内源性孤啡肽对大鼠急性心肌缺血引起的心律失常的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性心肌梗死引起的严重的室性心律失常已成为造成心源性猝死的主要原因。孤啡肽(nociceptin, Orphanin FQ, OFQ)属于G蛋白耦联受体是神经肽的一种。应用孤啡肽在外周及中枢可均引起程度一定的心率减慢和血压下降,相关研究发现孤啡肽除与参加外周和中枢神经对调节心血管有关外,还可能与其对心血管直接作用有关。本小组前期研究发现,在大鼠急性心肌缺血模型中OFQ表达上调出现在脊髓和背根神经节。提示在急性心肌缺血病理过程中可能有孤啡肽参与,但是对尚不清楚其具体作用机制。心律失常是否由孤啡肽直接调节?需要进一步研究。
     目的:研究内源性孤啡肽对急性心肌缺血大鼠心律失常的影响及其可能机制,为临床研究及干预急性心肌缺血病理过程提供新的思路及靶点。
     方法:本实验从三个方面进行研究
     1.大鼠尾静脉注射孤啡肽受体拮抗剂UFP-101对内源性孤啡肽作用进行在体研究:健康大鼠分为空白对照组(静脉给予生理盐水,C)、不同浓度UFP-101组(1×10-11mol/kg,1×10-9mol/kg and1×10-7mol/kg, U11, U9, U7)。各组尾静脉给药5分钟后开胸结扎冠状动脉,记录分析结扎后一小时心律失常的变化。
     2.孤啡肽对心肌细胞的动作电位时程(APD)影响的研究:采用膜片钳技术,急性分离成年SD大鼠心肌细胞,分别用含有不同浓度的OFQ1×10-11mol/L,1×10-9mol/L and1×10-7mol/L,(O11,O9,O7;N=6);OFQ(1×10-9mol/L)+ufp-101(1×10-8mol/L)(O9U8;N=6)和UFP-101(1×10-8mol/L, U8;n=6)的台式液持续灌流心肌细胞对运用全细胞膜片钳模式观察对APD的影响,以探讨孤啡肽对心律失常作用可能的机制。
     3.内源性孤啡肽调节急性心肌缺血后室性心律失常发生的作用与PKC通路的关系:利用第一部分实验的心肌标本提取心肌细胞蛋白,采用PKC活性分析试剂盒测定其活化程度;选择UFP-101(1×10-7mol/kg)与PKC拮抗剂Calphostin C (0.1mg/kg)配伍尾静脉给药5分钟后开胸结扎冠状动脉,记录分析结扎后一小时心律失常的变化,以探讨孤啡肽作用可能的分子机制。
     结果:
     1.与对照组比较,静脉给予UFP-101,能明显降低CAO(急性冠脉结扎)后室性心律失常的发生。从时间分布看,UFP-101对心律失常的作用主要发生在结扎15分钟后。
     2.膜片钳实验结果显示,孤啡肽明显缩短心肌细胞APD, UFP-101可以阻断此抑制作用。
     3.心肌细胞PKC活性分析显示,UFP-101明显增加PKC活性。静脉给予UFP-101,能明显降低CAO(急性冠脉结扎)后室性心律失常的发生的作用可以被PKC抑制剂所拮抗。
     结论:内源性孤啡肽通过缩短动作电位时程或抑制PKC通路促进大鼠急性心肌缺血后室性心律失常的发生
Background—Ventricular arrhythmia has became the primal reson for the people who die fromacute myocardial ischemia[1]. Orphanin FQ (OFQ nociceptin) whose structure primary is similarto dynorphin A indeed is a heptadecapeptide, but has low affinity binds to receptors of opioidclassical[2]. We had found that during acute myocardial ischemia there were more OFQ in pinalcords and dorsal root ganglion of rats [3], which suggest OFQ may participates in this process.Objective---We carried out this study to study the effects of endogenous OFQ on ventriculararrhythmia caused by acute myocardial ischemia in rats and explore the possible mechanism.Methods—The resuarch was devided into three experiments:
     1. In this experiment we use adult healthy male SD rats and the weigh of them were250-280g.They were divided into five groups randomly: U11,U9and U7groups were treatment with OFQantagonist compound UFP-101in the dosage of1×10~(-11)mol/kg,1×10~(-9)mol/kg and1×10~(-7)mol/kg, i.v. Calphostin C (0.1mg/kg) a specific inhibitor of PKC and UFP-101(1×10~(-7))mol/kg was administered in U7-C group and the control group were treatment with saline5minbefore they were subjected to the coronary artery occlusion (CAO) for60min and ECG wereobserved and analyzed.
     2. We collected the ventricular myocytes from the heart of SD rats.The heart was perfusedwith an solution containing enzyme in Langendorff perfusion. Ventricular myocytes’ actionpotential (AP) was induced and recoded with the technique of whole-cell patch-clamp.Ventricular myocytes were perfused with The Tyrode’s solution contained OFQ in the dosage of1×10~(-11)mol/L,1×10~(-9)mol/L and1×10~(-7)mol/L, i.v.(O11,O9,O7; N=6), UFP-101in the dosageof1×10~(-8)mol/L(U8; n=6) and OFQ (1×10~(-9)mol/L)+ufp-101(1×10~(-8)mol/L)(O9U8; N=6).The effects of OFQ on Action potential duration (APD) were investigated.
     3. Study the role of PKC in the process of endogenous Orphanin FQ increases the occurrenceof ventricular arrhythmia caused by acute myocardial ischemia. Peptides were extracted fromthe heart which came from the experiment-1, a detection of PKC with no radioactive was used tomeasure the activity of PKC.Results—7Compared with C group Outbreak number of VEB (ventricular ectopic beats) werelower in U9and U7group P<0.05and can reduce the happening of ventricular tachycardia(VT)and ventricular fibrillation(VF) in U11,U9and U7group P<0.05. Cmopared with U7group theeffect that can drop the happening of ventricular arrhythmia was reversed in U7-C group. The time of ventricular arrhythmia distributed in U11, U9and U7groups was shortter than C group andU7-C groups and the difference mainly in the time of more than15min.8OFQshorted ratventricular myocytes’ APD in O11, O9and O7group obviously P<0.05and UFP-101canreversed the effect of OFQ.9Activity of PKC was higher in U11,U9and U7group comparedwith C group P<0.05.
     Conclusion—Endogenous OFQ increases the occurrence of ventricular arrhythmia cauced byCAO in rats which may result from inhibition of APD or PKC-dependent pathway.
引文
[1] Shiny KS, Kumar SH, Farvin KH, et al. Protective effect of taurine on myocardial antioxidant status inisoprenaline induced myocardial infarctionin rats. Journal of Pharmacy Pharmacology,2005,,57:1313–1317.
    [2] Eifling M, Razavi M, Massumi A., The evaluation and management of electrical storm. Tex Heart Inst J.2011;38(2):111-21.
    [3] Schultz HD, Ustinova EE. Capsaicin receptors mediate free radical-induced activation of cardiacafferent endings. Cardiovasc Res1998;38:348-355.
