周质微管重组与慈姑叶柄通气组织细胞形态建成的关系以及微管活体探针研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用光学显微镜、电子显微镜、X-射线能谱和免疫荧光等技术,以慈姑叶柄通气组织发育过程为主要研究对象,研究了细胞周质微管(corticalmicrotubules,CMTs)的组织形式与细胞形态发生的关系,并运用基因工程手段对微管和微管相关蛋白的活体探针技术进行了初步的研究。主要研究结果如下:
     慈姑叶柄的通气组织是一种裂生式通气组织具有复杂的整齐结构,这种类似于蜂巢结构的通气组织由构成圆柱体气室壁的细胞和横隔膜细胞构成,成熟的横隔膜上形成复杂的维管束网络。在叶柄发育早期,通气组织气体空间增长的主要因素是细胞分裂;而在叶柄发育后期,通气组织的气体空间的增长主要因素是细胞伸展。
     在横隔膜细胞形成细胞间气体空间的过程中,CMTs定位在那些将要形成通气空间或者正在形成通气空间的区域,然后,这些区域细胞壁加厚,表明CMTs参与细胞间缝隙的形成是通过调节细胞壁的沉积,继而调控细胞形态来实现的。在横隔膜细胞伸展时期,CMTs分布在细胞的周边,包括通气缝隙边缘和相邻细胞的边界,说明周质微观参与细胞的伸展并导致细胞间通气缝隙的扩展。这些结果显示CMTs的重组与细胞间通气缝隙的定位与形成有关,是通过调节细胞壁的局部沉积改变细胞的形状。
     CMTs参与调节横隔膜上维管束(vascular bundle,VB)形成过程的细胞形态变化。结合细胞形态和CMTs的组织形式,将横隔膜上的维管束划分为初生和次生两种类型。维管束的前身是已经分化的横隔膜组织,提示水分疏导组织和通气组织的横隔膜组织是同源的,同时也表明横隔膜除了机械支持作用外,很可能还具有气体交换的功能;形态上明显分化的横隔膜细胞能够恢复分生能力并发育成维管束,显示横隔膜细胞较旺盛的居间分生能力;横隔膜上维管束的形成过程有明显的位置效应,这种位置效应的产生应该是细胞内外信号总和的输出,是一种多细胞调控的机制。
     运用冰冻扫描电镜X-射线能谱分析(CSEM-EDX)定点测量慈姑叶柄通气组织不同发育时期细胞壁的矿质元素组成。发现在不同发育阶段,细胞壁的元素含量呈现动态变化,表明细胞壁(质外体物质)的元素构成有很大的变动范围。通气组织横隔膜细胞和圆柱体气腔壁细胞的元素构成变化有相似的趋势,表明这种变化与组织的发育阶段关系密切。早期的通气组织细胞壁大量积累钾和氯,暗示早期的气体空间充满液体(组织液):镁在细胞快速伸展前出现一个峰值,可能参与细胞伸展的调控;伸展中细胞的细胞壁积累高浓度的铜和锌,并不影响细胞的正常功能;而钙的出现使细胞壁硬度增加,终止细胞伸展。细胞壁的一些元素含量之间呈现较高的相关性,其中K与Cl及Cu与Zn之间成较高的正相关。Cu和Zn在细胞壁中的积累呈高度的直线关系,回归分析显示,二者呈现定量关系,推测它们可能有共同的或者类似的转运和吸收机制。
     运用基因工程手段构建了三个融合蛋白植物表达质粒:pTUA6-GFP、pGFP-TUA6和pMAP65-6-GFP。分别转入拟南芥获得一批能够表达相应融合蛋白的株系,经过进一步的筛选工作,可能获得用于活体研究的探针材料。
The shape of plant cell has long been the cornerstone of diverse areas of plant research but it is only recently that molecular-genetic and cell-biological tools were been effectively combined for dissecting plant cell morphogenesis.Increased understanding of the polar growth characteristics of model cell types,the availability of many morphological mutants and significant advances in fluorescent-protein-aided live-cell visualization have provided the major impetus for these analyses.The cytoskeleton and its regulators have emerged as essential components of the scaffold involved in fabricating plant cell shape.In this thesis Sagittaria trifolia Lwere used to study the cortical microtubule(CMT) organization and their relationship with cell morphogenesis.
     The development of aerenchyma in the petiole of S.trifolia was studied by means of light-microscope,scanning electron microscope,transmission electron microscope and immunofluorescence,focusing on the formation of intercellular spaces in diaphragms and its relationship with the organization of CMT arrays.A complex and organized honeycomb-like schizogenous aerenchyma formed by cylinders and vascular diaphragms was observed in the petiole of S.trifolia at different developmental stages.Cell division was the primary factor contributing to the increased volume of air spaces at early stages,while cell enlargement became the primary factor at later stages.
     The CMTs localized at the sites where intercellular spaces and the secondary cell walls would be formed or deposited during the formation of intercellular spaces by the separation of diaphragm cells.CMTs were observed at the boundary of diaphragm cells and the fringes of intercellular spaces at later developmental stages,where cell expansion occurred rapidly.These observations supported the hypothesis that reorganization of CMT arrays might be related to the formation of air spaces in diaphragms and are involved in the deposition of secondary cell walls.
     The vascular bundles appeared in diaphragm of the aerenchyma in petioles of S. trifolia being classified to primeray and secondary vascular bundle.All vascular bundles were come of diaphragm cells by changing their shapes.In this process,the diaphragm cells differentiated into tracheary elements with the CMTs reorganization. This result suggested that the diaphragm cells and the tracheary elements might share similar developmental characteristics.
