去铁敏对大鼠脑出血后葡萄糖代谢影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     脑出血(Intracerebral hemorrhage,ICH)是神经系统的常见疾病,约占全部卒中的10-30%,死亡率及致残率极高。尽管及时清除血肿,防止其扩大对极少数患者可能有一定的疗效,但总体效果却不尽人意。因此,至今为止对脑出血尚无明确有效的治疗手段。大鼠脑出血后存在铁离子的长期潴留,血红蛋白及其降解产物,尤其是铁离子,参与了脑出血后的迟发性脑损伤过程。去铁敏,一种铁离子螯合剂,可以减轻脑出血导致的脑水肿、神经元死亡、脑萎缩及神经功能减退等等。葡萄糖是脑内唯一的供能物质,它的水平与神经元的活性程度密切相关。尽管已有大量的研究显示铁离子在脑水肿形成以及在脑出血后迟发性脑损伤中有重要作用,但很少有资料研究脑出血后铁离子与脑内局部葡萄糖代谢之间的关系,以及用铁离子螯合剂——去铁敏治疗后,葡萄糖代谢的变化情况。目前,定量测定活体内葡萄糖代谢率的最有效方法为放射自显影技术,即用~(18)F-FDG作为示踪剂进行放射自显影,它能无创动态定量地观察到各部分脑组织葡萄糖的代谢变化情况。小动物PET(small animal PET,MicroPET)是专门为小动物的PET显像研究而设计制造的,其分辨率更高。为了更进一步提高分辨率,本研究将MicroPET与MRI影像融合,使解剖形态与生化过程相结合,能更精确观察大鼠脑出血后基底节区的葡萄糖代谢变化。
     研究方法:
     通过大鼠自体血注入大脑尾状核建立脑出血实验动物模型,并将动物随机分为3组:去铁敏治疗组、对照组和假手术组(n=6只)。去铁敏治疗组动物在术后2h开始腹腔注射去铁敏100mg/kg,以后间隔12小时注射一次,连续7天。对照组在相应时间腹腔注射等量生理盐水。所有大鼠分别在术前、术后1d、3d、7d、14d和28d进行MRI和MicroPET扫描,采用MicroPET和MRI融合技术,观察大鼠脑出血前后基底节区葡萄糖代谢变化以及脑内血肿在梯度回波T_2~*WI序列的演变过程,并在相应时间点对大鼠进行神经功能学评分。同时在此基础上,观察去铁敏治疗后对脑内局部葡萄糖代谢的影响,并检测脑出血后28d时血肿周围淀粉样前体蛋白(amyloid precusor protein,APP)和葡萄糖转运蛋白-1(glucosetransporter-1,GLUT-1)的表达情况。
     结果:
     大鼠脑出血后可出现严重的神经功能缺失症状。与假手术组相比,大鼠脑出血后1d注血侧基底节葡萄糖代谢水平较对侧明显下降,随着时间的延长,注射侧基底节葡萄糖代谢率缓慢提高,但至28d时两侧基底节的葡萄糖代谢水平仍有差异。大鼠T_2~*WI扫描发现脑出血后急性期血肿部位表现为边界清楚的低信号环,内部为略高信号或低信号区内混杂小点、斑片状高信号;慢性期(28d)表现为边界清楚的均质低信号,提示了T_2~*WI可清晰显示脑内含铁血黄素沉积区域,且与血肿大小及范围一致。与对照组相比,经去铁敏治疗可显著提高注射侧基底节葡萄糖的代谢水平,缩小含铁血黄素沉积范围,改善神经功能缺失症状,且持续时间长。免疫组化结果示术后28d,血肿周围仍有APP染色阳性细胞表达,提示在脑出血后期,血肿周围仍存在轴突损伤,而出血侧GLUT-I的表达较对侧有减少的趋势。
     结论:
     1.脑出血后血肿周围存在葡萄糖代谢水平明显降低。
     2.去铁敏能显著缩小含铁血黄素沉积范围,提高葡萄糖代谢水平,改善大鼠脑出血后的神经功能,提示铁离子潴留可能参与了这一过程。
     3.脑出血后28d注射测基底节仍有淀粉样前体蛋白表达,提示在脑出血后期仍存在轴突损伤,其可能是导致ICH后葡萄糖代谢水平下降的重要原因之一。
Background and Purpose:
     Intracerebral hemorrhage(ICH) is a subtype of stroke with high morbidity and mortality accounting for about 10-30%of all strokes.Although the hematoma in humans gradually resolves,the neurological deficits in ICH patients are usually permanent and disabling.At present,there is no specific treatment for spontaneous intracerebral hemorrhage beyond supportive medical care.Several studies suggest that iron overload occurs in the brain following ICH and,an iron chelator,deferoxamine, can reduce ICH-induced brain damage,neuron death,brain atrophy,as well as neurological deficits,which suggests that iron plays an important part in brain injury after ICH.However,there is little known about the relationship between local glucose metabolism in brain and iron overload after ICH and the role of deferoxamine(DFX). The level of glucose metabolism correlates with the degree of neuronal activity.So far, the best method to make glucose quantitation in vivo is autoradiography using the tracer of 2-[18F]-fluoro-2-deoxy-D-glucose(FDG),which is the well-known radiotracer that has been frequently used as a marker of metabolic activity for glucose.Small animal Positron emission tomography(MicroPET) is a noninvasive imaging technique that allows quantitative in vivo determination of the rates of various physiologic and biochemical process with minimal invasiveness.In our study,we have co-registered a single MRI template with PET images,which greatly improves the interpretation of the PET images.