    [4] Hua F, Harrison T, Qin C, Reifsteck A, Ricketts B, Carnel C, et al. c-Fos expression in rat brain stemand spinal cord in response to activation of cardiac ischemia-sensitive afferent neurons andelectrostimulatory modulation. Am J Physiol Heart Circ Physiol2004;287:2728-2738.
    [5] Franco-Cereceda A. Calcitonin gene-related peptide and tachykinins in relation to local sensory controlof cardiac contractility and coronary vascular tone. Acta Physiol Scand Suppl1988;569:1–63.
    [6] K llner G, Gonon A, Franco-Cereceda A. Calcitonin gene-related peptide in myocardial ischaemia andreperfusion in the pig. Cardiovasc Res1998;38:493–499.
    [7] McHugh JM, McHugh WB. Pain: neuroanatomy, chemical mediators and clinical implications. AACNClin Issues,2000,11:168~178
    [8] Longhurst JC, Tjen SC, Fu LW. Cardiac sympathetic afferent activation provoked by myocardialischemia and reperfusion. Mechanisms and reflexes. Ann NY Acad Sci,2001,940:74~95
    [9] Reinscheid RK, Nothacker HP, Bourson A, et al. Orphanin FQ: a neuropeptide that activates anopioidlike G protein-coupled receptor. Science1995;270:792-794.
    [10] Meunier JC, Mollereau C, Toll L, et al. Isolation and structure of the endogenous agonist of opioidreceptor-like ORL1receptor. Nature1995;377:532-535.
    [11] Mollereau C, Mouledous L. Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides2000;21:907-917.
    [12] Meunier JC. Nociceptin/orphanin FQ and the opioid receptor-like ORL1receptor. Eur J Pharmacol1997;340(1):1-15.
    [13] Reinscheid RK, Ardati A, Monsma FJ Jr, et al. Structure-activity relationship studies on the novelneuropeptide orphanin FQ. J Biol Chem1996;271:14163-14168.
    [14] Giuliani S, Tramontana M, Lecci A, Maggi CA. Effect of nociceptin on heart rate and blood pressure inanaesthetized rats. Eur J Pharmacol1997;333(2-3):177-179.
    [15] Hashiba E, Hirota K, Kudo T, et al. Effects of nociceptin/orphanin FQ receptor ligands on bloodpressure, heart rate, and plasma catecholamine concentrations in guinea pigs. Naunyn SchmiedebergsArch Pharmacol2003;367(4):342-347.
    [16] Salis MB, Emanueli C, Milia AF, et al. Studies of the cardiovascular effects of nociceptin and related peptides. Peptides2000;21(7):985-993.
    [17]Dumont M, Lemaire S. Characterization of the high affinity [H] nociceptin binding site in membrane preparations of the rat heart:correlation with the non-opioid dynorphin binding site. J Mol Cell Cardiol1998;30:2751-2760.
    [18]周秀娟,桂鸣,党瑜华,唐朝枢,石湘芸.充血性心力衰竭患者血浆孤啡肽水平观察.中华核医学杂志1998;18(4):231.
    [19]Guo Z, Yao TP, Wang JP, Ding JY. Acute myocardial ischemia up-regulates nociceptin/orphanin FQ in dorsal root ganglion and spinal cord of rats. Neurosci Lett2008;433(3):274-278.
    [20]Steinberg JS, Gaur A, Sciacca R, Tan E. New-onset sustained ventricular tachycardia after cardiac surgery. Circulation,1999,99:903-908.
    [21]Pires LA, Wagshal AB, Lancey R, Huang SK. Arrhythmias and conduction disturbances after coronary artery bypass graft surgery:epidemiology, management, and prognosis. Am Heart J,1995,129:799-808.
    [22]Bril A. Cellular mechanism of cardiac arrhythmias in the ischemic and reperfused heart. EXS,1996,76:135-53.
    [23]Lee AY. Endogenous opioid peptides and cardie arrhythmias. Int J Cardiol.1990;27(2):145-151.
    [24]Lee AY. Stereospecific antiarrhythmic effects of naloxone against myocardial ischemia and reperfusion in the dog. Br J Pharmacol.1992;107(4):1057-1060.
    [25]Wong TM, Lee AY. Chronic morphine treatment reduces the incidence of ventricular arrhythmia in the isolated rat heart induced by dunophinl-13of myocardial ischemia and reperfusion. Neurosci Lett.1987;77(1):61-65.
    [26]Wong TM, Lee AY, Tai KK. Effects of drugs interacting with opioid receptors during normal perfusion or ischemia and reperfusion in the isolated rat heart-an attempt to identify cardiac opioid receptor subtype involved in arrhythmogenesis. J Mol Cell Cardiol.1990;22(10):1167-1175.
    [27]Yu XC, Wang HX, Pei JM, Wong TM. Anti-arrhythmic effect of kappa-opioid receptor stimulation in the perfused rat heart:involvement of a cAMP-dependent pathway. J Mol Cell Cardiol.1999;31(10):1809-1819.
    [28]Guo Z, Yao TP, Wang JP, Ding JY. Acute myocardial ischemia up-regulates nociceptin/orphanin FQ in dorsal root ganglion and spinal cord of rats. Neurosci Lett2008;433(3):274-278.
    [29]Liu Q, Kong AL, Chen R, Qian C, Liu SW, Sun BG, Wang LX, Song LS, Hong J. Propofol and arrhythmias:two sides of the coin. Acta Pharmacol Sin.2011Jun;32(6):817-23.
    [30]Islam MA. Pharmacological modulations of cardiac ultra-rapid and slowly activating delayed rectifier currents:potential antiarrhythmic approaches. Recent Pat Cardiovasc Drug Discov.2010Jan;5(1):33-46.
    [31]Aiba T, Tomaselli GF. Electrical remodeling in the failing heart. Curr Opin Cardiol.2010Jan;25(1):29-36.
    [32]Knoflach F, Reinscheid RK, Civelli O, Kemp JA. Modulation of voltage-gated calcium channels byorphanin FQ in freshly dissociated hippocampal neurons. J Neurosci1996;16:6657-6664.
    [33] Beedle AM, McRory JE, Poirot O, et al. Agonist-independent modulation of N-type calcium channelsby ORL1receptors. Nat Neurosci2004;7:118-125.
    [34] Abdulla FA, Smith PA. Nociceptin inhibits T-type Ca2+channel current in rat sensory neurons by aG-protein-independent mechanism. J Neurosci1997;17:8721-8728.
    [35] Vaughan CW, Ingram SL, Christie MJ. Actions of the ORL1receptor ligand nociceptin on membraneproperties of rat periaqueductal gray neurons in vitro. J Neurosci1997;17:996-1003.
    [36] Ikeda K, Kobayashi K, Kobayashi T, Ichikawa T, Kumanishi T, Kishida H, Yano R, Manabe T.Functional coupling of the nociceptin/orphanin FQ receptor with the G-protein-activated K+(GIRK)channel. Brain Res Mol Brain Res1997;45:117-126.
    [37] Connor M, Vaughan CW, Chieng B, Christie MJ. Nociceptin receptor coupling to a potassiumconductance in rat locus coeruleus neurons in vitro. Br J Pharmacol1996;119:1614-1618.
    [38] Vaughan CW, Christie MJ. Increase by the ORL1receptor (opioid receptor-like1) ligand, nociceptin, ofinwardly rectifying K+conductance in dorsal raphe nucleus neurones. Br J Pharmacol1996;117:1609-1611.