     Essential mineral elements like Potassium(K),Mg,Cu,Zn,Ca and P in the cell wall of aerenchyma cells in petioles of S.trifolia at five different developmental stages were analysed by CSEM-EDX.At early stage,K and Cl concentrations in cell wall were high up to 36%and 4.3%of dry weight,respectively.It supported the hypotheses that aerenchyma spaces were filled with liquid at early developmental stages of aerenchyma in S.trifolia petiole.Magnesium concentration was high at stage 2,up to 0.86%of dry weight.Zinc and Cu were detected only at rapid expansion stages,during which the concentrations were up to 1.5 and 2.5%, respectively.Calcium was detected in the cell wall only at mature stages,the concentration was high up to 1.3%of dry weight at stage 5.These results confirmed that the element concentration of aerenchyma cell wall undergwent dynamic changes during the different developmental stages,and a low Ca with high Zn and Cu concentration were needed for cell expansion.Cu and Zn deposition in the cell wall showed a significant positive linear correlation,suggesting that these two elements shared same or similar uptake and transport mechanism in plants.
     Three plasmids,named pTUA-6-GFP,pGFP-TUA6 and pMAP65-6-GFP were constructed and transferred into in Arabidopsis.The expression of these fusion genes in Arabidopsis will further be analysed and used to analyze the function of CMT or/and MAP65-6 with fluorescent protein aided live-cell visualizations.
引文
Abe T., 2004. Microtubule defects and cell morphogenesis in the lefty1lefty2 tubulin mutant of Arabidopsis thaliana. Plant Cell Physiol. 45,211-220
    Arenovski AL and Howes BL., 1992. Lacunal allocation and gas transport capacity in the salt marsh grass Spartina alterniflora. Oecologia. 90,316-322
    Armstrong W., Justin SHFW., Beckett PM., et al., 1991. Root adaptation to soil waterlogging. Aquat. Bot. 39,57-73
    
    Armstrong W., 1979. Aeration in higher plants. Adv. Bot. Res. 7, 225-332
    Baas PW., Qiang L. 2005. Neuronal microtubules: when the MAP is the roadblock. Trends Cell Biol. 15(4), 183-187
    Baluska F.,., 2000. Root hair formation: F-actin dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev. Biol. 227,618-632
    Baluska F., 2001. Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent. Dev. Biol. 231,113-124
    Baluska, F., 2001. lilliputian mutant of maize lacks cell elongation and shows defects inorganization of actin cytoskeleton. Dev. Biol. 236,478-491
    Barroso C., Chan J., Allan V., et al., 2000. Two kinesin-related proteins associated with the cold-stable cytoskeleton of canot cells: characterisation of a novel kinesin, DcKRP120-2. Plant J. 24, 859-868
    Baskin TI, Beemster GT, Judy-March JE., et al., 2004. Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis. Plant Physiol 135,2279-2290
    Baskin T.I., 2001. On the alignment of cellulose microfibrils by cortical microtubules: A review and a model. Protoplasma 215,150-171
    Baskin T.I., Beemster G.T.S., Judy-March J.E., et al., 2004. Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis. Plant Physiol. 135,1-12
    Basu D El-Assal, Sel-D Le J., Mallery EL., et al., 2004. Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development 131,4345-4355
    Bell P. R., 1996. Megaspore abortion: a consequence of selective apoptosis, Int. J Plant Sci. 157,1-7
    Benkova E., 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115,591-602
    Bibikova T.N., 1999. Microtubules regulate tip growth and orientationin root hairs of Arabidopsis thaliana. Plant J.17, 657-665
    Bichet A., Desnos T., Turner S. et al., 2001. BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J. 25,137-148
    Bisgrove SR., Hable WE., Kropf DL, 2004. 1TIPs and microtubule regulation. The beginning of the plus end in plants. Plant Physiol. 136, 3855-3863
    Bompard G., Caron E. 2004). Regulation of WASP/WAVE proteins: making a long story short. J. Cell Biol. 166, 957-962
    Bouquin T., Mattsson O., Naested H., et al., 2003. TheArabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J. Cell Sci. 116,791-801
    Braun M., 2004. Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polar growth in characean rhizoids. Planta 219, 379-388
    Brembu T., Winge P., Seem M., et al., 2004. NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis. Plant Cell 16,2335-2349
    
    Brian RM. and Raymond WL., 2002. Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquat. Bot. 74,109-120.
    Burk D.H., 2001. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13, 807-827
    Burk DH., and Ye Z.H., 2002. Alteration of oriented deposition of cellulose microfibrils bymutation of a katanin-like microtubulesevering protein. Plant Cell 14, 2145-2160
    Burk DH., Liu B., Zhong R.Q. et al., 2001. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13, 807-827
    Callard D., Axelos M., Mazzolini L., 1996. Novel marker for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence, Plant Physiol, 112,705-715
    Camilleri C., 2002. The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14, 833-845
    Carimi F., Zottini M., Formentin E., et al., 2003. Cytokinins: new apoptotic inducers in plants. Planta, 216,413-421
     Carol RJ. and Dolan L., 2002. Building a hair: tip growth in Arabidopsis thaliana root hairs.Philos.Trans.R.Soc. London B. Biol. Sci. 357,815-821
    Chan J. Calder GM., Doonan JH., et al, 2003. EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat. Cell Biol. 5, 967-971
    Chan J., Jensen CC., Jensen LC., et al., 1999. The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc. Natl. Acad. Sci. USA 96,14931-14936
    Chan J., Mao G., Smertenko A., et al., 2003. Identification of a MAP65 isoform involved in directional expansion of plant cells. FEBS. Lett. 534,161-163
    Chan J., Calder G.M., Doonan, J.H. et al., 2003. EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat. Cell Biol. 5, 967-971
