一氧化碳中毒小鼠脑内Ang-1、Ang-2及Tie-2 mRNA的动态变化及丁苯肽对其影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:一氧化碳(Carbon monoxide, CO)是一种无色、无味、无臭、无刺激性的有毒气体,是生活和生产中造成中毒性死亡最常见的窒息性气体。它可以引起机体多个系统损伤,其中大脑损害最为严重,且有一部分急性一氧化碳中毒患者在中毒症状缓解、意识恢复正常后,大约经历2到60天表现正常或基本正常的间歇期后,会再次出现一系列脑病的症状,称为一氧化碳中毒迟发性脑病(Delayed encephalopathy after carbon monoxide poisoning, DEACMP)。其主要表现为记忆受损、意识障碍、锥体外系神经障碍、锥体系神经损害等,是CO中毒最严重的类型。有关急性CO中毒和DEACMP发病机制仍不十分清楚,迄今为止已经提出了许多假说,如缺血缺氧、细胞毒性损伤、再灌注损伤和自由基的形成、兴奋性氨基酸的生成、凋亡机制等。其中缺血缺氧机制在CO中毒脑损伤的发生机理中占有重要地位。近年来,许多研究结果表明,缺血缺氧后,缺血周围区域存在新生血管形成现象,而通过血管新生可以启动损伤区微血管网重建,进而可以改善损伤区微循环组织的血液灌流,这对CO中毒后缺血缺氧神经元的存活具有重要意义。目前,动物实验已证实,脑缺血时脑内可见新生血管形成,而CO中毒后脑血管的分子生理病理变化尚无明确报道。
     在新生血管生成过程中,血管生成素(Angiopoiten, Ang)家族发挥着重要作用,它可以特异作用于血管内皮细胞。其中家族中的Ang-1、Ang-2与血管生成密切相关,与内皮细胞表面特异受体Tie-2酪氨酸激酶结合发挥促血管生成作用。Ang/Tie-2系统参与血管新生的最后阶段,通过干预内皮细胞、平滑肌细胞和周细胞的相互作用促进血管生成和重塑,在缺血等病理状态下可作为一种关键的血管生成调节剂。然而CO中毒后脑组织内Ang-1、Ang-2及Tie-2的表达变化无相关报道。
     丁苯肽是临床应用于治疗急性脑卒中的一类化学新药,可促进新生血管生成,恢复脑血流的供应,增加缺血区脑血流量和改善脑缺血区微循环,保护线粒体功能,改善全脑缺血后的能量代谢等,涉及脑缺血病理的多个环节,但其对治疗和改善急性CO中毒损伤的分子机制尚不很明确。
     目的:本实验拟在建立CO中毒小鼠模型的基础上,从mRNA水平动态观察小鼠海马区Ang-1.Ang-2及Tie-2表达的变化规律,探讨CO中毒对小鼠脑内血管内皮系统的影响,以期能够推测新血管形成机制在脑损伤发生后的作用,并进一步在分子水平研究CO中毒后丁苯肽对血管生成素系统的影响。
     实验方法:健康雄性小鼠144只,体重(18-22)g,随机分成空气对照组(48只),染毒(CO)组(48只),丁苯肽组(48只),各组再分为6h、1d、2d、3d、4d、7d、14d、21d、28d,8个亚组。染毒组按照单次腹腔注射法建立CO中毒小鼠模型,空气对照组以等量空气腹腔注射,染毒后丁苯肽组给予丁苯肽(1ml/kg,bid)腹腔注射。相应时间点,处死小鼠,断头取脑,研磨脑组织,提总RNA。采用逆转录-聚合酶链反应(RT-PCR)技术检测各组Ang-1.Ang-2及Tie-2 mRNA水平表达变化。数据以均数±标准差表示,统计学处理采用SPSS 16.0软件进行One-Way ANOVA检验。
     结果:
     1、CO中毒后,Ang-1.Ang-2和Tie-2 mRNA表达呈双峰性增高。结果显示:与空气对照组相比,CO中毒后,Ang-1.Ang一2和Tie-2 mRNA表达随时间增加(P<0.05),3d后达到第一个高峰(P<0.05),4d后Ang-1.Ang-2和Tie-2 mRNA表达下降,并于7d后,Ang-1、Ang-2和Tie-2 mRNA表达达到第二个高峰(P<0.05),28d后表达水平恢复正常水平。小鼠脑部海马区的Ang/Tie-2系统在CO中毒后表达呈规律性变化。
     2、小鼠CO中毒后使用丁苯肽治疗,Ang-1、Ang-2和Tie-2 mRNA表达呈单峰性增高。与CO组相比,使用丁苯肽后,Ang-1、Ang-2和Tie-2mRNA表达未表现双峰性增高,在6h后即出现表达增高(P<0.05),之后逐步增高于3d达到高峰。3d时,丁苯肽组Ang-1 mRNA表达量低于CO组(P<0.05);Ang-2和Tie-2 mRNA表达量高于CO组(P<0.05)。3d后表达水平逐步下降,于28天恢复正常水平,没有出现CO组的7d高峰。
     3、各组问Ang-2/Ang-1比值的变化结果显示,空气对照组Ang-2/Ang-1的比值在6h-28天内保持比较低的水平,比值恒定(0.36±0.03);CO组的Ang一2/Ang-1比值在6h即升高达到高峰(与空气对照组相比,P<0.05),2d到达低谷,随后比值缓慢上升于7d达到第二个高峰(与空气对照组相比,P<0.05),14天时即恢复正常水平;丁苯肽组的Ang-2/Ang-1比值也在6h即升高达到高峰(与CO组相比,P<0.05),1d~2d时达到低谷,随后比值上升于4d~7d达到高峰(与CO组相比,P<0.05),28天时才恢复正常水平。
     结论:
     1、CO中毒后小鼠脑部海马区Ang-1、Ang-2和Tie-2在mRNA水平表达呈双峰性增高,第二个高峰可能与DEACMP相关。
     2、丁苯肽对CO中毒后的脑保护作用与血管生成素系统相关,可能会通过影响血管生成素系统而预防或治疗DEACMP.