    [39] Jennings EA. Postsynaptic K+current induced by nociceptin in medullary dorsal horn neurons.Neuroreport2001;12:645-648.
    [40] YH Wang, CX Shi, F Dong, JW Sheng and YF Xu. Inhibition of the rapid component of the delayedrectifier potassium current in ventricular myocytes by angiotensin II via the AT1receptor. BritishJournal of Pharmacology (2008)154,429–439
    [41] O'Quinn MP, Palatinus JA, Harris BS, Hewett KW, Gourdie RG. A peptide mimetic of the connexin43carboxyl terminus reduces gap junction remodeling and induced arrhythmia following ventricular injury.Circ Res.2011Mar18;108(6):704-15. Epub2011Jan27.
    [42] New DC, Wong YH. The ORL1receptor: molecular pharmacology and signalling mechanisms.Neurosignals2002;11(4):197-212.
    [43] Lee TM, Lin CC, Lien HY, Chen CC. K(ATP) channel agonists preserve connexin43protein ininfarcted rats by a protein kinase c-dependent pathway. J Cell Mol Med.2011Jun21. doi:10.1111/j.1582-4934.2011.01366.x.[Epub ahead of print]
    [1]1Maltsev VA, Undrovinas AI. A multimodal composition of the late Na+current in human ventricularcardiomyocytes [J]. Cardiovasc Res,2006,69(1):116-127.
    [2]2Moric E, Herbert E, Trusz-Gluza M, et al. The implications of genetic mutations in the sodiumchannel gene (SCN5A)[J]. Europace,2003,5(4):325-334.
    [3]3Opie LH. Tedisamil in coronary disease: additional benefits in the therapy of atrial fibrillation?[J]. JCardiovasc Pharmacol Ther,2003,8(Suppl1):S33-S37.
    [4]4Brown AM. Drugs, hERG and sudden death[J]. Cell Calcium,2004,35(6):543-547.
    [5]5Miake J, Marbán E, Nuss HB. Functional role of inward rectifier current in heart probed byKir2.1overexpression and dominant-negative suppression[J]. J Clin Invest,2003,111(10):1529-1536.
    [6]6Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by amutateon in the KCNJ2gene[J]. Circ Res,2005,96(7):800-807.
    [7]7Kaab S, Zwermann L, Barth A, et al. Selective block of sarcolemmal IKATP in humancardiomyocytes using HMR1098[J]. Cardiovasc Drugs Ther,2003,17(5-6):435-441.
    [8]8Patterson E, Lazzara R, Szabo B, et al. Sodium-calcium exchange initiated by the Ca2+transient: anarrhythmia trigger within pulmonary veins[J]. J Am Coll Cardiol,2006,47(6):1196-1206.
    [9]9Splawski I, Timothy KW, Sharpe LM, et al. CaV1.2calcium channel dysfunction causes amultisystem disorder including arrhythmia and autism[J]. Cell,2004,119(1):19-31.
    [10]10DuanDY, LuisLL, Nathan B, eta.l Functional role ofanion channels in cardiac diseases[J]. ActaPharmaclo Sinica,2005,26(3):265
    [11]11Levesque PC, Clark CD, Zakarov SI, eta.l Anion and cationmodulation of the guinea-pigventricularaction potentialduringb-adreno-ceptor stimulation[J]. PflugArch Eur J Physio,l1993,424:54
    [12]12ZygmuntAC. Intracellular calcium activates a chloride current in canine ventricularmyocytes[J].AmJPhysio,l1994,267(5pt2):H1984
    [13]13Duan D,Ye L, Britton F, eta.l A novel anionic inward rectifier in native cardiacmyocytes[J].CircRes,2000,86(4):E63
    [14]14Harris AL. Emerging issues of connexin channels: biophysics fills the gap [J]. Q RevBiophys,2001,34(3):325-472.
    [15]15Salameh A, Dhein S. Pharmacology of gap junctions. New pharmacological targets for treatment ofarrhythmia, seizure and cancer?[J]. Biochim Biophys Acta,2005,1719(1-2):36-58.
    [16]16Kostin S, Rieger M, Dammer S, et al. Gap junction remodeling and altered connexin43expressionin the failing human heart[J]. Mol Cell Biochem,2003,242(1-2):135-144.
    [17]17Ausma J, van Der Velden HM, Lenders MH, et al. Reverse struc-tural and gap-junctionalremodeling after prolonged at-rial fibrillation in the goat [J]. Circulation,2003,107(15):2051-2058.
    [18]18Gutstein DE, Morley GE, Tamaddon H, et al. Conduction slowing and sudden arrhythmic death inmice with cardiac-restricted inactivation of connexin43[J]. Circ Res,2001,88(3):333-339.
    [19]19Nao T, Ohkusa T, Hisamatsu Y, et al. Comparison of expression of connexin in right atrialmyocardium in patients with chronic atrial fibrillation versus those in sinus rhythm[J]. Am JCardiol,2003,91(6):678-683.
    [20]20Stahlhut M, Petersen JS, Hennan JK, et al. The antiarrhythmic peptide rotigaptide (ZP123)increases connexin43protein expression in neonatal rat ventricular cardiomyocytes [J]. Cell CommunAdhes,2006,13(1-2):21-27.
    [21]21Gollob MH, Jones DL, Krahn AD, et al. Somatic mutations in the connexin40gene (GJA5) in atrialfibrillation[J]. N Engl J Med,2006,354(25):2677-2688.
    [22]22Yang B, LinH, Xiao J, eta.l Themuscle-specificmicroRNAmiR-1regulates cardiac arrhythmogenicpotential by targeting GJA1and KCNJ2[J]. NatMed,2007,13(4):486
    [23]23ZhaoY, Ransom JF, LiA, et a.l Dysregulation of cardiogenesis, cardiac conduction, and cell cycleinmice lackingmiRNA-1-2[J]. Cel,l2007,129(2):303
    [24]24Luo X, Lin H, Pan Z, et a.l Down-regulation ofmiR-1/miR-133contributes to re-expression ofpacemaker channel genesHCN2and HCN4in hypertrophic heart[J]. JBiolChem,2008,283(29):20045
    [25]25Zhang C, Xu D,Li Y, et al. Experimental study of the effect of auto2nomic nervous system on thetransmural dispersion of ventricular re2polarization under acute myocardial ischemia in vivo[J]. JHuazhon2guniv Sci TechnologMed Sci,2002,22(2):96
    [26]26Cerati D, Schwartz PJ. Single cardiac vagal fiber activity, acute myo2cardial ischemia, and risk forsudden death [J]. Circ Res,1991,69(5):1389
    [27]27de Langen CD, deGraeffPA, van GilstWH, et a.l Effects of angiotensin and captoprilon induciblesustained ventricular tachycardia twoweeks aftermyocardial infarction in the pig[J]. J CardiovascPharmaco,l1989,13(2):186
    [28]28DeMelloWC. Cardiac arrhythmias: The possible role of the reninangiotensin system[J]. JMolMed,2001,79(2-3):103
    [1] Vaughan Williams EM.A classification of antiarrhythmic actions reassessed after a decade of newdrugs.J Clin Pharmacol,1984,24:129-147
    [2] Every NR èhlatky MA èMeEbnaldKM èetal.Estimating the proportion of post-myocardial infaretionPatients who may bnefit from prophylactic implantable defibrillator placement from analysis of theCAsT registry òJ].Am J CardioI è1998è82(5):683685.