     Methods:
     A ICH model was set up by infusion of 100μl autologous blood into right basal ganglia of Sprague-Dawley rat(Wt:300 to 350 g).Rats were randomly assigned to three groups: ICH+Vehicle,ICH+DFX and sham group(n=6).In ICH+DFX group,rats received deferoxamine treatment(100mg/kg,i.p.,2 hour after ICH and at 12-hour intervals thereafter).The other two groups received the same amount of vehicle.All animals underwent 7 times MRI and MicroPET scan at pretest of ICH and 1,3,7,14,28 days after ICH,then the PET and MRI images were co-registered using ASIPro VM software to measure the glucose metabolism.Besides,we also observed the turnover of hematoma in Gradient Recalled Echo T_2~*WI sequential as well as the behavioral testings at the time point.Then we examined the effect of deferoxamine therapy on glucose metabolism after ICH and,detected amyloid precusor protein(APP) and glucose transporter-1(GLUT-1) immunoreactivity 28d after ICH.
     Results:
     Our results demonstrated that glucose metabolism in the hematoma area underwent a severe decrease 1 day after ICH and,the discrepancy between the basal ganglia in ipsilateral side and contralateral side continued to 28 days.Hematoma areas appeared as homogeneous patchy hypointension or in homogeneous hypointensity with punctuate hyperintensity on GRE-T_2~*WI.The accumulation of hemosiderin displayed clearly according to the brain sample.Treatment with deferoxamine not only significantly ameliorated the decrease in cerebral metabolic rate of glucose in the perihematoma,but also minimized the hemosiderin deposition and,improved ICH-induced neurological deficits.Effects of DFX treatment on metabolic activity of glucose is persist a long period.We also found the expression of APP increased and a declined tendency of GLUT-1 in the boundary zone of the hematoma.
     Conclusion:
     1.Glucose metabolism in the hematoma area underwent a severe decrease after ICH.
     2.Treatment with deferoxamine not only significantly ameliorated the decrease in cerebral metabolic rate of glucose in the perihematoma,but also minimized the hemosiderin deposition and,improved ICH-induced neurological deficits,which prompted that iron overload might participate in the processes.
     3.APP-positive cells could be found at 28d after ICH,which indicated the presence of axons injuries and might result in the decrease of metabolic activity of glucose in the right basal ganglia of rat after ICH.
引文
[1].Yang QD,Niu Q,Zhou YH,et al.Incidence of cerebral hemorrhage in the Changsha community.A prospective study from 1986 to 2000.Cerebrovasc Dis,2004,17(4):303-13.