Backgroud:The carbon monoxide (Carbon monoxide, CO) is one kind of a colorless, tasteless, not smelly, the nonirritating toxic gas, which is the most common asphyxiating gas causes toxic death in the life and the production. It may cause organism multi-system damage, that the cerebrum is worst. Especially delayed encenphalopathy after carbon monoxide poisoning (DEACMP) will happen to some people after carbon monoxide poisoning. The clinical manifestation is a group by the acute stupid primarily energetic nerve function disorder, which is the most serious type in CO poisoning. There are many kinds of hypotheses about acute CO poisoning and DEACMP, until now the clear pathogenesis of the disease has not been discovered. These hypotheses include hypoxic-ischemic, cell toxic damage, reperfusion damage and occurrence of free radical, production of excitatory amino acids and apoptosis, and so on. Among the hypotheses, hypoxic-ischemic mechanism plays an important role in exploring the mechanism of brain injury of carbon monoxide poisoning. In recent years, many studies showed the existence of brain injury of neorascularization phenomenon in the surrounding region of ischemia. Vascularization might trigger the rebuilding of capillary vessel net in damage region, and to improve the hemoperfusion of microcirculation tissues. It is important for the survival of the hypoxic-ischenic neurons after CO poisoning. At present, animal experiments already confirmed the existence of brain injury of neorascularization phenomenon in hypoxic-ischemic regions, but it is not reported that Cerebrovascular pathological change after CO poisoning.
     During vascularization, angiopoiten (Ang) family plays an important role. In this family, Ang-1 and Ang-2 are closely associated with vascularization, and they can bind recepetor Tie-2 in surface of endothelial cell to enhance vascularization. During the final stage of vascularization, Ang/Tie-2 system play a role to influence the interaction of endothelial cell, smooth muscle cell and pericyte, thereby, to urge the vascularization and vascular remodeling. However, it is not known that dynamic changes of Ang-1, Ang-2 and Tie-2 mRNA levels in mice brain after carbon monoxide poisoning.
     Butylphthalide is a kind of new drug used to cure the acute cerebral accident in the clinical. Butylphthalide can enhance angiogenesis, improve cerebral blood supply, ameliorate microcirculation, protect chondriosome, and so on, and is involved with many stages of hypoxic-ischemic mecha-nism. Yet, it is not clear that the mechanism of Butylphthalide curing and improving CO poisoning damages.
     Objective:The project is on the basis of carbon monoxide poisoning model of mice, to observe changes of Ang-1, Ang-2 and Tie-2 mRNA levels in mice brain and to approach influence of endothelial system against CO poisoning, and explore effectiveness of vascularization mechanism in brain damage; At the same times, to study protection effect of Butylphthalide curing CO poisoning in molecule level, and to try to provid a rationale and thinking of improving CO poisoning and preventing DEACMP.