    Chan J., Jensen C.G., Jensen L.C.W., et al., 1999. The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc. Natl. Acad. Sci. USA 96,14931-14936
    Chan J., Rutten T., and Lloyd, C.W. 1996. Isolation of microtubule-associated proteins from carrot cytoskeletons: a 120kDa MAP decorates all four microtubule arrays and the nucleus. Plant J.10,251-259
    Chang HY., Smertenko AP., Igarashi H., et al., 2005. Dynamic interaction of NtMAP65-la with microtubules in vivo. J Cell Sci 118(Pt 14), 3195-3201
    Charriant M C., Ben A Y., 1995. A cautionary note on the use of the TUNEL stain to determine apoptosis. Neutoreport 7,61-64
    Chen CY., Cheung AY., Wu HM., 2003. Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell 15,237-249
     Chen C.Y. 2002. The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14,2175-2190
     Cheung A.Y. and Wu H.M., 2004. Over-expression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16, 257-269
    Clemena S., Palmgren MG., and Kramer U., 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7,309-315
    Colasanti J., Cho S.O., Wick S., et al., 1993. Localization of the functional p34cdc2 homolog of maize in root tip and stomatal complex cells: Association with predicted division sites. Plant Cell 5,1101-1111
    Cosio C., DeSantis L., Frey B., et al., 2005. Distribution of cadmium in leaves of Th1aspi caerulescens. J. EXP. BOT. 56,765-775
    Cyr, R.J. 1994. Microtubules in plant morphogenesis: Role of the cortical array. Annu. Rev. Cell Biol. 10, 153-180
    Deeks MJ, Hussey PJ, Davies B. 2002. Formins: intermediates in signaltransduction cascades that affect cytoskeletal reorganization. Trends Plant Sci. 7, 492-498
    Deeks MJ., Kaloriti D., Davies B., et al., 2004. Arabidopsis NAP1 is essential for Arp2/3-dependent trichome morphogenesis. Curr. Biol. 14,1410-1414
    Deeks M.J. and Hussey P.J., 2003. Arp2/3 and'the shape of things to come'. Cun. Opin. Plant Biol. 6, 561-567
    Deeks M.J. 2004. Arabidopsis NAP1 is essential for ARP2/3- dependent trichome morphogenesis. Curr. Biol. 14, 1410-1414
    Dhonukshe P., Laxalt AM., Goedhart J., et al., 2003. Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15, 2666-2679
     Dhonukshe P., and Gadella T.W., 2003. Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15, 597-611
    Dhonukshe P., Laxalt A.M., Goedhart J., et al., 2003. Phospholipase D activation correlates withmicrotubule reorganization in living plant cells. Plant Cell 15, 2666-2679
    Dixit R, Cyr R. 2004. The cortical microtubule array: from dynamics to organization. Plant Cell 16, 2546-2552
    Dong C.H., 2001, ADF proteins are involved in the control of flowering and regulate F-actin organization, cellexpansion andorgan growth in Arabidopsis. Plant Cell 13,1333-1346
    Drechsel DN., Hyman AA., Cobb MH., et al., 1992. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3(10), 1141-1154
     Drew MC., He CJ. and Morgan PW., 2000. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 5,123-127
    Drykova D., Cenklova V., Sulimenko V., et al., 2003. Plant gamma-tubulin interacts with alphabeta-tubulin dimers and forms membrane-associated complexes. Plant Cell 15, 465-480
    Dumais J., Shaw SL., Steele CR., et al., 2006. An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int. J. Dev. Biol. 50(2-3), 209-22
    Duval-Jouve J. 1878. Diaphragm vasculiferes des Monocotyledones aquatiques. Acad. Sci. Lett.Montpellier 8, 157-176.
    Ebneth A., Godemann R., Stamer K., et al., 1998. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J. Cell Biol. 143(3), 777-794
    Ehrhardt D., 2003. GFP technology for live cell imaging. Curr. Opin. Plant Biol. 6, 622-628
    El-Assal Sel-D., Le J., Basu D., et al., 2004. Arabidopsis GNARLED encodes a NAP125 homolog that positively regulates ARP2/3. Cur.r Biol. 14,1405-1409
    El-Din El-Assal S., Le J., Basu D., et al., 2004. DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant J. 38,526-538
    Erhardt M., Stoppin-Mellet V., Campagne S., et al., 2002. The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J. Cell Sci. 115,2423-2431
    
    Evans DE., 2003. Aerenchyma formation. New Phytol. 161,35-49
    Falconer MM., Seagull RW., 1985. Immunofluorescent and calcofluor white staining of developing tracheary elements in Zinnia elegans L. suspension cultures. Protoplasma 125, 190-198
    Fath A., Bethke P C., Jones R L., 1999. Barley aleurone cell death is not apoptotic: characterization of nuclease activities and DNA degradation, Plant J. 20,305-315
    Fisher D.D., and Cyr R.J., 1998. Extending the microtubule/microfibril paradigm: Cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol. 116,1043-1051
    Folkers U., 2002. The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. EMBO. J. 21,1280-1288
    Frank M.J. and Smith L.G., 2002. A small, novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells. Curr. Biol. 12, 849-853
    Franklin-Tong VE., Holdaway-Clarke TL., Straatman KR., et al., 2002. Involvement of extracellular calcium influx in the selfincompatibility response of Papaver rhoeas. Plant J. 29, 333-345
    Frey B., Zierold K. and Brunner I., 2000. Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies-Hebeloma crustuliniforme ectomycorrhizas. Plant Cell Environ. 23,1257-1265
    
    Fu Y., Li H., Yang ZB., 2002. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14, 777-794
    Fu Y., Wu G., Yang ZB., 2001. Rop GTPase-dependent dynamics of tiplocalized F-actin controls tip growth in pollen tubes. J. Cell Biol. 152,1019-1032
    Fu Y., Yang Z., 2001. Rop GTPase: a master switch of cell polarity development in plants. Trends Plant Sci. 6,545-547
    Fu Y., 2002. The ROP2GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14,777-794
    Fukuda H., Kobayashi H., 1989. Dynamic organization of the cytoskeleton during tracheary-element differentiation. Dev. Growth Differ. 31, 9-16
    Fukuda H., 2004. Signals that control plant vascular cell differentiation. Nat. Rev. Mol. Cell Biol. 5,379-391.