    [2].Mayer SA,Brun NC,Begtrup K,et al.Efficacy and safety of recombinant activated factor Ⅶ for acute intracerebral hemorrhage.N Engl J Med,2008,358(20):2127-37.
    [3].Mayer SA,Davis SM,Skolnick BE,et al.Can a subset of intracerebral hemorrhage patients benefit from hemostatic therapy with recombinant activated factor Ⅶ? Stroke,2009,40(3):833-40.
    [4].Wagner KR,Xi G,Hua Y,et al.Lobar intracerebral hemorrhage model in pigs:rapid edema development in perihematomal white matter.Stroke,1996,27(3):490-7.
    [5].Xi G,Wagner KR,Keep RF,et al.Role of blood clot formation on early edema development after experimental intracerebral hemorrhage.Stroke,1998,29(12):2580-6.
    [6].Xi G,Keep RF,Hoff JT.Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats.J Neurosurg,1998,89(6):991-6.
    [7].Xi G,Keep RF,Hoff JT.Mechanisms of brain injury after intracerebral haemorrhage.Lancet Neurol,2006,5(1):53-63.
    [8].Huang FP,Xi G,Keep RF,et al.Brain edema after experimental intracerebral hemorrhage:role of hemoglobin degradation products.J Neurosurg,2002,96(2):287-93.
    [9].邱霞,吴继敏,宋水江.脑出血后迟发性神经元损伤及铁离子的作用.浙江大学学报,2009,38(6):572-578.
    [10].Gutteridge JM.Hydroxyl radicals,iron,oxidative stress,and neurodegeneration.Ann N Y Acad Sci,1994,738:201-13.
    [11].Jellinger KA.The role of iron in neurodegeneration:prospects for pharmacotherapy of Parkinson's disease. Drugs Aging, 1999,14(2): 115-40.
    [12].Berg D,Youdim MB. Role of iron in neurodegenerative disorders. Top Magn Reson Imaging, 2006,17(1):5-17.
    [13].Rottkamp CA, Raina AK, Zhu X, et al. Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med, 2001, 30(4):447-50.
    [14].Felberg RA, Grotta JC, Shirzadi AL, et al. Cell death in experimental intracerebral hemorrhage: the "black hole" model of hemorrhagic damage. Ann Neurol, 2002, 51(4):517-24.
    [15].Hua Y, Nakamura T, Keep RF, et al. Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg, 2006,104(2):305-12.
    [16].Chugani HT, Hovda DA, Villablanca JR, et al. Metabolic maturation of the brain: a study of local cerebral glucose utilization in the developing cat. J Cereb Blood Flow Metab, 1991, 11(1):35-47.
    [17].Bruehl C,Witte OW. Cellular activity underlying altered brain metabolism during focal epileptic activity. Ann Neurol, 1995, 38(3):414-20.
    [18].Gao F, Guo Y, Zhang H, et al. Anterior thalamic nucleus stimulation modulates regional cerebral metabolism: an FDG-MicroPET study in rats. Neurobiol Dis, 2009, 34(3):477-83.
    [19].Guo Y, Gao F, Wang S, et al. In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis: an 18F-fluorodeoxyglucose-small animal positron emission tomography study. Neuroscience, 2009, 162(4):972-9.
    [20].Hua Y, Schallert T, Keep RF, et al. Behavioral tests after intracerebral hemorrhage in the rat. Stroke, 2002, 33(10):2478-84.
    [21].Paxinos G, Watson C, The rat brain in stereotaxic coordinates, 5th ed. 2005: San Diego, CA: Academic Press.
    [22].Sherriff FE, Bridges LR,Sivaloganathan S. Early detection of axonal injury after human head trauma using immunocytochemistry for beta-amyloid precursor protein. Acta Neuropathol, 1994, 87(1):55-62.
    [23].Yang GY, Betz AL, Chenevert TL, et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats.J Neurosurg,1994,81(1):93-102.
    [24].Rosenberg GA,Mun-Bryce S,Wesley M,et al.Collagenase-induced intracerebral hemorrhage in rats.Stroke,1990,21(5):801-7.
    [25].宫烨,陈衔城,鲍伟民.大鼠脑出血后脑水肿模型的建立与评价.中国临床神经科学,1999,7(3):140-142.