     Methods:144 healthy Kunming male mice, were divided into Air control group, Carbon monoxide poisoning group and Butylphthalide group, 48 mice in every group. Each group was divided into eight sub-group, as followed:6h, 1d,2d,3d,4d,7d,14d,28d,6 mice in every group. Carbon monoxide poisoning models of mice were established with intraperitoneal injection. We checked the brain tissues of mice in each group according to every time point. Observing changes of Ang-1, Ang-2 and Tie-2 mRNA levels in mice brain by RT-PCR method. All datas were presentated by mean±SD, statistical analysis software of SPSS 16.0 One-Way ANOVA was employed.
     Rusult:
     1. After carbon monoxide poisoning, Ang-1, Ang-2 and Tie-2 mRNA levels showed an increase with two peaks, respectively in 3 day (7.02±0.11,7.67±0.22 and 8.73±0.07, P<0.05 comparing with control) and 7 day (6.60±0.36,7.99±0.06 and 7.69±0.05, P<0.05 comparing with control), the results showed Ang/Tie-2 system quickly reconstruct and restore blood vessel of damage regions.
     2. After use of Butylphthalide, Ang-1, Ang-2 and Tie-2 mRNA levels showed an increase with one peak in 3 day (6.04±0.35,8.46±0.11 and 10.66±0.11, comparing with CO group, P< 0.05), moreover, mRNA levels earlier increased than those of CO group. The results showed Butylph-thalide efficaciously protected the mice brain.
     3. Results of Ang-2 to Ang-1 showed Ang-2/Ang-1 remained a low level in control group (0.36±0.03), and in CO group, Ang-2/Ang-1 rised a peak in 6h point (comparing with control, P<0.05); In 2d point, Ang-2/Ang-1 got to the lowest level, subsequently, Ang-2/Ang-1 slowly moved and reached another peak (comparing with control, P<0.05), and in 14d point, Ang-2/Ang-1 is normal; in Butylphthalide group, Ang-2/Ang-1 also rised a peak in 6h point (comparing with CO group, P< 0.05); In 1d-2d point, Ang-2/Ang-1 got to the lowest level, subsequently, Ang-2/Ang-l slowly moved and reached another peak in 4d-7d (comparing with CO group, P< 0.05), and in 28d point, Ang-2/Ang-1 is normal.
     Conclusion:
     1. After carbon monoxide poisoning, Ang-1, Ang-2 and Tie-2 mRNA levels in the brain showed an increase with two peaks, and it suggested that DEACMP might happen. Ang/Tie-2 system in cerebrovascular endothelial cell showed up the regular changes, and played an important role to reconstruct and restore vessels.
     2. Butylphthalide could enhance angiogenesis, improve cerebral blood supply and ameliorate microcirculation, so Butylphthalide might cure and improve CO poisoning damages and prevent DEACMP.
引文
1. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning [J]. Cell,1996,87:1161-1169.
    2. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis [J]. Science,1997,277:55-60.
    3. Valenzuela DM, Griffiths JA, Rojas J, et al. Angiopoietins 3 and 4:diverging gene counterparts in mice and humans [J]. Proc Natl Acad Sci,1999, USA 96:1904-1909.
    4. Kim KT, Choi HH, Steinmetz MO, et al. Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2 [J]. J Biol Chem,2005, 280:20126-20131.
    5. Procopio WN, Pelavin PI, Lee WM, et al. Angiopoietin-1 and-2 coiled coil domains mediate distinct homo-oligomerization patterns, but fibrinogen-like domains mediate ligand activity [J]. J Biol Chem,1999,274:30196-30201.
    6. Fiedler U, Krissl T, Koidl S, et al. Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats [J]. J Biol Chem,2003,278:1721-1727.
    7. Huang YQ, Li JJ, Karpatkin S. Identification of a family of alternatively spliced mRNA species of angiopoietin-1 [J]. Blood,2000,95:1993-1999
    8. Kim I, Kim JH, Moon SO, et al. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 30-kinase/Akt signal transduction pathway [J]. Oncogene,2000,19:4549-4552.
    9. Teichert-Kuliszewska K, Maisonpierre PC, Jones N, et al. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2 [J]. Cardiovasc Res,2001,49:659-670.