    Furutani I., Watanabe Y., Prieto R., et al., 2000. The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Development 127, 4443-4453
    Gard DL., Becker BE., Josh Romney S., 2004. MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Disl family of microtubule-associated proteins. Int. Rev. Cytol. 239,179-272
    Gardiner J., Collings DA., Harper JD., et al., 2003. The effects of the phospholipase D-antagonist l-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol. 44, 687-696
    Gardiner JC., Harper JD., Weerakoon ND., et al., 2001. A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13, 2143-2158
    Gardiner J., Collings D.A., Harper J.D.I., et al., 2003. The effects of the phospholipase D-antagonist l-butanol on seedling development and microtubule organisation in Arabidopsis.Plant Cell Physiol. 44, 687-696
    Gardiner J.C., Harper J.D.I., Weerakoon N.D., et al., 2001. A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13, 2143-2158
    Genschik P., Criqui M.C., Parmentier Y., et al., 1998. Cell cycle-dependent proteolysis in plants: identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10, 2063-2075
    Gibbon BC., Zonia LE., Kovar DR., et al., 1998. Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell 10, 981-993
    Gilroy S. and Trewavas, A., 2001. Signalprocessing andtransduction in plant cells: the end of the beginning? Nat. Rev. Mol. Cell Biol. 2, 307-314
    
    Glotzer M., Murray A.W. and Kirschner M.W., 1991. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132-138
    Granger CL.,Cyr RJ.,2001.Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD.Protoplasma 216,201-214
    Green D R.1998.Apoptotic pathways:The roads to ruin.Cell 94(6),695-698
    Green P.B.1980.Organogenesis:A biophysical view.Annu.Rev.Plant Physiol.31,51-82
    Grecnberg JT.,Guo A.,Klessig DF.,et al.,1994.Programmed cell death in plants:A pathogen-triggered response activated coordinately with multiple defense functions,Cell,77(4),551-563
    Groover A.,DeWitt N.,Heidel A.,et al.,1996.Programmed cell death of plant tracheary elements differentiating in vitro.Protoplasma 196,197-211
    Gu Y.,Wang Z.,Yang Z.2004.ROP/RAC GTPase:an old new master regulator for plant signaling.Curr.Opin.Plant Bio.17,527-536
    Gunawardenna AH.,Pearce DM.,Jackson MB.,et al.,2001.Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize(Zea mays L.).Planta 212,204-214
    Hable W.E.2003.Polarity establishment requires dynamic actin in fucoid zygotes.Protoplasma 221,193-204
    Hall JL.2002.Cellular mechanisms for heavy metal detoxification and tolerance.J.Exp.Bet.53(366),1-11
    Hamada T.2007.Microtubule-associated proteins in higher plants.J.Plant Res.120(1),79-98
    Hamada T.,Igarashi H.,Itoh TJ.,et al.,2004.Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells,amember of the XMAP215/MOR1family.Plant Cell Physiol.45,1233-1242
    Hardham A.R.,and Gunning B.E.S.1978.Structure of cortical microtubule arrays in plant cells.J.Cell Biol.77,14-34
    Hashimoto T.2003.Dynamics and regulation of plant interphase microtubules:a comparative view.Curr.Opin.Plant Biol.6,568-576
    He CJ.,Drew MC.and Morgan PW.,1996.Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia.Plant Physiol.112,463-472.
    Hepler PK.,Jackson WT.,1968.Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker.J.Cell Biol.38,437-446
    Hepler PK.,Vidali L.and Cheung AY.2001.Polarized cell growth in higher plants.Annu.Rev.Cell Dev.Biol.17,159-187
    Hepler P.K. 2001. Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol. 17:159-187
    Hepler P.K., Cleary A.L., Gunning B.E.S., et al., 1993. Cytoskeletal dynamics in living plant cells. Cell Biol. Int. 172,127-142
    Himmelspach R., Williamson RE., Wasteneys GO. 2003. Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization. Plant J. 36, 565-575
    Huang CX., Canny MJ., Oates K., et al., 1994. Planing frozen hydrated plant specimens for SEM observation and EDX microanalysis. Microsc. Res. Technol. 28, 67-74
    Huang S., Blanchoin L., Chaudhry F., et al., 2004. A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J. Biol. Chem. 279,23364-23375
    Huang S., Blanchoin L., Kovar DR., et al., 2003. Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J. Biol. Chem. 278, 44832-44842
    Hulskamp M., 2004. Plant trichomes: a model for cell differentiation. Nat. Rev. Mol. Cell Biol. 5, 471-180
    Hush J., Wu L., John P.C., et al., 1996. Plant mitosis promoting factor disassembles the microtubule preprophase band and accelerates prophase progression in Tradescantia. Cell Biol. Int. 20,275-287
    Hush J.M., Wadsworth P., Callaham D.A., et al., 1994. Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J. Cell Sci. 107, 775-784
    Hussey PJ. 2002. MOR1/GEM1 has an essential role in the plantspecific cytokinetic phragmoplast. Nat. Cell Biol. 4, 711-714
    Hussey PJ., Allwood EG., Smertenko AP. 2002. Actin-binding proteins in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizing factors/cofilins. Philos Trans R. Soc. Lond B. Biol. Sci. 357, 791-798
    Hussey PJ., Hawkins TJ., Igarashi H., et al., 2002. The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MORI. Plant Mol Biol. 50(6), 915-924
    Hussey P.J., and Hawkins T.J., 2001. Plant microtubule-associated proteins: The HEAT is off in temperature-sensitive mor1. Trends Plant Sci. 6, 389-392
    
    Ichihara K., Kitazawa H., Iguchi Y., et al., 2001. Visualization of the stop of microtubule depolymerization that occurs at the high-density region of microtubule-associated protein 2 (MAP2). J. Mol. Biol. 312(1), 107-118
    Ikushima T.and Shimmen T.,2005.Mechano-sensitive orientation of cortical microtubules during gravitropism in azuki bean epicotyls.J.Plant Res.118,19-26