    [3] opieLH, Tedismal in coronary disease: additional benefits in the therepy of atrial fibrillation[J]Cardlovasc Phcol Ther è2003è8(1):3337.
    [4] Sato T, Sasaki N, Seharaseyon J, et al.Selective pharmawlogical agents implicate mitochondrial but notsarcolemmal KATP channels in ischemic cardioprotection [J].Circulation,2000,101(20):24182423.
    [5] Chen YH, Xu SJ, Bendahhous S, et al.KCNQl gain of function mutation infamilial atrial fibrillation}J].Science,2003,299(5604):251254.
    [6] Mohler PJ, Schott JJ, Gramolini AO, et al.Ankyrin-Bmutation causes type4long-QT cardiac arrhythmicand sudden cardiac death[J].Nature,2003,421(6923):634639.
    [7] Tristani Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of KCNJ2mutations associated with LQT7(Andersen syndrome)[J]JClin Invest,2002,110(3):381388.
    [8] Schwartz PJ. Clinical applicability of molecular biology: the case of the Long QT syndrome [J].CurrControl Trials Cardiovasc Med,2000,1(2):8891.
    [9] Thomas D, Kathofer S, Zhang W, et al.Acute effects of dronedarone on both components of the cardiacdelayed rectifier K+current,HERG and KvLQTl/mink potassium channels[J].Br J Pharmacol,2003,140(5):9961005.
    [10] Watanabe H, Watanabe I, Nakai T, et al.Frequency-dependent electrophysiological effects offlecainide, nifekalant and d, l-sotalol on the human atrium[J].Jpn Circ J,2001,65(1):16.
    [11] Chen F, Esmailian F, Sun W, et al.Azimilide inhibits multiple cardiac potassium currents in humanatrial myocytes[J].J Cardiovasc Pharmacol Ther,2002,7(4):255264.
    [12] Das B, Sarkar C. Mitochondrial IC ATP channel activation is important in the antiarrhythmic andcardioprotective effects of non-hypotensive doses of nicorandil and cromakalim duringischemia/reperfusion: a study in an intact anesthetized rabbit model [J].Pharmacol Res,2003,47(6):447461
    [13] XiaoYF, Kang JX, Morqan JP, eta.l Blocking effectsofpolyunsaturated fatty acids on Na+channels ofneonatal rat ventricularmyocytes[J]. ProcNatlAcad SciU SA,1995,92:11000
    [14] XiaoYF, Ke Q, Wang SY, et a.l Electrophysiologic properties of lidocaine, cocaine, and n-3fatty-acidsblock of cardiac Na+channels[J]. Eur J Pharmaco,l2004,485:31
    [15] LeifertWR, McMurchieEJ, SaintDA. Inhibition of cardiac sodium currents inadult ratmyocytes by n-3polyunsaturated fatty acids[J]. Physio,l1999,520:671
    [16] JanseMJ.Electrophysiological changes in heart failure and their relationship toArrhythmogenesis[J].Cardiovasc Res,2004,61:208
    [17] Verkerk AO, van Ginneken AC, van Veen TA, et a.l Effects ofheart failure on brain-type Na+channels inrabbit ventricularmyocytes[J].Europace,2007:571
    [18] XiaoY-F, WrightSN, WangGK, et a.l Coexpression with the1subunitmodifies the kinetics andfatty-acid block of hH1a Na+channels[J]. Am Physio,l2000,279:35
    [19] BogdanovKY, SpurgeonHA, VinogradovaTM, eta.l Modulation of the transientoutward current inadultratventricularmyocytesby polyunsaturated fatty acids[J]. Am J Physio,l1998,274(2):571
    [20] XiaoYF, Morgan JP, LeafA. Effects ofpolyunsaturated fatty acids on cardiac voltage-activatedK+currents in adult ferret cardiomyocytes[J]. ShengLiXue Bao,2002,54(4):271
    [21] Den RuijterHM, BereckiG, Verkerk AO, et a.l Acute administrtion of fish oil inhibits triggered activityin isolatedmyocytesfrom rabbits and patientswith heart failure[J].Circulation,2008,117(4),536
    [22] Swan JS, Dibb K, Negretti N, et a.l Effects of eicosapentaenoic acid on cardiac SR Ca2+-release andryanodine receptor function [J].Cardiovasc Res,2003,60(2):337
    [23] FerrierGR, Redondo I, Zhu J. Differential effects of docosahexaenoic acid on contractions and L-typeCa2+current in adult cardiacmyocytes[J]. Cardiovasc Res,2002,54(3):601
    [24] TalaveraK, StaesM, JanssensA, et a.l Mechanism of arachidoni acidmodulation oftheTtypeCa2+channel[J]. Gen Physio,l2004,124:225
    [25] XiaoYF, SiggDC,LeafA. The antiarrhythmic effectofn-3polyunsaturated fatty acids: modulation ofcardiac ion channels as a potentialmechanism[J]. MembrBio,l2005,206:141
    [26] XiaoYF, KeQ, ChenY, eta.l Inhibitory effectofn-3fish oil fatty acids on cardiac Na+/Ca2+exchangecurrents in HEK293t cells [J]. Biochem BiophysResCommun,2004,321:116
    [1]Lee AY. Endogenous opioid peptide and cardiac arrhythmias.Int J Cardiol,1990;27(2):145
    [2]Lee AY. Stereospecific antiarrhythmic effects of naloxone against myocardial ischemia and reperfusion in dog.Br J Pharmacol,1992;107(4):1057
    [3]Wong TM, Lee AY. Chronic morphine treatment reduces the incidence of ventricular arrhythmias in the isolated rat heart induced by dynorphin1-13or myocardial ischemia and reperfusion.Neurosci Lett,1987;77(1):61
    [4]Wong TM, Lee AY, Tai KK. Effects of drugs interacting with opioid receptors during normal perfusion or ischemia and reperfsion in the isolated rat heart-an attempt to identify cardiac opioid receptor subtype involved in arrhythmogenesis.J Mol Cell Cardiol,1990;22:1167
    [5]刘良明,胡德耀,陈惠孙.内阿片肽及其受体在循环休克病理生理中的意义.国外医学生理、病理学与临床分册,1996;16(2):72
    [6]Lee AY, Wong TM. Effects of dynorphinl-13on cardiac rhythm and cyclic adenosine monophosphate (cAMP) levels in the isolated perfused rat heart.Neurosci Lett,1987;80(3):289
    [7]Du XJ, Erson KE, Jacobsen AN, et al. Suppression of ventricular arrhythmias during ischemia-reperfusion by agents inhibiting. Ins(1,4,5) P3release[J].Circulation,1995,91:2712-2716.
    [8]Woodcock EA,Lambert KA,Du XJ.Ins(1,4,5)P3during myocardial ischemia and its relationship to the development of arrhythmias [J] J Mol Cell Cardiol,1996,28:2129-2138.