    [26].Cherry SR,Gambhir SS.Use of positron emission tomography in animal research.ILAR J,2001,42(3):219-32.
    [27].Furler SM,Jenkins AB,Storlien LH,et al.In vivo location of the rate-limiting step of hexose uptake in muscle and brain tissue of rats.Am J Physiol,1991,261(3 Pt 1):E337-47.
    [28].李相元,李宪章.葡萄糖转运蛋白与缺血性脑血管病.国外医学(脑血管疾病分册),2004,12(6):442-444.
    [29].Gao F,Wang S,Guo Y,et al.Protective effects of repetitive transcrartial magnetic stimulation in a rat model of transient cerebral ischaemia:a microPET study.Eur J Nucl Med Mol Imaging.In press.
    [30].李中秋,陆兵勋,吕田明.实验性脑出血血肿周围组织血脑屏障葡萄糖转运蛋白的表达.第一军医大学学报,2005,25(3):339-341.
    [31].Koo EH,Sisodia SS,Archer DR,et al.Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport.Proc Natl Acad Sci U S A,1990,87(4):1561-5.
    [32].Otsuka N,Tomonaga M,Ikeda K.Rapid appearance of beta-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury.Brain Res,1991,568(1-2):335-8.
    [33].Stephenson DT,Rash K,Clemens JA.Amyloid precursor protein accumulates in regions of neurodegeneration following focal cerebral ischemia in the rat.Brain Res,1992,593(1):128-35.
    [34].Gentleman SM,Nash MJ,Sweeting CJ,et al.Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury.Neurosci Lett,1993,160(2):139-44.
    [35].Medana IM,Esiri MM.Axonal damage:a key predictor of outcome in human CNS diseases. Brain, 2003,126(Pt 3):515-30.
    [36].Yam PS, Takasago T, Dewar D, et al. Amyloid precursor protein accumulates in white matter at the margin of a focal ischaemic lesion. Brain Res, 1997, 760(1-2):150-7.
    [37].Wasserman JK,Schlichter LC. White matter injury in young and aged rats after intracerebral hemorrhage. Exp Neural, 2008,214(2):266-75.
    [38].Bodovitz S, Falduto MT, Frail DE, et al. Iron levels modulate alpha-secretase cleavage of amyloid precursor protein. J Neurochem, 1995, 64(1):307-15.
    [39].Niwa K, Kazama K, Younkin SG, et al. Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol Dis, 2002, 9(1):61-8.
    [40] .Park L, Anrather J, Forster C, et al. Abeta-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J Cereb Blood Flow Metab, 2004, 24(3):334-42.
    [41].Park L, Zhou P, Pitstick R, et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci U S A, 2008,105(4): 1347-52.
    [42] .Blanc EM, Toborek M, Mark RJ, et al. Amyloid beta-peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells. J Neurochem, 1997, 68(5): 1870-81.
    [43].McLellan ME, Kajdasz ST, Hyman BT, et al. In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci, 2003,23(6):2212-7.
    [44].Keller JN, Pang Z, Geddes JW, et al. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J Neurochem, 1997, 69(1):273-84.
    [45].Fukumoto H, Cheung BS, Hyman BT, et al. Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol, 2002, 59(9):1381-9.
    [46].Li R, Lindholm K, Yang LB, et al. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients.Proc Natl Acad Sci U S A,2004,101(10):3632-7.
    [47].Selkoe DJ.Alzheimer's disease:genes,proteins,and therapy.Physiol Rev,2001,81(2):741-66.
    [48].Wu J,Hua Y,Keep RF,et al.Iron and iron-handling proteins in the brain after intracerebral hemorrhage.Stroke,2003,34(12):2964-9.
    [49].Cirrito JR,Yamada KA,Finn MB,et al.Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo.Neuron,2005,48(6):913-22.
    [50].Vukovich R,Perneczky R,Drzezga A,et al.Brain metabolic correlates of cerebrospinal fluid beta-amyloid 42 and tau in Alzheimer's disease.Dement Geriatr Cogn Disord,2009,27(5):474-80.