    Ilgenfritz H.2003.The Arabidopsis STICHEL gene is a regulator of trichome branch number and encodes a novel protein.Plant Physiol.131,643-655
    Jackson MB.and Armstrong W.1999.Formation of aerenchyma and the process of plant ventilation in relation to soil flooding and submergence.Plant Biol.1,274-287
    Jaideep M.,2004.Cell shape development in plants.Trends in plant science vol.9 No.12 december
    Jiang C.,Sonobe S.,1993.Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein.J.Cell Sci.105(Pt 4),891-901
    Jiang CJ.,Sonobe S.,Shibaoka H.1992.Assembly of microtubules in a cytoplasmic extract of tobacco BY-2 miniprotoplasts in the absence of microtubule-stabilizing agents.Plant Cell Physiol.33,497-501
    Jiang W Jimenez G Wells NJ.et al.,1998.PRC1:a human mitotic spindle-associated CDK substrate protein required for cytokinesis.Mol.Cell 2(6),877-885
    Jiang CJ.,1997.The maize actin-depolymerizing factor,ZmADF3,redistributes to the growing tip of elongating root hairs and can be induced to translocate in to the nucleus with actin.Plant J.12,1035-1043
    Jones MA.,Shen JJ.,Fu Y.et al.,2002.The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth.Plant Cell 14,763-776
    Jnang YL.,Huang J.,Peters JM.et al.,1997.APC-mediated proteolysis of Asel and the morphogenesis of the mitotic spindle.Nature 275,1311-1314
    Jurgens G.2003.Growing up green:cellular basis of plant development.Mech.Dev.120,1395-1406
    Justin SHFW.and Armstrong W.1987.The anatomical characteristics of roots and plant response to soil flooding.New PhytoL 106,465-495
    Katsuhara M,Shibasaka M.,2000.Cell death and growth recovery of barley after transient salt stress,J,Plant Res,113,239-243
    Katsuhara M.1997.Apoptosis-like cell death in barley roots under salts stress,Plant Cell Physiol.38,1091-1093
    Kaul RB.,1971.Diaphragms and aerenchyma in Scirpus validus.Am.J.Bot.58,808-816
    Kaul RB.,1972.Adaptive leaf architecture in emergent and floating Sparganinm.Am.J.Bot.59,270-278
    Kaul RB.,1973.Development of follar diaphragms in Sparganium eurycarpum.Am.J.Bot.60,944-949
    Ken J F R., Wyllie A H., Curric A R. 1972. Apoptosis: a basic biological phenomen with wide-ranging implications in tissue kinetics, Br. J. Cancer 26,239-257
    Ketelaar T., Allwood EG., Anthony R., et al., 2004a. The actin-interacting protein AIP1 is essential for actin organization and plant development. Curr. Biol. 14,145-149
    Ketelaar T., Anthony RG., Hussey PJ. 2004b. Green fluorescent proteinmTalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin depolymerizing factor's actin depolymerizing activity in vitro. Plant Physiol. 136, 3990-3998
    Ketelaar T. 2003. Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15, 285-292
    Ketelaar T., 2004. The actin-interacting protein AIP1 is essential for actin organization and plant development. Curr. Biol. 14,145-149
    Kim, G.T. 2002. The ANGUSTIFOL1A gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO. J. 21,1267-1279
    Kirik, V., 2002. Functional analysis of the tubulin-folding cofactor C in Arabidopsis thaliana. Curr. Biol. 12,1519-1523
    Kirik, V. 2002. The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the alpha/ beta-tubulin monomer balance. Plant Cell 14, 2265-2276
    Klahre U., Friederich E., Kost B., et al., 2000. Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol. 122, 35-47
    Klahre U., 2000. Villin-likeactin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol. 122,35-47
    Kost B., Chua NH. 2002. The plant cytoskeleton: vacuoles and cell walls make the difference. Cell 108, 9-12
     Kost B., Lemichez E., Spielhofer P., et al., 1999. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 145,317-330
    Kost B., Spielhofer P., Chua NH. 1998. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 16, 393-401
    Kost B. and Chua N.H., 2002. The plant cytoskeleton: vacuoles and cell walls make the difference. Cell 108, 9-12
    
    Kovar DR., Drobak BK, Staiger CJ. 2000. Maize profilin isoforms are functionally distinct. Plant Cell 12, 583-598
    Kozela C.and Regan S.,2003.How plants make tubes.Trends Plant Sci.8,159-164.
    Lahav M.,Abu-Abied M.,Belausov E.,et al.,2004.Microtubules of Guard cells are light sensitive.Plant Cell Physiol.45(5),573-582
    Lancelle SA.,Callaham DA.,Hepler PK.,1986.A method for rapid freeze fixation of plant-cells.Plotoplasma 131(2),153-165
    Le J.,EI-Assal Sel D.,Basu D.,et al.,2003.Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development.Curt.Biol.13,1341-1347
    Lee Y-RJ.,Lin B.et al.,2004.Cytoskeletal motors in Arabidopsis.Sixty-one kinesins and seventeen myosins.Plant Physiol.136,3877-3883
    Lewis AM.,1988.A test of the air-seeding hypothesis using Sphagnum hyalocysts.Plant Physiol.87,577-582
    Li H.,Lin Y.,Heath RM.,etal.,1999.Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx.Plant Cell 11,1731-1742
    Li S.,Blanchoin L.,Yang Z.,etal.,2003.The putativeArabidopsis arp2/3 complex controls leaf cell morphogenesis.Plant Physiol.132,2034-2044
    Lloyd C.,Chan J.2004.Microtubules and the shape of plants to come.Nat.Rev.Mol.Cell Biol.5,13-22
    Loiodice I.,Stanb J.,Setty TG.,et al.,2005.Aselp organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast.Mol.Biol.Cell 16(4),1756-1768
    Longstreth DJ.and Borkhsenious O.2000.Root cell ultrastructure in developing aerenchyma tissue of three wetland species.Ann.Bot.86,641-646
    Mano Y.,Omori F.,Takamizo T.,etal.,2006.Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings.Plant Soil.281,269-279
    Mao G.,Buschmann H.,Doonan JH.,etal.,2006.The role of MAP65-1 in microtubule bundling during Zinnia tracheary element formation.J.Cell Sci.119(Pt 4),753-758
    Mao T.,Jin L.,Li H.,et al.,2005b.Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules.Plant Physiol.138(2),654-662