    [9]Wong TM,Lee AY,Tai KK.Effects of drugs interacting with opioid receptors during normal perfusion or ischaemia and reperfusion-an attmpt to identify cardiac opioid receptor subtype(s) involved in arrhthmogenesis [J] J Mol Cell Cardiol,1991,22:1167-1175.
    [10]Bian JS,Zhang WM,Xia Q,et al.Phospholipase C inhibitiors attenuare arrhythmias induced byK-receptor stimulation in the isolated rat heart[J]. J Mol Cell Cardiol,1998,30:2103-2110.
    [11]Sheng JZ,Wong NS,Wang HX,et al.Pertussis toxin,but not tyrosine kinase inhibitor,abolishes effects of U50,488H on [Ca2+]i in myocytes
    [12]Yu XC,Wang HX,Pei JM,et al.Anti-arrhythmic effect ofK-opioid receptor stimulation in the perfused rat heart:involvement of a cAMP-dependent pathway[J]J Mol Cell Cardiol,1999,31:1809-1819.
    [13]Watanabe T, Suzuki N, and Shimamoto N. Endothelin in myocardial infarction. Nature1990;334:114
    [14]欧阳伟,钱学贤等。内源性降钙素基因相关肽在整体大鼠心肌缺血预适应中的作用。Chin,J Arterioscler,1999,7(1)
    [15]James RP. Protection of the heart by ischemia preconditioning, mechanisms and possibilities for pharmacological exploitation [J] Trends Pharmacol Sci.1994.15(11:19-25.
    [16]Peng CF, Li YJ, Deng HW, et al. The protective effects of ischemic and calcitonin gene-related peptide-induced preconditioning on myocardial injury by endotheli-1in the isolated perfused rat heart [J].Life Sci,1996,59(18):1507-14.
    [17]Tao ZW, Li TJ, Deng HW. Attenuation of myocardial injury duo to free radicals (OFR) toningene-related peptide [J]312-6.by pretreatment with OFR or calci Acta Pharmacol Sini,1997,18(4):
    [18] Kim D.Calcitonin gene-related peptide activates the muscarinic-gated K+current in atrial cells[J].Pflugers Arch,1991,418(4):338-45.
    [1] Mollereau C, Parmentier M, Mailleux P, et al. ORL1, a novel member of the opioid receptor familycloning, functional expression and localization. FEBS Lett1994;341:33-38.
    [2] Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK Molecular cloning andtissue distribution of a putative member of the rat opioid receptor gene family that is not a-,-, or/-opioid receptor type. FEBS Lett1994;347:284-288.
    [3] Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC,Ferrara P, Monsarrat B: Isolation and structure of the endogenous agonist of opioid receptor-like ORL1receptor. Nature1995;377:532-535.
    [4] Reinscheid R K, Nothacker H P, Bourson A, et al. Orphanin FQ: A neuropeptide that activaties anopioid-like G protein-coupled receptor. Science1995;270:792-794.
    [5] Nothacker HP, Reinscheid RK, Mansour A, Henningsen RA, Ardati A, Monsma FJ, Watson SJ Jr, andCivilli O. Primary structure and tissue distribution of the orphanin FQ precursor. Proc Natl Acad Sci1996;93:8677-8682.
    [6] Okuda-Ashitaka E, Ito S. Nocistatin: A novel neuropeptide encoded by the gene for thenociceptin/orphanin FQ precursor. Peptides2000;21(7):1101-1109.
    [7] Orsini MJ, Nesmelova I, Young HC, et al. The nociceptin pharmacophore site for opioid receptorbinding derived from the NMR structure and bioactivity relationships. J Biol Chem2005;280:8134-8142.
    [8] Reinscheid RK, Ardati A, Monsma FJ Jr, et al. Structure-activity relationship studies on the novelneuropeptide orphanin FQ. J Biol Chem1996;271:14163-14168.
    [9] Dooley CT, Houghten RA. Orphanin FQ: receptor binding and analog structure activity relationships inrat brain. Life Sciences1996;59:L23-29.
    [10] New DC, Wong YH. The ORL1receptor: molecular pharmacology and signalling mechanisms.Neurosignals2002;11(4):197-212.
    [11] Reinscheid RK, Nothacker H, Civelli O. The orphanin FQ/nociceptin gene: structure, tissue distributionof expression and functional implications obtained from knockout mice. Peptides2000;21(7):901-906.
    [12] Neal CR, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ. Localization of orphanin FQ(nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol1999;406(4):503-547.
    [13] Witta J, Palkovits M, Rosenberger J, Cox BM. Distribution of nociceptin/orphanin FQ in adult humanbrain. Brain Res2004;997(1):24-29.
    [14] Lachowicz JE, Shen Y, Monsma FJ, et al. Molecular cloning of a novel G proten-coupled receptorrelated to the opioid receptor family.J Neurochem1995;64:34-40.
    [15] Houtani T, Nishi M, Takeshima H, et al. Structure and regional distribution of nociceptin/orphanin FQ precursor. Bioch and Bioph Res Commu1996;219:714-719.
    [16]Riedl M, Shuster S, Vulchanova L, Wang J, Loh HH, Elde R. Orphanin FQ/nociceptin-immunoreactive nerve fibers parallel those containing endogenous opioids in rat spinal cord. Neuroreport1996;7:1369-1372.
    [17]Dun NJ, Dun SL, Hwang LL. Nociceptin like immunoreactivity in autonomic nuclei of the rat spinal cord. Neurosci Lett1997;234:95-98.
    [18]Kummer W, Fischer A. Nociceptin and its receptor in guinea pig symathetic ganglia. Neurosci Lett1997;234:35-38.
    [19]邹冈主编,基础神经药理学,北京:北京医科大学出版社,1999:288.
    [20]Nohacker HP, Reinscheid R, M ansour A, et al. Primary structure and tissue distribution of the Orphanin FQ precursor. Neurobiology1996;93:8677-8682.
    [21]Calo' G, Guerrini R, Rizzi A, Salvadori S, Regoli D. Pharmacology of nociceptin and its receptor:a novel therapeutic target. Br J Pharmacol2000;129(7):1261-1283.
    [22]Guo Z, Yao TP, Wang JP, Ding JY. Acute myocardial ischemia up-regulates nociceptin/orphanin FQ in dorsal root ganglion and spinal cord of rats. Neurosci Lett2008;433(3):274-278.
    [23]Mollereau C, Simons MJ,Soularue P, et al. Structure, tissue distribution, and chromosomal localization of the prepronocicetin gene. Neurobiology1996;93:8666-8670.
    [24]Meunier JC. Nociceptin/orphanin FQ and the opioid receptor-like ORL1receptor. Eur J Pharmacol1997;340(1):1-15.
    [25]Wang JB, Johnson PS, Imai Y, Persico AM, Ozenberger B, Eppler CM, Uhl GR. cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett1994;348:75-79.
    [26]Halford WP, Gebhardt BM, Carr DJ. Functional role and sequence analysis of a lymphocyte orphan opioid receptor. Neuroimmunol1995;59:91-101.
    [27]Tian JH, Xu W, Han JS et al. Bidirectional modulatory effect of orphanin FQ on morphine-induced analgesia:antagonism in brain and potentiation in spinal cord of the rat. Br J Pharmacol1997;120(4):676-680.
