人GOPC蛋白PDZ结构域溶液结构的测定及其与Neuroligin和Frizzled 8 C-末端多肽相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作的重点是一种高尔基体相关蛋白质——GOPC的PDZ结构域的克隆、表达纯化、溶液结构以及功能研究。我们克隆、表达和纯化了人GOPC蛋白的PDZ结构域;用核磁共振波谱学的方法测定了这个结构域的溶液结构;运用NMR化学扰动实验对人GOPC蛋白的PDZ结构域与Neuroligin和Frizzled 8 C-末端多肽之间的相互作用进行了研究。我们还克隆、表达和纯化了人AREB6蛋白的Homeobox结构域,对该结构域的表达条件进行了初步探讨,并应用光谱学的方法研究该蛋白质的二级结构。
     论文整体分为三部分。第一部分第一章是对GOPC蛋白生理功能的综述。GOPC是最早发现的定位于高尔基体的PDZ包含蛋白之一,在不同组织中广泛表达。GOPC蛋白在细胞信号调节、细胞自吞噬作用和细胞凋亡途径调控、神经突形成过程的调控等诸多生物学过程中具有重要角色,并能够与诸如TC10,CFTR,frizzled,CALEB/NGC,Golgin-160,β1AR,Neuroligin等许多生物大分子相互作用。GOPC的缺失和突变会导致许多遗传疾病。GOPC基因很可能是一个管家基因。第二章综述了Neuroligin的生物学功能。Neuroligin具有高度保守的C末端序列,是典型的单跨膜蛋白。Neuroligin能与许多蛋白质分子如β-neurexins、突触支架分子(SSCAM)、PSD-95等相互作用,从而在触发突触前膜发育,诱导突触的形成、重塑、成熟,调控兴奋性/抑制性突触的比例等生物学过程中发挥重要作用。Neuroligin的突变会导致某些疾病的发生。
     论文第二部分利用核磁共振波谱学测定了人GOPC蛋白的PDZ结构域的溶液结构,并对该结构域与Neuroligin和Frizzled 8 C-末端多肽的结合性质进行了研究。编码人GOPC PDZ结构域的基因在大肠杆菌中得到了克隆和表达,利用Ni离子亲和层析法获得可用于核磁实验的重组蛋白质。GOPC蛋白的PDZ结构域具有PDZ结构域家族典型的结构特征:六段反平行的β折叠和两段α螺旋。动力学分析表明,溶液中GOPC蛋白的PDZ结构域在303K时主要以单体形式存在,但在温度降低时有形成聚合体的趋势。利用化学位移扰动实验研究了GOPC蛋白的PDZ结构域与Neuroligin和Frizzled C-末端多肽的结合性质。Neuroligin以及人Frizzled 8 C-末端多肽与GOPC PDZ结构域的作用位点都位于βB和αB螺旋形成的沟中。在NMR的时间尺度上,GOPC PDZ结构域与NeuroliginC-末端多肽的相互作用形成的复合物在整体上属于快速交换的范畴,与人Frizzled 8 C-末端多肽相互作用属于中等强度的相互作用。通过NMR滴定动力学计算出GOPC PDZ结构域与Neuroligin C-末端多肽相互作用的解离常数为260±86μM。我们运用分子动力学模拟的方法,构建了GOPC PDZ结构域与Neuroligin C-末端多肽相互作用的三维结构模型,该模型能很好的解释化学干扰实验的结果。
     第三部分是关于人AREB6 Homeobox结构域的表达、纯化及二级结构的初步研究。AREB6是一种同时具有锌指和Homeobox的转录因子。人AREB6的Homeobox结构域在大肠杆菌中得到了克隆和表达。我们对其表达和纯化条件进行了研究,并利用圆二色谱(CD)研究了其二级结构。
Our work focuses on the clone, expression, purification and structural and functional studies of PDZ domain of GOPC (Golgi-associated PDZ-and coiled-coil motif-containing protein) associated with the Golgi apparatus. The PDZ domain of human GOPC has been successfully cloned, expressed and purified. The solution structure of this PDZ domain has been determined by NMR spectroscopy. Using NMR chemical shift perturbation experiments, we investigate the binding characteristics of PDZ domain to the C-terminal peptides of Neuroligin and Frizzled 8 in vitro. Homeobox domain of humain AREB6 (hAREB6 Homeobox) has been successfully cloned, expressed and purified. We have explored the expression conditions and the secondary structure of hAREB6 Homeobox.