    Marc J.,Sharkey DE.,Durso NA.,et al.,1996.Isolation of a 90-kD microtubule-asseciated protein from tobacco membranes.Plant Cell 8,2127-2138
    Mathur J.and Hulskamp M.2002.Microtubule sand microfilaments in cell morphogenesis in higher plants.Curt.Biol.12,R669-R676
    Mathur J.,Mathur N.,Kernebeck B.,etal.,2003a.Mutations in actin-related proteins 2 and 3affect cell shape development in Arabidopsis.Plant Cell 15,1632-1645
    Mathur J., Mathur N., Kernebeck B., et al., 2003b. A novel localization pattern for an EB1-like protein links miciotubule dynamics to endomembrane organization. Curr. Biol. 13,1991-1997
    Mathur J., Mathur N., Kirik V., et al., 2003c. Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation.Development 130, 3137-3146
    
    Mathur J., 2004. Cell shape development in plants. Trends plant sci. 9, 583-590
    Mathur J. and Chua N.H. 2000. Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. Plant Cell 12, 465-477
    Mathur J., 2002. Simultaneous visualization of peroxisome and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol. 128,1031-1045
    Mathur J., 2003. A novel localization pattern for an EBl-like protein links microtubule dynamics to endomembrane organization. Curr. Biol. 13, 1991-1997
    Mathur J., 2003. Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complexand controls cell shape by region specific fine F-actin formation. Development 130, 3137-3146
    Mathur J., 2003. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. PlantCell 15,1632-1645
    Mathur J., 1999. The actin cytoskeleton isrequired to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126,5559-5568
    Mathur J. and Hulskamp M., 2002. Microtubule sand microfilaments in cell morphogenesis in higher plants. Curr. Biol. 12, R669-R676
    Mayer U. and Jurgens G., 2002. Microtubule cytoskeleton: a track record. Curr. Opin. Plant Biol.5,494-501
    McCully ME., 1994. Accumulation of high levels of potassium in the developing xylem elements in roots of soybean and other dicotyledons. Protoplasma 183,116-125
    McCurdy DW., Kovar DR., Staiger CJ., 2001. Actin and actin-binding proteins in higher plants. Protoplasma 215, 89-104
    McCurdy D.W. and Staiger C.J., 2000. Fimbrin. In Actin: A Dynamic Frame work for Multiple Plant Cell Functions (Staiger,CJ.etal.,eds), pp. 87-102, Kluwer
    McKenna ST., Vidali L., Hepler PK., 2004. Profilin inhibits pollen tube growth through actin-binding, but not poly-L-proline-binding. Planta 218, 906-915
    McKinney EC., Kandasamy MK., Meagher RB., 2001. Small changes in the regulation of one Arabidopsis profilin isovariant, PRF1, alter seedling development. Plant Cell 13, 1179-1191
    Meagher R.B., 2000. The significance of diversity in the plant actin gene family. In Actin: A Dynamic Framework for Multiple Plant Cell Functions (Staiger, C.J. et al., eds), pp. 3-28
    Mendgen K.,1996.Morphogenesis and mechanisms of penetration by plant pathogenic fungi.Annu.Rev.Phytopathol.34,367-386
    Mineyuki Y.,1999.The preprophase band of microtubules:Its function as a cytokinetic apparatus in higher plants.Int.Rev.Cytol.187,1-49
    Molendijk AJ.,Bischoff F.,Rajendrakumar CS.,et al.,2001.Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth.EMBO J 20,2779-2788
    Molendijk A.J.,2001.Arabidopsis thaliana Rop GTPase are localized to tips of root hairs and control polar growth.EMBO.J.20,2779-2788
    Mollinari C.,Kleman JP.,Jiang W.,et al.,2002.PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone.J.Cell Biol.157(7),1175-1186
    Muller S.,Han S.,Smith LG.,2006.Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana.Curt.Biol.16(9),888-894
    Muller S.,Smertenko A.,Wagner V.,et al.,2004.The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragrnoplast function.Curl Biol.14,412-417
    Nadeau JA.and Sack FD.,2003.Stomatal development:cross talk puts mouths in place.Trends Plant Sci.8,294-299
    Nakajima K.,Furutani I.,Tachimoto H.,et al.,2004.SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells.Plant Cell 16,1178-1190
    Nakamura M.,Naoi K.,Shoji T.,et al.,2004.Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells.Plant Cell Physiol.45,1330-1334
    Naoi K.and Hashimoto T.2004.A semi-dominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization.Plant Cell 16,1841-1853
    Navarre D A.,Wolpert T J.,1999.Victorin induction of an apoptotic/ senescence-like responses in oats,Plant Cell 11,237-249
    Nick P.,1998.Signaling to the microtubular cytoskeleton in plants.Int.Rev.Cytol.184,33-80
    Nishihama R.,Soyano T.,Ishikawa M.,et al.,2002.Expansion of the cell plate in fluorescent protein-CLIP170 microtubule plus-end labeling.Plant Cell 15,597-611
    Nishimura T.,2003.An Arabidopsis ACT2 dominant-negative mutation,which disturbs F-actin polymerization,reveals its distinc-tire function in root development.Plant Cell Physiol.44,1131-1140
    Nogales E.,2001.Structural insight into microtubule function.Annu.Rev.Biophys.Biomol.Struct.30,397-420
    Oda Y. and Hasezawa S., 2006. Cytoskeletal organization during xylem cell differentiation. J. Plant Res. 119(3), 167-77
    Oda Y., Mimura T., Hasezawa S., 2005. Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137(3), 1027-1036
    Oppenheimer D.G., 1997. Essentialroleofakinesin-likeprotein in Arabidopsis trichome morphogenesis. Proc.Natl.Acad.Sci.U.S.A. 94, 6261-6266
    Patrick J., Timothy J., Hawkins H., et al., 2002. The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MORI. Plant Molecular Biology 50, 915-924
    Pellman D., Bagget M., Tu YH., et al., 1995. Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. J. Cell Biol. 130(6), 1373—1385