    [28]Hao JX, Wiesenfeld-Hallin Z, Xu XJ. Lack of cross-tolerance between the antinociceptive effect of intrathecal orphanin FQ and morphine in the rat. Neurosci Lett1997;223(1):49-52.
    [29]Schulz S, Schreff M, Nuss D, Gramsch C, Hollt V. Nociceptin/orphanin FQ and opioid peptides show overlapping distribution but not co-localization in pain-modulatory brain regions. Neuroreport1996;7(18):3021-3025.
    [30]Faber ESL, Chambers JP, Evans RH et al. Depression of glutamatergic transmission by nociceptin in the neonatal rat hemisected spinal cord prepara tion in vitro. British Journal of Pharmacology1996;119(2):189-190.
    [31]Helyes Z, Nemeth J, Pinter E, Szolcsanyi J. Inhibition by nociceptin of neurogenic inflammation and the release of SP and CGRP from sensory nerve terminals. Br J Pharmacol1997;121(4):613-615.
    [32]Jenck F, Moreau JL, Martin JR, et al. Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci1997;94(26):14854-14858.
    [33]Ciccocippo R, Angeletti S, Panocka I, Massi M. Nociceptin/orphanin FQ and drugs of abuse. Peptides2000;21(7):1071-1080.
    [34]Sandin J, choott PA, et al. Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur J Neurosci1997;9(1):194-197.
    [35]Saito Y, Maruyama K, Saido TC, et al. Overexpression of a neuropeptide nociceptin/orphanin FQ precursor gene, N23k/N27K, indures neurite outgrowth in mouse NS20Y cells. J Neurosci Res1997;48(5):397-406.
    [36]Nelson RM, Calo G, Guerrini R, Hainsworth AH, Green AR, Lambert DG. Nociceptin/orphanin FQ inhibits ischaemia-induced glutamate efflux from rat cerebrocortical slices. Neuroreport2000;11(17):3689-3692.
    [37]Mela F, Marti M, Ulazzi L, Vaccari E, Zucchini S, Trapella C, Salvadori S, Beani L, Bianchi C, Morari M. Pharmacological profile of nociceptin/orphanin FQ receptors regulating5-hydroxytryptamine release in the mouse neocortex. Eur J Neurosci2004;19(5):1317-1324.
    [38]孟美金,吴新民.鞘内注射孤啡肽对不同小鼠所致痛觉超敏的比较.中华麻醉学杂志2003;23(9):671-674.
    [39]Gintzler AR, Adapa ID, Toll L, et al. Modulation of enkephalin release by nociceptin (orphanin FQ). Fur J Pharmacol1997;325(1):29-34.
    [40]Knoflach F, Reinscheid RK, Civclli O, et al. Modulation of voltagegated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J Neurosci1996;16(21):6657-6664.
    [41]Liebel JT, Swandulla D, Zeilhofer HU. Modulation of excitatory synaptic transmission by nociceptin in superficial dorsal horm neurones of the neonatal rat spinal cord. Br J Pharmacol1997;121(3):425-432.
    [42]Ouagazzal AM, Moreau JL, Pauly-Evers M, Jenck F. Impact of environmental housing conditions on the emotional responses of mice deficient for nociceptin/orphanin FQ peptide precursor gene. Behav Brain Res2003;144(1-2):111-117.
    [43]Nishi M, Houtani T, Noda Y, et al. Unrestrained nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphanin FQ receptor. EMBOJ1997;16:1858-1864.
    [44]Champion HC, Zadina JE, Kastin AJ, et al. The endogenous mu-opioi d receptor agonists endomorphins1and2have novel hypotensive activity in the rabbit. Biochem Biophys Res Commun1997;235(3):567-570.
    [45]Gumusel B, Hao Q, Hyman A et al. Nociceptin:an endogenous agonist for central opioid like1(ORL1) receptors possesses systemic vasorelaxant properties. Life Sci1997;60(8):141-145.
    [46]Wei Y, Ouyang D, Liu Y, Chang Z, Tang J, Ding J. Peripheral tissue distribution of orphanin FQ precursor mRNA in stroke-prone spontaneously hypertensive rats. Chin Med Sci J1999;14(2):67-70.
    [47]Granata F, Potenza RL, Fiori A, Strom R, Caronti B, Molinari P, Donsante S, Citro G, Iacovelli L, De Blasi A, Ngomba RT, et al. Expression of OP4(ORL1, NOP1) receptors in vascular endothelium. Eur J Pharmacol2003;482(1-3):17-23.
    [48]Xu PH, Chang M, Cheng LX, Cheng Q, Yan X, Wang R. The relaxant effect of nociceptin on porcine coronary arterial ring segments. Can J Physiol Pharmacol2004;82(11):993-999.
    [49] Hugghins SY, Champion HC, Cheng G, Kadowitz PJ, Jeter JR. Vasorelaxant responses toendomorphins, nociceptin, albuterol, and adrenomedullin in isolated rat aorta. Life Sci2000;67(4):471-476.
    [50] Girolamo C, Remo G, Ralfaella B, Anna R, Giuliano M, Hirobumi O, Clementina B, Lambert DG,Salvadori S, Regoli D. Characterization of [NPhe1]nociceptin(1-13)NH2, a new selective nociceptinreceptor antagonist. Br J Pharmacol2000;129(6):1183-1193.
    [51] Champion HC, Pierce RL, Kadowitz PJ. Nociceptin, a novel endogenous ligand for the ORL1receptor,dilates isolated resistance arteries from the rat. Regul Pept1998;78(1-3):69-74.
    [52] Bucher B. ORL1receptor-mediated inhibition by nociceptin of noradrenaline release from perivascularsympathetic nerve endings of the rat tail artery. Naunyn Schmiedebergs Arch Pharmacol1998;358(6):682-685.
    [53] Giuliani S, Maggi CA. Prejunctional modulation by nociceptin of nerve-mediated inotropic responses inguinea-pig left atrium. Eur J Pharmacol1997;332(3):231-236.
    [54] Malinowska B, Godlewski G, Schlicker E. Function of nociceptin and opioid OP4receptors in theregulation of the cardiovascular system. J Physiol Pharmacol2002;53(3):301-324.
    [55] Giuliana S, Tramontana M, Lecci A, Maggi CA. Effect of nociceptin on heart rate and blood pressure inanaesthetized rats. Eur J Pharmacol1997;333(2-3):177-179.
    [56] Champion HC, Czapla MA, Kadowitz PJ. Nociceptin, an endogenous ligand for the ORL1receptor,decreases cardiac output and total peripheral resistance in the rat. Peptides1997;18(5):729-732.
    [57] Guerrini R, Calo G, Rizzi A, Bigoni R, Bianchi C, Salvadori S, Regoli D. A new selective antagonist ofthe nociceptin receptor. Br J Pharmacol1998;123(2):163-165.
    [58] McDonald J, Barnes TA, Okawa H, Williams J, Calo' G, Rowbotham DJ, Lambert DG. Partial agonistbehaviour depends upon the level of nociceptin/orphanin FQ receptor expression: Studies using theecdysone-inducible mammalian expression system. Br J Pharmacol2003;140(1):61-70.
