    [185]Kaldenhoff R, Kolling A, Meyers J, et al. The blue light-responsive AthH2gene of Arabidopsis thaliana isprimarily expressed in expanding as well as in differentiating cells and encodes a putative channel proteinof the plasmalemma[J]. Plant J,1995,7:87-95.
    [186]López-Pérez L, Martínez-Ballesta MC, Maurel C, et a1. Changes in plasma membrane lipids, aquaporinsand proton pump of broccoli roots, as an adaptation mechanism to salinity[J]. Phytochemistry,2009,70:492-500.
    [187]Yamada S, Komori T, Myers PN, et al. Expression of plasma membrane water channel genes under waterstress in Nicotiana excelsior[J]. Plant Cell Physiol,1997,38:1226-1231.
    [188]Peng YH, Lin WL, Cai WM, et al. Overexpression of a Panax ginseng tonoplast aquaporin alters salttolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants[J]. Planta,2007,226:729-740.
    [189]Gao Z, He X, Zhao B, et a1. Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salttolerance in transgenic Arabidopsis[J]. Plant Cell Physiol,2010,51:767-775.
    [190]Liu Y, Wang L, Xing X, et al. ZmLEA3, a multifunctional group3LEA protein from maize (Zea maysL.), is involved in biotic and abiotic stresses[J]. Plant Cell Physiol,2013,54(6):944-959.
    [191]李剑,赵常玉,张富生,等. LEA蛋白与植物抗逆性[J].植物生理学通讯,2010,46(11):1101-1108.
    [192]Park BJ, Liu ZC, Kanno A, et al. Increased tolerance to salt-and water-deficit stress in transgenic lettuce(Lactuca sativa L.) by constitutive expression of LEA[J]. Plant Growth Regul,2005,45:165-171.
    [193]Park SC, Kim YH, Jeong JC, et al. Sweetpotato late embryogenesis abundant14(IbLEA14) geneinfluences lignification and increases osmotic-and salt stress-tolerance of transgenic calli[J]. Planta,2011,233(3):621-634.
    [194]Sugimoto M and Sakamoto W. Putative phospholipid hydro-peroxide glutathione peroxidase gene fromArabidopsis thaliana induced by oxidative stress[J]. Genes&Genetic Systems,1997,72(5):311-316.
    [195]Miao YC, Lv D, Wang PC, et al. An Arabidopsis glutathione peroxidase functions as both aredox-transducer and a scavenger in abscisic acid and drought stress responses[J]. The Plant Cell,2006,18(10):2749-2766.
    [196]Avsian-Kretchmer O, Eshdat Y, Gueta-Dahan Y, et al. Regulation of stress-induced phospholipidhydroperoxide glutathione peroxidase expression in Citrus[J]. Planta,1999,209:469-477.
    [197]Avsian KO, Gueta DY, Lev YS, et al. The salt-stress signal transduction pathway that activates the gpx1promoter is mediated by intracellular H2O2, different from the pathway induced by extracellular H2O2[J].Plant Physiol,2004,135:1685-1696.
    [198]Sun LJ, Ren HY, Liu RX, et al. An h-type thioredoxin functions in tobacco defense responses to twospecies of viruses and an abiotic oxidative stress[J]. Molecular plant-microbe interactions,2010,23:1470-1485.
    [199]尹钧,李志岗,任江萍,等.反义trxs基因对转基因小麦籽粒硫氧还蛋白还原活性的影响[J].作物学报,2006,32(9):1344-1348.
    [200]Schenk H, Klein M, Erdbrügger W, et al. Distinct effects of thioredoxin and antioxidants on the activationof transcription factors NF-kappa B and AP-1[J]. Proc Natl Acad Sci USA,1994,91(5):1672-1676.
    [201]Eshdat Y, Holland D, Faltin Z, et al. Plant glutathione peroxidases[J]. Physiologia Plantarum,1997,100:234-240.