    Permana S., Hisanaga S., Nagatomo Y., et al., 2005. Truncation of the projection domain of MAP4 (microtubule-associated protein 4) leads to attenuation of microtubule dynamicinstability. Cell Struct. Funct. 29(5-6), 147-157
    Peters WS., Hagemann W. and Tomos AD., 2000. What make plants different? Principles of extracellular matrix function in 'soft' plant tissues. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 125,151—167
    Qiu J.L. 2002. The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell 14,101-118
    Ram D. and Richard C, 2004. The Cortical Microtubule Array: From Dynamics to Organization.The Plant Cell, Vol. 16, 2546-2552
    
    Reddy A.S.N., 2001. Molecular motors and their functions in plants. Int. Rev. Cytol. 204, 97-178
    Reddy A.S.N., 1996. A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J. Biol. Chem. 271, 7052-7060
    Ringli C, 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol. 129, 1464-1472
    Roberts AW., Frost AO., Roberts EM., et al, 2004. Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elements. Protoplasma 224, 217-229
    Roland JC, 1978. Cell wall differentation and stages involved with intercellular gas space opening. J. Cell. Sci. 32, 325-336
    Rutten T.,Chan J.and Lloyd C.W.,1997.A 60-kDa plant microtubule-associated protein promotes the growth and stabil-isation of nurotubules in vitro.Proc.Natl.Acad.Sci.USA 94,4469-44?4
    Saedler R.,2004.Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog.Plant Cell Physiol.45,813-822
    Sasabe M.,Soyano T.,Takahashi Y.,et al.,2006.Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells.Genes Dev.20(8),1004-1014
    Schaffner AR.2004.Helical growth of the Arabidopsis mutant tortffolial reveals a plant-specific microtubule-associated protein.Curt.Biol.14,1515-1521
    Scheloske S.,Maetz M.,Schneider T.,et al.,2004.Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission.Protoplasma DOI 10.1007/s00709-003-0027-1
    Schreiner M.,Melcher M.and Uhlir K..200?.Scanning electron microscopy and energy dispersive analysis,applications in tne fisld of cultural heritage.Anal.Bioanal.Chem.387,733-747
    Schroeder MR.,Borkhseniou ON.,Matsuoka K.,et al.,1993.Colocation of barley lectin and speramin in vacuoles of transgenic tobacco plants.Plant Physiol.112,385-391
    Schussler EE.and Longstreth DJ.1996.Aerenchyma develops by cell lysis in roots and cell separation in leaf petioes in Sagittaria lancifolia(alismataceae).Am.j.bot.83,1266-1273.
    Schuyler SC.,Liu JY.,Pellman D.2003.The molecular function of Aselp,evidence for a MAP-dependent midzone-specific spindle matrix.Microtubule-associated proteins.J.Cell Biol.160(4),517-528
    Schwab B.,2003.Regulation of cell expansion by the DISTORTEDgenes in Arabidopsis thaliana:actin controls thespatial organization of microtubules.Mol.Genet.Genomics 269,350-360
    Seago JRJ.,Marsh LC.,Stevens KJ.,et al.,2005.A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma.Ann.Bot.96,565-579
    Sedbrook J.,et al.,2004.The Arabidopsis SKU6/SPIRAL1 gene encodes a plus end-localized microtubule-interacting protein involvedin directional cell expansion.Plant Cell 16,1506-1520
    Shaw SL.,Kamyar R.,Ehrhardt DW.2003.Sustained microtubule treadmilling in Arabidopsis cortical arrays.Science 300(5626),1715-1718
    Sieberer BJ.,2002.Endoplasmic microtubules configure the subapical cytoplasm and are required for fast growth of Medicago truncatula root hairs.Plant Physiol.130,977-988
    Sifton HB., 1945. Air-space tissue in plants. Bot. Rev. 11,108-143
    
    Sifton HB., 1957. Air-space tissue in plants. II. Bot. Rev. 23,303-312
    
    Smertenko A., Saleh N., Igarashi H., et al., 2000. A new class of microtubule-associated proteins in plants. Nat. Cell Biol. 2(10), 750-753
     Smertenko AP., Chang HY., Sonobe S., et al, 2006. Control of the AtMAP65-l interaction with microtubules through the cell cycle. J Cell Sci 119(Pt 15), 3227-3237
    Smertenko AP., Chang HY., Wagner V., et al., 2004. The Arabidopsis microtubule- associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16(8), 2035-2047
    Snow LM. 1914. Contributions to the knowledge of the diphragm of waterplants I Scriptis volidus. Bot. Gaz. 58,495-517.
    Stamer K., Vogel R., Thies E., et al., 2002. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156(6), 1051
    Slant MY., 1964. Anatomy of the Alismatacese. Bot. J. Linn. Soc. 59,1-42
    Stant MY., 1967. Anatomy of the Alismatacese. Bot. J. Linn. Soc. 60,31-60
    Stoppin-Mellet V., Gaillard J., Vantard M., 2002. Functional evidence for in vitro microtubule severing by the plant katanin homologue. Biochem. J. 365,337-342
    Sugimoto K., Himmelspach R., Williamson RE., et al., 2003. Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells. Plant Cell 15,1414-1429
    Surpin M. and Raikhel N., 2004. Traffic jams affect plant develop ment and signal transduction. Nat. Rev. Mol. Cell Biol. 5,100-109
    Szarka S., Fitch M., Schaerer S., et al., 1995. Classification and expression of a family of cyclin gene homologues in Brassica napus. Plant Mol. Biol. 27,263-275
    Szymanski DB., 2001. Arabidopisis Trichome Morphogenesis: A Genetic approach to studying cytoskeketal function. J. Plant Growth Regul. 20,131-140
    Szymanski D.B., 1999. Organized F-actinis essential fornormal trichome morphogenesis in Arabidopsis. Plant Cell 11, 2331-2347
    Murata T., Hasezawa S., 2003. Gamma-tubulin distribution during cortical microtubule reorganization at the M/G1 interface in tobacco BY-2 cells. Eur J Cell Biol 82,43-51
    Takemoto D., Hardham AR. 2004. The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136, 3864-3876
    
    Tani FH., and Barrington S., 2005. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.). Environ. Pollut. 138, 548-558.