    10. Daly C, Pasnikowski E, Burova E, et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells [J]. Proc Natl Acad Sci,2006, USA 103:15491-15496.
    11. Fiedler U, Scharpfenecker M, Koidl S, et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies [J]. Blood,2004,103:4150-4156.
    12. Scharpfenecker M, Fiedler U, Reiss Y, et al. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism [J]. J Cell Sci,2005,118:771-780.
    13. Pichiule P, Chavez JC, LaManna JC. Hypoxic regulation of angiopoietin-2 expression in endothelial cells [J]. J Biol Chem,2004,279:12171-12180.
    14. Goede V, Schmidt T, Kimmina S, et al. Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis [J]. Lab Invest,1998,78:1385-1394
    15. Zhang L, Yang N, Park JW, et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer [J]. Cancer Res,2003, 63:3403-3412.
    16. Torimura T, Ueno T, Kin M, et al. Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma [J]. J Hepatol,2004,40:799-807.
    17. Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1 [J]. Dev Cell,2002,3:411-423.
    18. Stratmann A, Risau W, Plate KH. Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis [J]. Am J Pathol, 1998,153:1459-1466.
    19. Macdonald PR, Progias P, Ciani B, et al. Structure of the extracellular domain of Tie receptor tyrosine kinases and localization of the angiopoietin-binding epitope [J]. J Biol Chem,2006,281:28408-28414.
    20. Korhonen J, Polvi A, Partanen J, et al. The mouse tie receptor tyrosine kinase gene:expression during embryonic angiogenesis [J]. Oncogene,1994,9:395-403.
    21. Marron MB, Singh H, Tahir TA, et al. Regulated proteolytic processing of Tiel modulates ligand responsiveness of the receptor-tyrosine kinase Tie2 [J]. J Biol Chem,2007,282:30509-30517.
    22. Saharinen P, Kerkela K, Ekman N, et al. Multiple angiopoietin recombinant proteins activate the Tiel receptor tyrosine kinase and promote its interaction with Tie2 [J]. J Cell Biol,2005,169:239-243.
    23. Helfrich I, Edler L, Sucker A, et al. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma [J]. Clin Cancer Res,2009, 15:1384-1392.
    24. Jones N, Voskas D, Master Z, et al. Rescue of the early vascular defects in Tek/Tie2 null mice reveals an essential survival function [J]. EMBO Rep,2001, 2:438-445.
    25. Ward NL, Van Slyke P, Sturk C, et al. Angiopoietin 1 expression levels in the myocardium direct coronary vessel development [J]. Dev Dyn,2004,229:500-509.
    26. Reiss Y, Droste J, Heil M, Tribulova S, et al. Angiopoietin-2 impairs revascu-larization after limb ischemia [J]. Circ Res,2007,101:88-96.
    27. Hammes HP, Lin J, Wagner P, et al. Angiopoietin-2 causes pericyte dropout in the normal retina:evidence for involvement in diabetic retinopathy [J]. Diabetes, 2004,53:1104-1110.
    28. Lobov IB, Brooks PC, Lang RA. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo [J]. Proc Natl Acad Sci,2002, USA 99:11205-11210.
    29. Fiedler U, Reiss Y, Scharpfenecker M, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of in-flammation [J]. Nat Med,2006,12:235-239.
    30. Hackett SF, Wiegand S, Yancopoulos G, et al. Angiopoietin-2 plays an important role in retinal angiogenesis [J]. J Cell Physiol,2002,192:182-187.
    31. Hodous BL, Geuns-Meyer SD, Hughes PE, et al. Evolution of a highly selective and potent 2-(pyridin-2-yl)-1,3,5-triazine Tie-2 kinase inhibitor [J]. J Med Chem,2007,50:611-626.
    32. Semones M, Feng Y, Johnson N, et al. Pyridinylimidazole inhibitors of Tie2 kinase [J]. Bioorg Med Chem Lett,2007,17:4756-4760.
    33. Harfouche R, Hassessian HM, Guo Y, et al. Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells [J]. Microvasc Res, 2002,64:135-147.
    34. Kobayashi H, DeBusk LM, Babichev YO, et al. Hepatocyte growth factor mediates angiopoietin-induced smooth muscle cell recruitment [J]. Blood,2006, 108:1260-1266.
    35. Uemura A, et al. Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells [J]. J Clin Invest, 2002,110:1619-1628
    36. Kidoya H, Ueno M, Yamada Y, et al. Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis [J]. EMBO J,2008,27:522-534.