    [202]Zhao ZG, Cheng C, Zhang CL. Interaction between reactive oxygen species andnit ricoxide indrought-induced abscisic acid synthesis in root tips of wheat seedlings[J]. Aust J Plant Physiol,2001,28(10):1055-1061.
    [203]She NW. Involvement of polyamines in the chilling tolerance of cucumber cultivars[J]. Plant Physiol,2000,124(1):431-439.
    [204]杨颖丽,安黎哲,张立新,等. NaCl对小麦根质膜NADPH氧化酶活性的影响[J].西北植物学报,2006,26(12):2463-2467.
    [205]Kwak JM, Mori IC, Pei ZM, et al. NADPH oxidase function in ROS-dependent ABA signaling inArabidopsis[J]. Embo J,2003,22(11):2623-2633.
    [206]Agarwal M, Katiyar-Agarwal S, Sahi C, et al. Arabidopsis thaliana HSP100proteins: kith and kin[J]. CellStress Chaperones,2001,6(3):219-224.
    [207]Tanaka S, Ikeda K, Ono M, et al. Isolation of several anti-stress genes from a mangrove plant Avicenniamarina[J]. World J Microbiol Biotechnol,2002,18:801-804.
    [208]Yokotani N, Ichikawa T, Kondou Y, et al. Expression of rice heat stress transcription factor OsHsfA2eenhances tolerance to environmental stresses in transgenic Arabidopsis[J]. Planta,2008,227:957-967.
    [209]Khadri M, Tejera NA, Lluch C. Sodium chloride-ABA interaction in two common bean (Phaseolusvulgaris) cultivars differing in salinity tolerance[J]. Environ Exp Bot,2007,60:211-218.
    [210]Gomez-Cardenas A, Arbona V, Jacas J, et al. Abscisic acid reduces leaf abscission and increases salttolerance in citrus plants[J]. J Plant Growth Regul,2003,21:234-240.
    [211]姚曼红,刘琳,曾幼玲.五大类传统植物激素对植物响应盐胁迫的调控[J].生物技术通报,2011,11:1-5.
    [212]Huang P, Ju HW, Min JH, et al. Molecular and physiological characterization of the Arabidopsis thalianaOxidation-related Zinc Finger2, a plasma membrane protein involved in ABA and salt stress responsethrough the ABI2-mediated signaling pathway[J]. Plant Cell Physiol,2012,53(1):193-203.
    [213]Devoto A and Turner JG. Jasmonate-regulated Arabidopsis stress signaling network[J]. PhysiologiaPlantarum,2005,123:161-172.
    [214]Giri AP, Wunsche H, Mitra S, et al. Molecular interactions between the specialist herbivore Manducasextta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata[J]. Plant Physiol,2006,142:1621-1641.
    [215]Yan Y, Stolz S, Chetelat A, et al. A downstream mediator in the growth repression limb of the jasmonatepathway[J]. Plant Cell,2007,19:2470-2483.
    [216]倪为民,陈晓亚,许智宏,等.生长素极性运输研究进展[J].植物学报,42(3):221-228.
    [217]夏石头,萧浪涛.生长素极性运输的调控及其机制[J].植物生理学通讯,2003,39(3):255-261.
    [218]Wang Y, Li K, Li X. Auxin redistribution modulates plastic development of root system architecture undersalt stress in Arabidopsis thaliana[J]. Journal of Plant Physiology,2009,166(15):1637-1645.
    [219]刘士平,王璐,王继荣,等.高等植物的PIN基因家族[J].植物生理学通讯,2009,45(8):833-841.
    [220]Yamaguchi S, Smith MW, Brown RG, et al. Phytochrome regulation and differential expression ofgibberellin3beta-hydroxylase genes in germinating Arabidopsis seeds[J]. Plant Cell,1998,10:2115-2126.
    [221]Itoh H, Ueguchi-Tanaka M, Kawaide H, et al. The gene encoding tobacoo gibberellin3-hydroxylase isexpressed at the site of GA action during stem elongation and flower development[J]. Plant J,1999,20:15-24.