    Thitamadee S.2002.Microtubule basis for left-handed helical growth in Arabidopsis.Nature 417,193-196
    Thomas SG.,Franklin-Tong VE.,2004.Self-incompatibility triggers programmed cell death in Papaver pollen.Nature 429,305-309
    Thompson DS.,2005.How do cell wails regulate plant growth?.J.Exp.Bot.419,2275-2285
    Tominaga M.,2000.The role of plant villin in the organization of the actin cytoskeleton,cytoplasmic streaming and the architecture of the trans vacuolar strand in root hair cells of Hydrocharis.Planta 210,836-843
    Trinczek B.,Ebneth A.,Mandelkow EM.,et al.,1999.Tan regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles.J.Cell Sci.112(Pt 14),2355-2367
    Twell D.,2002.MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast.Nat.Cell Biol.4,711-714
    Tylicki A.,Burza W.,Malepszy S.,et al.,2003.Changes in the organization of tubulin cytoskeleton during the early stages of Solanum lycopersicoides Dun.Protoplast culture.Plant ceil Rep.22,312-319
    Uchida K.,Muramatsu T.,Tachibana K.,et al.,1996.Isolation and characterisation of the cDNA for an A-like cyclin in Adiantum cap/llus-veneris.Plant Cell Physiol.37,825-832.
    Ueda K.,Matsuyama T.,Hashimoto T.1999.Visualization of microtubules in living cells of transgenic Arabidopsis thaliana.Protoplasma 206,201-206
    Van Bruaene N.,Joss G.,Van Oostveldt P.2004.Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development.Plant Physiol.136,3905-3919
    Van Damme D.,Bouget FY.,Van Poucke K.,et al.,2004a.Molecular dissection of plant cytokinesis and phragmoplast structure:a survey of GFP-tagged proteins.Plant J.40(3),386-398
    Van Damme D.,Van Poucke K.,Boutant E.,et al.,2004b.In vivo dynamics and differential microtubule-binding activities of MAP65 proteins.Plant Physiol.136(4),3956-3967
    Van Der Weele CM.,Canny MJ.,et al.,1996.Water in aerenchyma spaces in roots.A fast deffusion path for solues.Plant Soil 184,131-141
    VanGestel K..,2003.Immunological evidence for the presence of plant homologues of the actin-related protein Arp3 in tobacco and maize,sub-cellular localization to actin-enriched pit fields and emerging root hairs.Protoplasma 222,45-52
    Vartapetian BB.and Jackson MB.,1997.Plant adaptations to anaerobic stress.Ann.Bot.79(supplement A),3-20
    Vartiainen M.K. and Machesky L.M., 2004. The WASP-Arp2/3 pathway: genetic insights. Curr. Opin. Cell Biol. 16,1-8
    Verbrugghe KJ., White JG., 2004. SPD-1 is required for the formation of the spindle midzone but is not essential for the completion of cytokinesis in C. elegans embryos. Curr. Biol. 14(19), 1755-1760
    Verni F., Somma MP., Gunsalus KC., et al., 2004. Feo, the Drosophila homolog of PRC1, is required for central-spindle formation and cytokinesis. Curr Biol 14(17), 1569-1575
    Vidali L. and Hepler P.K. 1997. Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil. Cytoskeleton 36, 323-338
    Vidali L., 2001. Actin polymerization is essential for pollen tube growth. Mol. Biol. Cell 12, 2534-2545
    Visser EJW, Voesenek L., Vartapetian BB. et al., 2003. Flooding and plant growth. Ann. Bot. 91,107-109
    Wang YS., Motes CM., Mohamalawari DR., et al., 2004. Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil. Cytoskeleton 59, 79-93
    Wasteneys GO., 2004. Progress in understanding the role of microtubules in plant cells. Curr. Opin. Plant Biol. 7,651-660
    Wasteneys GO., Galway ME. 2003. Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu. Rev. Plant Biol. 54, 691-722
    Wasteneys GO. and Yang Z,, 2004. New views on the plant cytoskeleton. Plant Physiol. 136, 3884-3891
    
    Webb M., 2002. Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3 - a katanin-p60 protein. Development 129,123-131
    Whittington AT., Vugrek O., Wei KJ., et al., 2001. MORI is essential for organizing cortical microtubules in plants. Nature 411,610-613
    Whittington A.T., 2001. MORI is essential for organizing cortical microtubules in plants. Nature 411,610-613
    Wicker-Planquart C., Stoppin-Mellet V., Blanchoin L., et al., 2004. Interactions of tobacco microtubule-associated protein MAP65-lb with microtubules. Plant J. 39(1), 126-134
    Wu G., Gu Y., Li S., et al., 2001. A genome-wide analysis of Arabidopsis Rop-interactive CRIBmotif-containing proteins that act as Rop GTPase targets. Plant Cell 13,2841-2856
    Yamashita A., Sato M., Fujita A., et al., 2005. The roles of fission yeast asel in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling. Mol. Biol. Cell 16(3), 1378-1395
    Yang Z.,2002.Small GTPases:versatile signaling switches in plants.Plant Cell(Suppl) 14,S375-S388
    Yasuhara H.,Muraoka M.,Shogaki H.,et el.,2002.TMBP200,a microtubule bundling polypeptide isolated from telophase tobacco BY-2 cells is a MOR1 homologue.Plant Cell Physiol.43,595-603
    Ye ZH.,2002.Vascular tissue differentiation and pattern formation in plants.Annu.Rev.Plant Biol.53,183-202
    Yuen,C.Y.,2003.WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis.Plant Physiol.131,493-506

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700