    37. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin [J]. Nat Cell Biol,2006, 8:1223-1234.
    38. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability [J]. J Cell Sci,2008, 121:2115-2122.
    39. Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endo-thelial permeability by sequestering Src through mDia [J]. Dev Cell,2008, 14:25-36.
    40. Li X, Stankovic M, Bonder CS, et al. Basal and angiopoietin-1-mediated endothelial permeability is regulated by sphingosine kinase-1 [J]. Blood,2008 111:3489-3497.
    41. Peters KG, Kontos CD, Lin PC, et al. Functional significance of Tie2 signaling in the adult vasculature [J]. Recent Prog Horm Res,2004,59:51-71.
    42. Kim I, Oh JL, Ryu YS, et al. Angiopoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells [J]. FASEB J,2002,16:126-128.
    43. Jones N, Chen SH, Sturk C, et al. A unique autophosphorylation site on Tie2/Tek mediates Dok-R phosphotyrosine binding domain binding and function [J]. Mol Cell Biol,2003,23:2658-2668.
    44. Kim I, Kim HG, Moon SO, et al. Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion [J]. Circ Res,2000,86:952-959.
    45. Tournaire R, Simon MP, le Noble F, et al. A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor [J]. EMBO Rep,2004,5:262-267.
    46. Kim I, Moon SO, Park SK, et al. Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression [J]. Circ Res,2001,89:477-479.
    47. Nykanen AI, Krebs R, Saaristo A, et al. Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis [J]. Circulation,2003,107: 1308-1314.
    48. Cho CH, Kammerer RA, Lee HJ, et al. Designed angiopoietin-1 variant, COMP-Angl, protects against radiation-induced endothelial cell apoptosis [J]. Proc Natl Acad Sci,2004, USA 101:5553-5558.
    49. Jeon BH, Khanday F, Deshpande S, et al. Tie-ing the anti-inflammatory effect of angiopoietin-1 to inhibition of NF kappaB [J]. Circ Res,2003,92:586-588.
    50. Tadros A, Hughes DP, Dunmore BJ, et al. ABIN-2 protects endothelial cells from death and has a role in the anti-apoptotic effect of angiopoietin-1 [J]. Blood, 2003,102:4407-4409.
    51. Scott BB, Zaratin PF, Gilmartin AG, et al. TNF-alpha modulates angiopoietin-1 expression in rheumatoid synovial fibroblasts via the NF-kappa B signalling pathway [J]. Biochem Biophys Res Commun,2005,328:409-414.
    52. Grall F, Gu X, Tan L, et al. Responses to the proinflammatory cytokines interleukin-1 and tumor necrosis factor alpha in cells derived from rheumatoid synovium and other joint tissues involve nuclear factor kappaB-mediated induc-tion of the Ets transcription factor ESE-1 [J]. Arthritis Rheum,2003,48:1249-1260.
    53. Brown C, Gaspar J, Pettit A, et al. ESE-1 is a novel transcriptional mediator of angiopoietin-1 expression in the setting of inflammation [J]. J Biol Chem,2004, 279:12794-12803.
    54. Parikh SM, Mammoto T, Schultz A, et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans [J]. PLoS Med,2006, 3:e46.
    55. Fearon U, Griosios K, Fraser A, et al. Angiopoietins, growth factors, and vascular morphology in early arthritis [J]. J Rheumatol,2003,30:260-268.
    56. Kuroda K, Sapadin A, Shoji T, et al. Altered expression of angiopoietins and Tie2 endothelium receptor in psoriasis [J]. J Invest Dermatol,2001,116:713-720.
    57. Hu B, Guo P, Fang Q, et al. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2 [J]. Proc Natl Acad Sci,2003, USA 100:8904-8909.
    58. Yamakawa M, Liu LX, Date T, et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors [J]. Circ Res,2003,93:664-673.
    59. Watanabe D, Takagi H, Suzuma K, et al. Transcription factor Ets-1 mediates ischemia and vascular endothelial growth factor-dependent retinal neovascu-larization [J]. Am J Pathol,2004,164:1827-1835.
    60. Goettsch W, Gryczka C, Korff T, et al. Flow-dependent regulation of angiopoietin-2 [J]. J Cell Physiol,2008,214:491-503.