    [222]Alonso-Ramirez A, Rodriguez D, Reyes D, et al. Evidence for a role of gibberellins in salicylicacid-modulated early plant responses to abiotic stress in Arabidopsis seeds[J]. Plant Physiol,2009,150(3):1335-1344.
    [223]Huang XZ, Jiang CF, Liao LL, et al. Progress on molecular foundation of GA biosynthesis pathway andsignaling[J]. Chin Bull Bot,2006,23(5):499-510.
    [224]Maggio A, Barbieri G, Raimondi G, et al. Contrasting effects of GA3treatments on tomato plants exposedto increasing salinity[J]. J Plant Growth Regul,2010,29(1):63-72.
    [225]Achard P, Cheng H, Grauwe LD, et al. Integration of plant responses to environmentally activatedphytohormonal signals[J]. Science,2006,311(5757):91-94.
    [226]Riechmann JR and Ratcliffe OJ. A genomic perspective on plant transcription factors[J]. Curr Opin PlantBiol,2000,3(5):423-434.
    [227]Abe H, Yamaguchi-Shinozakik K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs indrought and abscisic acid-regulated gene expression[J]. Plant Cell,1997,9:1859-1868.
    [228]Urao T, Yamaguchi-Shinozaki K, Urao S, et al. An Arabidopsis myb homolog is induced by dehydrationstress and its gene product binds to the conserved MYB recognition sequence[J]. Plant Cell,1993,5(11):1529-1539.
    [229]Yoo JH, Park CY, Kim JC, et al. Direct interaction of a divergent CaM isoform and the transcription factor,MYB2, enhances salt tolerance in Arabidopsis[J]. J Biol Chem,2005,280(5):3697-3706.
    [230]Zhu Y, Dong C, Zhu JK, et al. HOS10encodes an R2R3-type MYB transcription factor essential for coldacclimation in plants[J]. Proceedings of the National Academy of Sciences,2005,12:9966-9971.
    [231]Jung C, Seo JS, Han SW, et al. Overexpression of AtMYB44enhances stomatal closure to confer abioticstress tolerance in transgenic Arabidopsis[J]. Plant Physiol,2008,146(2):623-635.
    [232]Nakano T, Suzuki K, Fujimura T, et al. Genome wide analysis of the ERF gene family in Arabidopsis andrice[J]. Plant Physiol,2006,140(2):411-432.
    [233]Wurschum T, Gross-Hardt R, Laux T. APETALA2regulates the stem cell niche in the Arabidopsis shootmeristem[J]. The Plant Cell,2006,18(2):295-307.
    [234]Kenneth AF. Cytochrome P450s as genes for crop improvement[J]. Curr Opin Plant Biol,2001,4(2):162-167.
    [235]Jung W, Yu O, Lau SML, et al. Identification and expression of isoflavone in legumes[J]. Nat Biotechnol,2000,18:208-212.
    [236]赵剑,杨文杰,朱蔚华.细胞色素与植物的次生代谢[J].生命科学,1999,11(3):127-131.
    [237]Jennifer TJ and John EM. A salt-and dehydration-inducible pea gene, Cyp15a, encodes a cell wall proteinwith sequence similarity to cysteine protease[J]. Plant Molecular Biology,1995,28:1055-1065.
    [238]Masahiro K, Kazuko Y, Hideo T, et al. Structure and expression o f two genes that encode distinctdrought-inducible cysteine proteinases in Arabidopsis thaliana[J]. Gene,1993,129(2):175-182.
    [239]宁约瑟,王国梁,谢旗.泛素连接酶E3介导的植物干旱胁迫反应[J].植物学报,2011,46(6):606-616.
    [240]Craig KL, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulationand signal transduction[J]. Prog Biophys Mol Biol,1999,72(3):299-328.
    [241]杨传平,王玉成,刘桂丰,等. NaHCO3胁迫下紫杆柽柳一些基因的表达[J].植物生理与分子生物学学报,2004,30(2):229-233.