    [59] Bigoni R, Giuliani S, Calo' G, Rizzi A, Guerrini R, Salvadori S, Regoli D, Maggi CA. Characterizationof nociceptin receptors in the periphery: In vitro and in vivo studies. Naunyn Schmiedebergs ArchPharmacol1999;359(3):160-167.
    [60] Olianas MC, Concas D, Onali P. Agonist activity of naloxone benzoylhydrazone at recombinant andnative opioid receptors. Br J Pharmacol2006;147(4):360-370.
    [61] Hashiba E, Hirota K, Kudo T, Calo' G, Guerrini R, Matsuki A. Effects of nociceptin/orphanin FQreceptor ligands on blood pressure, heart rate, and plasma catecholamine concentrations in guinea pigs.Naunyn Schmiedebergs Arch Pharmacol2003;367(4):342-347.
    [62] Lin B, Waterman R, Lippton H. Nociceptin receptor activation produces nitric oxide-mediated systemichypotension. Life Sci2000;66(6):99-104.
    [63] Nossaman BD, Champion HC, Kaye AD, Anwar M, Feng CJ, Kadowitz PJ. Nociceptin has vasodilatoractivity in the pulmonary vascular bed of the rat. J Cardiovasc Pharmacol Ther1998;3(3):253-258.
    [64] Abdelrahman AM, Pang CCY. Regional hemodynamic effects of nociceptin/orphanin FQ in theanesthetized rat. Eur J Pharmacol2002;450(3):263-266.
    [65] Arndt ML, Wu D, Soong Y, Szeto HH. Nociceptin/orphanin FQ increases blood pressure and heart ratevia sympathetic activation in sheep. Peptides1999;20(4):465-470.
    [66] Salis MB, Emanueli C, Milia AF, Guerrini R, Madeddu P. Studies of the cardiovascular effects ofnociceptin and related peptides. Peptides2000;21(7):985-993.
    [67] Kapusta DR. Neurohumoral effects of orphanin FQ/nociceptin: Relevance to cardiovascular and renalfunction. Peptides2000;21(7):1081-1099.
    [68] Habler H, Timmermann L, Stegmann J, Janig W. Effects of nociceptin and nocistatin on antidromicvasodilation in hairless skin of the rat hindlimb in vivo. Br J Pharmacol1999;127(7):1719-1727.
    [69] Shimohigashi Y, Hatano R, Fujita T, Nakashima R, Nose T, Sujaku T, Saigo A, Shinjo K, Nagahisa A.Sensitivity of opioid receptor-like receptor ORL1for chemical modification on nociceptin, a naturallyoccurring nociceptive peptide. J Biol Chem1996;271(39):23642-23645.
    [70] Varani K, Rizzi A, Calo G, Bigoni R, Toth G, Guerrini R, Gessi S, Salvadori S, Borea PA, Regoli D.Pharmacology of [Tyr1]nociceptin analogs: Receptor binding and bioassay studies. NaunynSchmiedebergs Arch Pharmacol1999;360(3):270-277.
    [71] Champion HC, Kadowitz PJ.[Tyr1]-nociceptin has naloxone-insensitive vasodilator activity in thehindquarters vascular bed of the rat. Life Sci1997;61(26):403-408.
    [72] Champion HC, Kadowitz PJ.[Tyr1]-nociceptin, a novel nociceptin analog, decreases systemic arterialpressure by a naloxone-insensitive mechanism in the rat. Biochem Biophys Res Commun1997;234(2):309-312.
    [73] Champion HC, Bivalacqua TJ, Rauchwarger A, McWilliams SM, McNamara DB, Kadowitz PJ.Analysis of vasodepressor responses to nociceptin and nociceptin analogs in the systemic vascular bedof the anesthetized rabbit in vivo. J Cardiovasc Pharmacol Ther1998;3(3):247-252.
    [74] Champion HC, Wang R, Hellstrom WJ, Kadowitz PJ. Nociceptin, a novel endogenous ligand for theORL1receptor, has potent erectile activity in the cat. Am J Physiol1997;273(1):E214-E219.
    [75] Champion HC, Bivalacqua TJ, Wang R, Hellstrom WJ, Kadowitz PJ.[Tyr1]-nociceptin and nociceptinhave similar naloxone-insensitive erectile activity in the cat. J Androl1998;19(6):747-753.
    [76] Lawrence AJ, Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractussolitarius. Prog Neurobiol1996;48(1):21-53.
    [77] Anton B, Fein J, To T, Li X, Silberstein L, Evans CJ. Immuno-histochemical localization of ORL-1inthe central nervous system of the rat. J Comp Neurol1996;368(2):229-251.
    [78] Kapusta DR, Sezen SF, Chang J-K, Lippton H, Kenigs VA. Diuretic and antinatriuretic responsesproduced by the endogenous opioid-like peptide, nociceptin (orphanin FQ). Life Sci1997;60(1):15-21.
    [79] Kapusta DR, Chang JK, Kenigs VA. Central administration of [Phe1%(CH2-NH)Gly2]nociceptin(1-13)-NH2and orphanin FQ/nociceptin (OFQ/N) produce similar cardiovascular and renalresponses in conscious rats. J Pharmacol Exp Ther1999;289(1):173-180.
    [80] Burmeister MA, Kapusta DR. Centrally administered nociception/orphanin FQ (N/OFQ) evokesbradycardia, hypotension, and diuresis in mice via activation of central N/OFQ peptide receptors. JPharmacol Exp Ther2007;322(1):324-331.
    [81] Shirasaka T, Kunitake T, Kato K, Takasaki M, Kannan H. Nociceptin modulates renal sympatheticnerve activity through a central action in conscious rats. Am J Physiol1999;277(4Pt2):R1025-R1032.
    [82] Carra G, Rizzi A, Guerrini R, Barnes TA, McDonald J, Hebbes CP, Mela F, Kenigs VA, Marzola G,Rizzi D, Gavioli E, et al.[(pF)Phe4,Arg14,-Lys15]N/OFQ-NH2(UFP-102), a highly potent andselective agonist of the nociceptin/orphanin FQ receptor. J Pharmacol Exp Ther2005;312(3):1114-1123.
    [83] Kapusta DR, Dayan LA, Kenigs VA. Nociceptin/orphanin FQ modulates the cardiovascular, but notrenal, responses to stress in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol2002;29(3):254-259.
    [84] Chu X, Xu N, Li P, Wang JQ. Profound inhibition of cardiomotor neurons in the rat rostral ventrolateralmedulla by nociceptin (orphanin FQ). Neuroreport1998;9(6):1081-1084.
    [85] Chu X, Xu N, Li P, Wang JQ. The nociceptin receptor-mediated inhibition of the rat rostralventrolateral medulla neurons in vitro. Eur J Pharmacol1999;364(1):49-53.
    [86] Chu X, Xu N, Li P, Mao L, Wang JQ. Inhibition of cardiovascular activity following microinjection ofnovel opioid-like neuropeptide nociceptin (orphanin FQ) into the rat rostral ventrolateral medulla. BrainRes1999;829(1-2):134-142.
    [87] Mao L, Wang JQ. Microinjection of nociceptin (orphanin FQ) into nucleus tractus solitarii elevatesblood pressure and heart rate in both anesthetized and conscious rats. J Pharmacol Exp Ther2000;294(1):255-262.