    [51].Fenton JP,Roehrig KL,Mahan DC,et al.Effect of swine weaning age on body fat and lipogenic activity in liver and adipose tissue.J Anim Sci,1985,60(1):190-9.
    [52].Siesjo BK,Agardh CD,Bengtsson F.Free radicals and brain damage.Cerebrovasc Brain Metab Rev,1989,1(3):165-211.
    [53].Mark RJ,Pang Z,Geddes JW,et al.Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons:involvement of membrane lipid peroxidation.J Neurosci,1997,17(3):1046-54.
    [54].Willmore LJ,Rubin JJ.Formation of malonaldehyde and focal brain edema induced by subpial injection of FeCl2 into rat isocortex.Brain Res,1982,246(1):113-9.
    [55].Palmer C,Roberts RL,Bero C.Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats.Stroke,1994,25(5):1039-45.
    [56].Nakamura T,Keep RF,Hua Y,et al.Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage.J Neurosurg,2004,100(4):672-8.
    [57].Selim M.Deferoxamine mesylate:a new hope for intracerebral hemorrhage:from bench to clinical trials.Stroke,2009,40(3 Suppl):S90-1.
    [1].Yang QD,Niu Q,Zhou YH,et al.Incidence of cerebral hemorrhage in the Changsha community.A prospective study from 1986 to 2000.Cerebrovasc Dis,2004,17(4):303-13.
    [2].Mayer SA,Brun NC,Begtrup K,et al.Efficacy and safety of recombinant activated factor Ⅶ for acute intracerebral hemorrhage.N Engl J Med,2008,358(20):2127-37.
    [3].Mayer SA,Davis SM,Skolnick BE,et al.Can a subset of intracerebral hemorrhage patients benefit from hemostatic therapy with recombinant activated factor Ⅶ?Stroke,2009,40(3):833-40.
    [4].Xi G,Keep RF,Hoff JT.Mechanisms of brain injury after intracerebral haemorrhage.Lancet Neurol,2006,5(1):53-63.
    [5].Wasserman JK,Schlichter LC.Neuron death and inflammation in a rat model of intracerebral hemorrhage:effects of delayed minocycline treatment.Brain Res,2007,1136(1):208-18.
    [6].Wu J,Hua Y,Keep RF,et al.Iron and iron-handling proteins in the brain after intracerebral hemorrhage.Stroke,2003,34(12):2964-9.
    [7].邱霞,吴继敏,宋水江.脑出血后迟发性神经元损伤及铁离子的作用.浙江大学学报,2009,38(6):572-578.
    [8].Nakamura T,Keep RF,Hua Y,et al.Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage.J Neurosurg,2004,100(4):672-8.
    [9].Zazulia AR,Diringer MN,Derdeyn CP,et al.Progression of mass effect after intracerebral hemorrhage.Stroke,1999,30(6):1167-73.
    [10].Wagner KR,Xi G,Hua Y,et al.Lobar intracerebral hemorrhage model in pigs:rapid edema development in perihematomal white matter.Stroke,1996,27(3):490-7.
    [11].Xi G,Wagner KR,Keep RF,et al.Role of blood clot formation on early edema development after experimental intracerebral hemorrhage.Stroke,1998,29(12):2580-6.
    [12].Xi G,Keep RF,Hoff JT.Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats.J Neurosurg,1998,89(6):991-6.
    [13].Hua Y,Xi G,Keep RF,et al.Complement activation in the brain after experimental intracerebral hemorrhage.J Neurosurg,2000,92(6):1016-22.
    [i4].Mayer SA,Lignelli A,Fink ME,et al.Perilesional blood flow and edema formation in acute intracerebral hemorrhage:a SPECT study.Stroke,1998,29(9):1791-8.
    [15].Xi G,Hua Y,Keep RF,et al.Systemic complement depletion diminishes perihematomal brain edema in rats.Stroke,2001,32(1):162-7.
    [16].Huang FP,Xi G,Keep RF,et al.Brain edema after experimental intracerebral hemorrhage:role of hemoglobin degradation products.J Neurosurg,2002,96(2):287-93.