    61. Milkiewicz M, Uchida C, Gee E, et al. Shear stressinduced Ets-1 modulates protease inhibitor expression in microvascular endothelial cells [J]. J Cell Physiol,2008.
    62. Machein MR, Knedla A, Knoth R, et al. Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model [J]. Am J Pathol,2004,165:1557-1570.
    63. Zhou YZ, Fang XQ, Li HQ, et al. Role of serum angiopoietin-2 level in screening for esophageal squamous cell cancer and its precursors [J]. Chin Med J (Engl), 2007,120:1216-1219.
    64. Kuboki S, Shimizu H, Mitsuhashi N, et al. Angiopoietin-2 levels in the hepatic vein as a useful predictor of tumor invasiveness and prognosis in human hepatocellular carcinoma [J]. J Gastroenterol Hepatol,2008,23:157-164.
    65. Park JH, Park KJ, Kim YS, et al. Serum angiopoietin-2 as a clinical marker for lung cancer [J]. Chest,2007,132:200-206.
    66. Cai M, Zhang H, Hui R. Single chain Fv antibody against angiopoietin-2 inhibits VEGF-induced endothelial cell proliferation and migration in vitro [J]. Biochem Biophys Res Commun,2003,309:946-951.
    67. White RR, Shan S, Rusconi CP, et al. Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2 [J]. Proc Natl Acad Sci,2003, USA 100:5028-5033.
    68. Imanishi Y, Hu B, Jarzynka MJ, et al. Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway [J]. Cancer Res, 2007,67:4254-4263.
    69. Nakayama T, Yao L, Tosato G. Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors [J]. J Clin Invest,2004,114:1317-1325.
    70. Shim WS, Teh M, Mack PO, et al. Inhibition of angiopoietin-1 expression in tumor cells by an antisense RNA approach inhibited xenograft tumor growth in immunodeficient mice [J]. Int J Cancer,2001,94:6-15.
    71. Zhang ZG, Zhang L, Tsang W, et al. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia [J]. J Cereb Blood Flow Metab,2002,22:379-392.
    72. Lin TN, Wang CK, Cheung VM, et al. Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion [J]. J Cereb Blood Flow Metab,2000,20:387-395.
    73. Beck H, Acker T, Wiessner C, et al. Expression of angiopoietin-1, angiopoietin- 2 and tie receptors after middle cerebral artery occlusion in the rat [J]. Am J Pathol,2000,157:1473-1483.
    74. Hu B, Jarzynka MJ, Guo P, et al. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbetal integrin and focal adhesion kinase signaling pathway [J]. Cancer Res,2006,66:775-783.
    75. Cascone I, Napione L, Maniero F, et al. Stable interaction between alpha5betal integrin and Tie2 tyrosine kinase receptorregulates endothelial cell response to Ang-1 [J]. J Cell Biol,2005,170:993-1004.
    76. Dallabrida SM, Ismail N, Oberle JR, et al. Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins [J]. Circ Res,2005,96:e8-e24.
    77. Dallabrida SM, Ismail NS, Pravda EA, et al. Integrin binding angiopoietin-1 monomers reduce cardiac hypertrophy [J]. FASEB J,2008,22:3010-3023.
    78. Ward NL, Putoczki T, Mearow K, et al. Vascular-specific growth factor angiopoietin 1 is involved in the organization of neuronal processes [J]. J Comp Neurol,2005,482:244-256.
    79. Valable S, Bellail A, Lesne S, et al. Angiopoietin-1-induced PI3-kinase activation prevents neuronal apoptosis [J]. FASEB J,2003,17:443-445.
    80. Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche [J]. Cell,2004, 118:149-161.
    [1]Gorman D, Drewry A, Huang YL, et al. The clinical toxicology of carbon monoxide [J]. Toxicology,2003,187:25-38.
    [2]Kealey GP. Carbon monoxide toxicity [J]. J Burn Care Res,2009,30 (1):146-147.
    [3]Goldstein M. Carbon monoxide poisoning. J Emerg Nurs,2008,34 (6):538-542.
    [4]Mannaioni PF, Vannacci A, Masini E. Carbon monoxide:the bad and the good side of the coin, from neuronal death to anti-inflammatory activity [J]. Inflamm Res,2006,55 (7):261-273.
    [5]Nilesh MP, Naranjan SD, Dev DS, et al. Angiogenesis-a new target for future therapy [J]. Vascular Pharmacology,2006,44:265-274.