    [242]Liu YC, Wu YR, Huang XH, et al. AtPUB19, a U-Box E3ubiquitin ligase, negatively regulates abscisicacid and drought responses in Arabidopsis thaliana[J]. Mol Plant,2011,4(6):938-946.
    [243]O’Donnell PJ, Truesdale MR, Calvert CM, et al. A novel tomato gene that rapidly responds to wound-andpathogen-related signals[J]. Plant J,1998,14(1):137-142.
    [244]Roberts MR, Warner SAJ, Darby R, et al. Differential regulation of a glucosyl transferase gene homologueduring defense responses in tobacco[J]. J Exp Bot,1999,50(332):407-410.
    [245]林凡云,陆琼娴,徐剑宏,等.两个与盐和赤霉病菌胁迫相关的小麦糖基转移酶基因的克隆与表达[J].遗传,2008,30(12):1608-1614.
    [246]Yang Z and Watson JC. Molecular cloning and characterization of rho, a ras-related small-GTP-bindingprotein form garden pea[J]. Proc Nat Acad Sci USA,1993,90:8723-8736.
    [247]张之为,赵君,樊明寿,等.植物小G蛋白的研究进展[J].西北植物学报,2009,29(3):622-628.
    [248]赵宝添,张权,张荃.逆境下拟南芥ABA信号途径负调控因子的研究进展[J].西北植物学报,2010,30(4):645-651.
    [249]胡晓丽,李德全.植物蛋白磷酸酶ZC (PPZC)及其在信号转导中的作用[J].植物生理学通讯,2007,43(3):407-411.
    [250]González-García MP, Rodríguez D, Nicolás C, et al. Negative regulation of abscisic acid signaling by theFagus sylvatica FsPP2C1plays a role in seed dormancy regulation and promotion of seed germination[J].Plant Physiol,2003,133(1):135-144.
    [251]Crawford N and Glass AD. M Molecular and physiological aspects of nitrate uptake in plants[J]. TrendsPlant Sci,1998,3:389-395.
    [252]陈高.多不饱和脂肪酸生物合成途径相关酶基因的克隆及在集胞藻PCC6803中的表达研究.山东师范大学博士学位论文,2012.
    [253]刘长仁,刘伟,翟金玲,等.拟南芥AtGRP7基因诱饵载体的构建及酵母双杂的初筛[J].热带作物学报,2012,3(2):121-125.
    [254]王龙龙.花生二酰甘油酰基转移酶(DGAT)基因的克隆与分析.山东师范大学硕士学位论文,2010.
    [255]萨姆布鲁克(Sambrook.J.), D.W.拉塞尔著,黄培堂,等译.分子克隆实验指南,科学出版社,2008.
    [256]鲁燕,徐兆师,张瑞越,等. W6基因的过表达提高转基因烟草的耐盐性[J].作物学报,2008,34(6):984-990.
    [257]李柏林,梅慧生.燕麦叶片衰老与活性氧代谢的关系[J].植物生理学报,1989,15(1):6-12.
    [258]张志良,瞿伟菁.植物生理学实验指导.北京:高等教育出版社,2003.
    [259]Trevor E, Kraus R, Austin F. Paclobutrazol protects wheat seedlings from heat and paraquat injury isdetoxification of active oxygen involved[J]. Plant cell Physiol,1994,35:45-52.
    [260]Jin H and Martin C. Multi-functionality and diversity within the plant MYB-gene family[J]. PlantMolecular Biology,1999,41:47-55.
    [261]Baranowskij N, Frohberg C, Prat S, et al. A novel DNA binding protein with homology to Myboncoproteins containing only one repeat can function as a transcriptional activator[J]. The EMBO Journal,1994,13:5383-5392.
    [262]Kirik V and Baumlein H. A novel leaf-specific myb-related protein with a single binding repeat[J]. Gene,1996,183:109-113.
    [263]Mercy IS, Meeley RB, Nichols SE, et al. ZmMybst1cDNA, encodes a single Myb-repeat protein with theVASHAQKYF motif[J]. J Exp Bot,2003,54:1117-1119.