    [88] Mao L, Wang JQ. Cardiovascular responses to microinjection of nociceptin and endomorphin-1into thenucleus tractus solitarii in conscious rats. Neuroscience2005;132(4):1009-1015.
    [89] Mao L, Wang JQ. Pharmacological activation of nociceptin receptors in the nucleus tractus solitariusinhibits baroreflex in pentobarbital-anesthetized rats. Neuroscience2000;101(2):435-440.
    [90] Chitravanshi VC, Sapru HN. Mechanism of cardiovascular effects of nociceptin microinjected into thenucleus tractus solitarius of the rat. Am J Physiol Regul Integr Comp Physiol2005;288(6):R1553-R1562.
    [91] Venkatesan P, Wang J, Evans C, Irnaten M, Mendelowitz D. Nociceptin inhibits-aminobutyricacidergic inputs to cardiac para-sympathetic neurons in the nucleus ambiguous. J Pharmacol Exp Ther2002;300(1):78-82.
    [92] Venkatesan P, Baxi S, Evans C, Neff R, Wang X, Mendelowitz D. Glycinergic inputs to cardiac vagalneurons in the nucleus ambiguus are inhibited by nociceptin and-selective opioids. J Neurophysiol2003;90(3):1581-1588.
    [93] Chitravanshi VC, Sapru HN. Microinjections of nociceptin into the nucleus ambiguus elicits tachycardiain the rat. Brain Res2005;1051(1-2):199-204.
    [94] Krowicki ZK, Kapusta DR. Tonic nociceptinergic inputs to neurons in the hypothalamic paraventricularnucleus contribute to sympathetic vasomotor tone and water electrolyte homeostasis in conscious rats. JPharmacol Exp Ther2006;317(1):446-453.
    [95] Ma L, Cheng ZJ, Fan GH, Cai YC, Jiang LZ, Pei G. Functional expression, activation anddesensitization of opioid receptor-like receptor ORL1in neuroblastoma glioma NG108-15hybrid cells.FEBS Lett1997;403:91-94.
    [96] Cheng ZJ, Fan GH, Zhao J, Zhang Z, Wu YL, Jiang LZ, Zhu Y, Pei G, Ma L. Endogenous opioidreceptor-like receptor in human neuroblastoma SK-N-SH cells: Activation of inhibitory G protein andhomologous desensitization. Neuroreport1997;8:1913-1918.
    [97] Ho MK, Wong YH. Gz signaling: Emerging divergence from Gi signaling. Oncogene2001;20:1615-1625.
    [98] Lou LG, Ma L, Pei G. Nociceptin/orphanin FQ activates protein kinase C, and this effect is mediatedthrough phospholipase C/Ca2+pathway. Biochem Biophys Res Commun1997;240:304-308.
    [99] Chan JS, Yung LY, Lee JW, Wu YL, Pei G, Wong YH. Pertussis toxin-insensitive signaling of theORL1receptor: Coupling to Gz and G16proteins. J Neurochem1998;71:2203-2210.
    [100] Ho MK, Yung LY, Chan JS, Chan JH, Wong CS, Wong YH. GZ14links a variety of Gi-andGs-coupled receptors to the stimulation of phospholipase C. Br J Pharmacol2001;132:1431-1440.
    [101] Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity inmammalian cells. Science1994;265:808–811.
    [102] Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. Thestress-activated protein kinase subfamily of c-Jun kinases. Nature1994;369:156-160.
    [103] Bevan N, Scott S, Shaw PE, Lee MG, Marshall FH, Rees S. Nociception activates Elk-1and Sap1afollowing expression of the ORL1receptor in Chinese hamster ovary cells. Neuroreport1998;9:2703-2708.
    [104] Fukuda K, Shoda T, Morikawa H, Kato S, Mori K. Activation of mitogen-activated protein kinase bythe nociceptin receptor expressed in Chinese hamster ovary cells. FEBS Lett1997;412:290-294.
    [105] Lou LG, Zhang Z, Ma L, Pei G. Nociceptin/orphanin FQ activates mitogen-activated protein kinase inChinese hamster ovary cells expressing opioid receptor-like receptor. J Neurochem1998;70:1316-1322.
    [106] Zhang Z, Xin SM, Wu GX, Zhang WB, Ma L, Pei G. Endogenous delta-opioid and ORL1receptorscouple to phosphorylation and activation of p38MAPK in NG108-15cells and this is regulated byprotein kinase A and protein kinase C. J Neurochem1999;73:1502–1509.
    [107] Chan ASL, Wong YH. Regulation of c-Jun Nterminal kinase by the ORL1receptor through multiple Gproteins. J Pharmacol Exp Ther2000;295:1094-1100.
    [108] Okada K, Sujaku T, Chuman Y, et al. Highly potent nociceptin analog containing the Arg-Lys triplerepeat. Biochem Biophys Res Commun2000;278:493-498.
    [109] Ambo A, Hamazaki N, Yamada Y, et al. Structure-activity studies on nociceptin analogues: ORL1receptor binding and biological activity of cyclic disulfide-containing analogues of nociceptin peptides.J Med Chem2001;44:4015-4018.
    [110] Guerrini R, Calo G, Bigoni R, et al. Structure-activity studies of the Phe4residue ofnociceptin(1-13)-NH(2): identification of highly potent agonists of the nociceptin/orphanin FQ receptor.J Med Chem2001;44:3956-3964.
    [111] Bigoni R, Rizzi D, Rizzi A, et al. Pharmacological characterisation of [(pX)Phe4]nociceptin(1-13)amideanalogues1. In vitro studies. Naunyn Schmiedebergs Arch Pharmacol2002;365:442-449.
    [112] Rizzi A, Salis MB, Ciccocioppo R, et al. Pharmacological characterisation of
    [(pX)Phe4]nociceptin(1-13)-amide analogues2. In vivo studies. Naunyn Schmiedebergs ArchPharmacol2002;365:450-456.
    [113] Zhang C, Miller W, Valenzano KJ, et al. Novel, potent ORL-1receptor agonist peptides containingalpha-Helix-promoting conformational constraints. J Med Chem2002;45:5280-5286.
    [114] Calo G, Guerrini R, Bigoni R, et al. Structure-activity study of the nociceptin (1-13)-NH2N-terminaltetrapeptide and discovery of a nociceptin receptor antagonist. J Med Chem1998;41:3360-3366.
    [115] Calo G, Guerrini R, Bigoni R, et al. Characterization of [Nphe1]nociceptin(1-13)NH2, a new selectivenociceptin receptor antagonist. Br J Pharmacol2000;129:1183-1193.
    [116] Chen Y, Chang M, Wang R, et al.[Nphe1]nociceptin(1-13)-NH2antagonizes nociceptin-inducedhypotension, bradycardia, and hindquarters vasodilation in the anesthetized rat. Can J PhysiolPharmacol2002;80:31-35.
    [117] Calo G, Rizzi A, Rizzi D, et al.[Nphe1,Arg14,Lys15]nociceptin-NH2, a novel potent and selectiveantagonist of the nociceptin/orphanin FQ receptor. Br J Pharmacol2002;136:303-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700