    [17].Hua Y,Keep RF,Hoff JT,et al.Thrombin preconditioning attenuates brain edema induced by erythrocytes and iron.J Cereb Blood Flow Metab,2003,23(12):1448-54.
    [18].Qian ZM,Pu Y,Q W,Iron metabolism and CNS diseases,in Beijing:Science Press.2000.p.329-352.
    [19].Chiueh CC. Iron overload, oxidative stress, and axonal dystrophy in brain disorders. Pediatr Neural, 2001,25(2):138-47.
    [20].Berg D,Youdim MB. Role of iron in neurodegenerative disorders. Top Magn Reson Imaging, 2006,17(1):5-17.
    [21].Connor JR, Menzies SL, St Martin SM, et al. A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. J Neurosci Res, 1992, 31(1):75-83.
    [22].Bartzokis G, Sultzer D, Cummings J, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry, 2000, 57(1):47-53.
    [23].LeVine SM. Iron deposits in multiple sclerosis and Alzheimer's disease brains. Brain Res, 1997, 760(1-2):298-303.
    [24].ColIingwood JF, Mikhaylova A, Davidson M, et al. In situ characterization and mapping of iron compounds in Alzheimer's disease tissue. J Alzheimers Dis, 2005, 7(4):267-72.
    [25].Rottkamp CA, Raina AK, Zhu X, et al. Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med, 2001, 30(4):447-50.
    [26].Selim MH,Ratan RR. The role of iron neurotoxicity in ischemic stroke. Ageing Res Rev, 2004, 3(3):345-53.
    [27].Song S, Hua Y, Keep RF, et al. A new hippocampal model for examining intracerebral hemorrhage-related neuronal death: effects of deferoxamine on hemoglobin-induced neuronal death. Stroke, 2007, 38(10):2861-3.
    [28] .Moos T,Morgan EH. The metabolism of neuronal iron and its pathogenic role in neurological disease: review. Ann N Y Acad Sci, 2004,1012:14-26.
    [29].Fenton JP, Roehrig KL, Mahan DC, et al. Effect of swine weaning age on body fat and lipogenic activity in liver and adipose tissue. J Anim Sci, 1985, 60(1): 190-9.
    [30].Siesjo BK, Agardh CD,Bengtsson F. Free radicals and brain damage. Cerebrovasc Brain Metab Rev, 1989,1 (3): 165-211.
    [31].Gutteridge JM. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann N Y Acad Sci, 1994,738:201-13.
    [32].Jellinger KA. The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson's disease.Drugs Aging,1999,14(2):115-40.
    [33].Whittaker JW.The irony of manganese superoxide dismutase.Biochem Soc Trans,2003,31(Pt 6):1318-21.
    [34].Willmore LJ,Rubin JJ.Formation of malonaldehyde and focal brain edema induced by subpial injection of FeCl2 into rat isocortex.Brain Res,1982,246(1):113-9.
    [35].Connor JR,Menzies SL.Cellular management of iron in the brain.J Neurol Sci,1995,134 Suppl:33-44.
    [36].Bradbury MW.Transport of iron in the blood-brain-cerebrospinal fluid system.J Neurochem,1997,69(2):443-54.
    [37].Wagner KR,Sharp FR,Ardizzone TD,et al.Heme and iron metabolism:role in cerebral hemorrhage.J Cereb Blood Flow Metab,2003,23(6):629-52.
    [38].Crowe A,Morgan EH.Iron and transferrin uptake by brain and cerebrospinal fluid in the rat.Brain Res,1992,592(1-2):8-16.
    [39].Descamps L,Dehouck MP,Torpier G,et al.Receptor-mediated transcytosis of transferrin through blood-brain barrier endothelial cells.Am J Physiol,1996,270(4 Pt 2):H1149-58.
    [40].Connor JR,Menzies SL,Burdo JR,et al.Iron and iron management proteins in neurobiology.Pediatr Neurol,2001,25(2):118-29.
    [41].Hansen TM,Nielsen H,Bernth N,et al.Expression of ferritin protein and subunit mRNAs in normal and iron deficient rat brain.Brain Res Mol Brain Res,1999,65(2):186-97.