    [6]Fiedler U, Augustin HG. Angiopoietins:a link between angiogenesis and inflam-mation [J]. Trends in Immunology,2006,27 (12):552-558.
    [7]陈林莺,张声,林建银,等.促血管生成素-2对胃癌血管生成的双向效应.中华肿瘤杂志,2004,26:161-164.
    [8]冯亦璞,胡盾,张丽英.丁基苯肽对小鼠全脑缺血的保护作用[J].药学学报,1995,30:741-745.
    [9]阎超华,冯亦璞,张均田.丁基苯肽对大脑中动脉闭塞鼠局部脑血流量的影响[J].药学学报,1998,33:36-39.
    [10]林建峰,冯亦璞.丁基苯肽对局部脑缺血大鼠神经元迟发性损伤及细胞内钙的影响[J].药学学报,1996,31:166-170.
    [11]崔丽英,李舜伟,等.恩必普软胶囊治疗中度急性缺血性卒中的多中心开放临床研究[J].中国脑血管病杂志,2005,2(3):112-115.
    [12]Jean WC, Speiiman SR, Nussbaum ES, et al. Reperfusion injury after focal cerebral ischemia:the role of inflammation and the therapeutic horizon [J]. Neurosurgery,1998,43 (6):1382-96.
    [13]Rupp W, Nadjem H, Thoma KH. Spirituskocher als Quelle einer co-Vergiftung im Wohnm obil [J]. Arch Krim inol,2000,206 (1-2):8-13.
    [14]Jiang J, Tyssebotn I. Cerebrospinal fluid pressure changes after acute carbon monoxide poisoning and therapeutic effects of normobaric and hyperbaric oxygenin conscious rats [J]. Undersea Hyperb Med,1997,24:245-254.
    [15]Salas NJ, Ruiperez AJA, Campos PJV, et al. Cardiac involvement after the prolonged inhalation of carbon monoxide [J]. Rev Esp Cardiol,1994,47:122.
    [16]Ischiropoulos H, et al. No production and perivascular tyrosine nitration in brain after CO poisoning in rat. J Clin Invest,1996,97:2260-2267.
    [17]杨俊卿,赵晓辉,周岐新.一氧化碳腹腔注射致急性中毒小鼠脑损伤模型的改进[J].工业卫生与职业病,2002,28(3):159-162.
    [18]Fett JW, Strydom DJ, Lobb LR. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma [J]. Biochemistry,1985,24 (20): 5480.
    [19]Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis [J]. Cell,1996,87:1171-1180.
    [20]Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie-2 that disrupts in vivo angiogenesis [J]. Science,1997,277:55-60.
    [21]Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation [J]. Nature,2000,407 (6801):242-248.
    [22]Valenzuela DM, Griffiths JA, Rojas J, et al. Angiopoietins 3 and 4:diverging gene counterparts in mice and humans [J]. Proc Natl Acad Sci USA,1999,96: 1904-1909.
    [23]Macdonald PR, Progias P, Ciani B, et al. Structure of the extracellular domain of Tie receptor tyrosine kinases and localization of the angiopoietin-binding epitope [J]. J Biol Chem,2006,281 (38):28 408-414.
    [24]Pizurki L, Zhou Z, Glynos K, et al. Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production [J]. BrJ Pharmacol, 2003,139 (2):329-336.
    [25]Yuan HT, Khankin EV, Karumanchi SA, et al. Angiopoietin 2 is a partial agonist /antagonist of tie2 signaling in endothelium [J]. Mol Cell Biol,2009,29 (8): 2011-2022.
    [26]Kim I, Kim HG, So JN, et al. Angiopoietin-l regulates endothelial cell survival through the phosphatidylinositol 3'-Kinase/Akt signal transduction pathway [J]. Circ Res,2000,86:24-29.
    [27]Kim I, Kim HG, Moon SO, et al. Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion [J]. Circ Res,2000,86:952-959.
    [28]Zhang ZG, Zhang L, Tsang W, et al. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia [J]. J Cereb Blood Flow Metab,2002,22:379-392.
    [29]Lin TN, Wang CK, Cheung VM, et al. Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion [J]. J Cereb Blood Flow Metab,2000,20:387-395.
    [30]Beck H, Acker T, Wiessner C, et al. Expression of angiopoietin-1, angiopoietin-2 and tie receptors after middle cerebral artery occlusion in the rat [J]. Am J Pathol,2000,157:1473-1483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700