    [264]Zhang GH, Xu Q, Zhu XD, et al. SHALLOTLIKE1is a KANADI transcription factor that modulates riceleaf rolling by regulating leaf abaxial cell development[J]. The Plant Cell,2009,21(3):719-735.
    [265]Zhang X, Ju HW, Chung MS, et al. The R-R-type MYB-like transcription factor, AtMYBL, is involvedin promoting leaf senescence and modulates an abiotic stress response in Arabidopsis[J]. Plant CellPhysiol,2011,52(1):138-148.
    [266]Schaffer R, Ramsay N, Samach A, et al. The late elongated hypocotyl mutation of Arabidopsis disruptscircadian rhythms and the photoperiodic control of flowering[J]. Cell,1998,93:1219-1229.
    [267]Wang ZY and Tobin EM. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED1(CCA1)gene disrupts circadian rhythms and suppresses its own expression[J]. Cell,1998,93:1207-1217.
    [268]Wada T, Kurata T, Tominaga R, et al. Role of a positive regulator of root hair development, CAPRICE, inArabidopsis root epidermal cell differentiation[J]. Development,2002,129:5409-5419.
    [269]Schellmann S, Hulskamp M, Uhrig J. Epidermal pattern formation in the root and shoot of Arabidopsis[J].Biochem Soc Trans,2007,35:146-148.
    [270]Cominelli E, Galbiati M, Vavasseur A, et al. A guard-cell-specific MYB transcription factor regulatesstomatal movements and plant drought tolerance[J]. Curr Biol,2005,15(13):1196-1200.
    [271]Mao X, Jia D, Li A, et al. Transgenic expression of TaMYB2A confers enhanced tolerance to multipleabiotic stresses in Arabidopsis[J]. Funct Integr Genomics,2011,11(3):445-465.
    [272]Leitner-Dagan Y, Ovadis M, Shklarman E, et al. Expression and functional analyses of the plastidlipid-associated protein CHRC suggest its role in chromoplastogenesis and stress[J]. Plant Physiol,2006,142(1):233-244.
    [273]Massimo G, Jose TM, Priscilla F, et al. The grapevine guard cell-related VvMYB60transcription factoris involved in the regulation of stomatal activity and is differentially expressed in response to ABA andosmotic stress[J]. BMC Plant Biology,2011,11:142.
    [274]Li L, Yu X, Thompson A, et al. Arabidopsis MYB30is a direct target of BES1and cooperates with BES1to regulate brassinosteroid-induced gene expression[J]. Plant J,2009,58:275-286.
    [275]Gocal GFW, Sheldon CC, Gubler F, et al. GAMYB-like genes, flowering and gibberellin signaling inArabidopsis[J]. Plant Physiol,2001,127:1682-1693.
    [276]Zhang L, Zhao G, Jia J, et al. Molecular characterization of60isolated wheat MYB genes and analysis oftheir expression during abiotic stress[J]. J Exp Bot,2012,63:203-214.
    [277]Piaaza P, Procissi A, Jenkins GI, et al. Members of the C1/pl regulatory gene family mediate the responseof maize aleurone and mesocotyl to different light qualities and cytokinins[J]. Plant Physiol,2002,128(3):1077-1086.
    [278]Francesca Q, John W, Karel VDW, et al. Molecular analysis of the anthocyanin gene of petunia and its rolein the evolution of flower color[J]. Plant Cell,1999,11:1433-1444.
    [279]Ban Y, Honda C, Hatsuyama Y, et al. Isolation and functional analysis of a MYB transcription factor genethat is a key regulator for the development of red coloration in apple skin[J]. Plant and Cell Physiology,2007,48(7):958-970.
    [280]Zhang J, Jia W, Yang C, et al. Role of ABA in integrating plant responses to drought and salt stresses[J].Field Crops Research,2006,97:111-119.
    [281]Zhu JK, Verslues PE, Zheng XW, et al. HOS10encodes an R2R3-type MYB transcription factor essentialfor cold acclimation in plants[J]. Proc Natl Acad Sci USA,2005,102(28):9966-9971.