    [42].Brock J.Lactoferrin:a multifunctional immunoregulatory protein? Immunol Today,1995,16(9):417-9.
    [43].Fillebeen C,Descamps L,Dehouck MP,et al.Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier.J Biol Chem,1999,274(11):7011-7.
    [44].Double KL,Maywald M,Schmittel M,et al.In vitro studies of ferritin iron release and neurotoxicity.J Neurochem,1998,70(6):2492-9.
    [45].Garzon-Rodriguez W,Yatsimirsky AK,Glabe CG.Binding of Zn(Ⅱ),Cu(Ⅱ),and Fe(Ⅱ) ions to Alzheimer's A beta peptide studied by fluorescence.Bioorg Med Chem Lett,1999,9(15):2243-8.
    [46].Mantyh PW,Ghilardi JR,Rogers S,et al.Aluminum,iron,and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide.J Neurochem,1993,61(3):1171-4.
    [47].Honda K,Casadesus G,Petersen RB,et al.Oxidative stress and redox-active iron in Alzheimer's disease.Ann N Y Acad Sci,2004,1012:179-82.
    [48].Porter JB.Deferoxamine pharmacokinetics.Semin Hematol,2001,38(1 Suppl 1):63-8.
    [49].Palmer C,Roberts RL,Bero C.Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats.Stroke,1994,25(5):1039-45.
    [50].Hurn PD,Koehler RC,Blizzard K,K,et al.Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs.Stroke,1995,26(4):688-94;discussion 694-5.
    [51].Liachenko S,Tang P,Xu Y.Deferoxamine improves early postresuscitation reperfusion after prolonged cardiac arrest in rats.J Cereb Blood Flow Metab,2003,23(5):574-81.
    [52].Zaman K,Ryu H,Hall D,et al.Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes,p21(waf1/cip1),and erythropoietin.J Neurosci,1999,19(22):9821-30.
    [53].Tanji K,Imaizumi T,Matsumiya T,et al.Desferrioxamine,an iron chelator,upregulates cyclooxygenase-2 expression and prostaglandin production in a human macrophage cell line.Biochim Biophys Acta,2001,1530(2-3):227-35.
    [54].Regan RF,Panter SS.Hemoglobin potentiates excitotoxic injury in cortical cell culture.J Neurotrauma,1996,13(4):223-31.
    [55].Regan RF,Rogers B.Delayed treatment of hemoglobin neurotoxicity.J Neurotrauma,2003,20(1):111-20.
    [56].Goldstein L,Teng ZP,Zeserson E,et al.Hemin induces an iron-dependent,oxidative injury to human neuron-like cells.J Neurosci Res,2003,73(1):113-21.
    [57].Levy YS,Streifler JY,Panet H,et al.Hemin-induced apoptosis in PC12 and neuroblastoma cells:implications for local neuronal death associated with intracerebral hemorrhage.Neurotox Res,2002,4(7-8):609-616.
    [58].Bilgihan A, Turkozkan N, Aricioglu A, et al. The effect of deferoxamine on brain lipid peroxide levels and Na-K ATPase activity following experimental subarachnoid hemorrhage. Gen Pharmacol, 1994,25(3):495-7.
    [59].Pelit A, Haciyakupoglu G, Zorludemir S, et al. Preventative effect of deferoxamine on degenerative changes in the optic nerve in experimental retrobulbar haematoma. Clin Experiment Ophthalmol, 2003, 31(1):66-72.
    [60].Wan S, Hua Y, Keep RF, et al. Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl, 2006,96:199-202.
    [61].Gu Y, Hua Y, Keep RF, et al. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke, 2009, 40(6):2241-3.
    [62].Okauchi M, Hua Y, Keep RF, et al. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke, 2009,40(5): 1858-63.
    [63].Okauchi M, Hua Y, Keep RF, et al. Deferoxamine Treatment for Intracerebral Hemorrhage in Aged Rats. Therapeutic Time Window and Optimal Duration. Stroke, 2009.
    [64].Paraskevaidis IA, Iliodromitis EK, Vlahakos D, et al. Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: immediate and long-term significance. Eur Heart J, 2005,26(3):263-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700