    [282]Pasquali G, Biricolti S, Locatelli F, et al. Osmyb4expression improves adaptive responses to drought andcold stress in transgenic apples[J]. Plant Cell Reports,2008,27:1677-1686.
    [283]Park JS, Kim JB, Cho KJ, et al. Arabidopsis R2R3-MYB transcription factor AtMYB60functions as atranscriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa)[J]. Plant Cell Reports,2008,27:985-994.
    [284]Li JJ and Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by aone-hybrid system[J]. Science,1993,262:1870-1873.
    [285]Liu JD, Wilson TE, Milbrandt J, et al. Identifying DNA-binding sites and analyzing DNA-bindingdomains using a yeast selection system[J]. Methods,1993,5:125-137.
    [286]Mak KL, Longcor LC, Johnson SE, et al. Examination of mammalian basic helix-loop-helix transcriptionfactors using a yeast one-hybrid system[J]. DNA Cell Biol,1996,15:1-8.
    [287]Nishiyama C, Takahashi K, Ohtake Y, et al. Analysis of transactivation region of EIf-1by using a yeastone-hybrid system[J]. Biosci Biotechnol Biochem,2002,66:1105-1107.
    [288]Hu HH, Dai MQ, Yao JL, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factorenhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci USA,2006,103:12987-12992.
    [289]Shukla RK, Raha S, Tripathi V, et al. Expression of CAP2, an APETALA2-family transcription factor fromchickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco[J]. PlantPhysiol,2006,142:113-123.
    [290]Zhao TJ, Sun S, Liu Y, et al. Regulating the drought-responsive element (DRE)-mediated signalingpathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus[J]. JBiol Chem,2006,281:10752-10959.
    [291]Dai XY, Wang YY, Yang A, et al. OsMYB2P-1, an R2R3MYB Transcription Factor, Is Involved in theRegulation of Phosphate-Starvation Responses and Root Architecture in Rice[J]. Plant Physiol,2012,159:169-183.
    [292]李新征.棉花胁迫诱导cDNA文库的构建及耐盐基因的筛选与鉴定.山东农业大学博士论文,2008.
    [293]Borsani O, Valpuesta V, Botella MA. Developing salt tolerant plants in a new century: a molecular biologyapproach[J]. Plant Cell Tissue and Organ Culture,2003,73:101-115.
    [294]Zhu JK. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol,2002,53:247-273.
    [295]李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报,2000,42(2):148-152.
    [296]林栖风,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2):20-25.
    [297]García-Valenzuela X, Garcá-Moya E, Rascón-Cruz Q, et al. Chlorophyll accumulation is enhanced byosmotic stress in graminaceous chlorophyllic cells[J]. J Plant Physiol,2005,162(6):650-661.
    [298]陈莎莎,兰海燕.植物对盐胁迫响应的信号转导途径[J].植物生理学报,2011,47(2):119-128.
    [299]李姗姗,迟彦,李凌飞,等.启动子克隆方法研究进展[J].中国生物工程杂志,2005,25(7):9-16.
    [300]Harter K, Kircher S, Frohnmeyer H, et al. Light-regulated modification and nuclear translocation ofcytosolic G-box binding factors in parsley[J]. Plant Cell,1994,6:545-559.
    [301]Kircher S, Wellmer F, Nick P, et al, Nuclear import of the parsley bZIP transcription factor CPRF2isregulated by phyto-chrome photoreceptors[J]. J Cell Biol,1999,144:201-211.
    [302]Menkens AE, Schindler U, Cashmore AR. The G-box: a ubiquitous regulatory DNA element in plantsbound by the GBF family of bZlP proteins[J]. Trends Biochem Sci,1995,20:506-510.
    [303]Kunkel BN and Brooks DM. Cross talk between signaling pathways in pathogendeferise[J]. Curr OpinPlant Biol,2002,5:325-331.
    [304]Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in anabscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. PNAS,2000,97:11632-11637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700