     There are three sections in our thesis. The first section introduces the reviews of the biological background of GOPC and neuroligin. As one of the first reported PDZ containing proteins localized at the Golgi apparatus, GOPC is expressed extendedly in many tissues and maybe a housekeeping gene. GOPC plays important roles including regulating signal, modulating pathways of apoptosis and autophagy, and controlling the growth of neurite, etc., which can interact with many molecules such as TC10, CFTR, frizzled, CALEB/NGC, Golgin-160,β1AR, Neuroligin. Many genetic diseases in humans are involved in the deletion and mutation of GOPC. Neuroligin is a postsynaptic cell-adhesion molecule of synapses which contains five distinct domains: a N-terminal sequence, a acetylcholinesterase homology domain, a linker domain, a single transmembrane domain, and a short intracellular sequence with a highly conserved C-terminus. The interactions between neuroligin and its binding partner, such asβ-neurexin, SSCAM, PSD-95, could induce formation, reconstruct, maturation of the synapse. Neuroligin control the functional balance of excitatory and inhibitory synapses and regulate the excitatory/inhibitory synaptic ratio through interaction with its postsynaptic binding partner.
     In section II , the solution structure of human GOPC PDZ domain was determined by NMR spectroscope and the binding characteristics of this domain with the C-terminal peptide of Neuroligin (Nlg (817-823)), and that of Frizzled 8 (Fz (687-694)) were studied. Recombinant PDZ domain of GOPC was cloned, expressed in E.coli and purified by Ni-chelating column. The NMR-derived tertiary structure of the GOPC PDZ domain is a canonical PDZ fold that contains twoα-helices and sixβ-strands. The dynamic properties indicate that the GOPC PDZ domain might be not aggregated or that the aggregation is very little at 303 K, and that there is a balance between monomer and aggregation of the GOPC PDZ domain and the shift of balance depends on the temperature. The binding properties of the GOPC PDZ domain with Nlg (817-823) and Fz (687-694) were characterized by NMR chemical shift perturbation experiments. The results indicate that both of them extend in the cleft between theβB strand and theαB helix, as most PDZ-binding ligands do. The ensemble of the binary complexes with Nlg (817-823) and Fz (687-694) belongs to fast exchange and intermediate exchange on the NMR timescale, respectively. The dissociation constants of the interaction between the GOPC PDZ domain and Nlg (817-823) calculated according to titrating dynamics is 260±86μM. The 3D model of GOPC PDZ-Nlg (817-823) was built up by molecular dynamics simulations, which can explain the results of chemical shift perturbation experiments.
     Section III introduces the work of Homeobox domain of human AREB6 (hAREB6 Homeobox). AREB6 is a transcription factor which contains zinc finger and homeobox domain. hAREB6 Homeobox is cloned, expressed in E.coli and purified by Ni-chelating column. The conditions of expression and purification of hAREB6 Homeobox were studied, and the secondary structure of this domain was determined by circular dichroism.
引文
1. Charest, A., et al., Association of a novel PDZ domain-containing peripheral Golgi protein with the Q-SNARE (Q-soluble N-ethyhnaleimide-sensitive fusion protein (NSF) attachment protein receptor) protein syntaxin 6. J Biol Chem, 2001. 276(31): p. 29456-65.
    2. Yao, R., et al., Identification of a PDZ domain containing Golgi protein, GOPC, as an interaction partner of frizzled. Biochem Biophys Res Commun, 2001. 286(4): p. 771-8.
    3. Yao, R., et al., Lack of aerosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A, 2002.99(17): p. 11211-6.
    4. Neudauer, C.L., G. Joberty, and I.G. Macara, PIST: a novel PDZ/coiled-coil domain binding partner for the rho-family GTPase TCIO. Biochem Biophys Res Commun, 2001. 280(2): p. 541-7.
    5. Hicks, S.W. and C.E. Machamer, Isoform-specific interaction of golgin-160 with the Golgi-associatedprotein PIST. J Biol Chem, 2005. 280(32): p. 28944-51.
    6. Cheng, J., H. Wang, and W.B. Guggino, Regulation of cystic fibrosis transmembrane regulator trafficking and protein expression by a Rho family small GTPase TC10. J Biol Chem, 2005.280(5): p. 3731-9.
    7. Hassel, B., et al., CALEB/NGC interacts with the Golgi-associated protein PIST. J Biol Chem, 2003. 278(41): p. 40136-43.
    8. Cheng, J., et al., A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression. J Biol Chem, 2002. 277(5): p. 3520-9.
    9. Takai, Y., T. Sasaki, and T. Matozaki, Small GTP-bindingproteins. Physiol Rev, 2001. 81(1): p. 153-208.
    10. Saltiel, A.R. and J.E. Pessin, Insulin signaling in microdomains of the plasma membrane. Traffic, 2003.4(11): p. 711-6.
    11. Chiang, S.H., et al., Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature, 2001. 410(6831): p. 944-8.
    12. Inoue, M., et al., The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature, 2003. 422(6932): p. 629-33.
    13. Murphy, G.A., et al., Cellular functions of TCIO, a Rho family GTPase: regulation of morphology, signal transduction and cell growth. Oncogene, 1999. 18(26): p. 3831-45.
    14. Neudauer, C.L., et al., Distinct cellular effects and interactions of the Rho-family GTPase TC10. Curr Biol, 1998.8(21): p. 1151-60.
    15. Joberty, G., R.R. Perlungher, and I.G. Macara, The Borgs, a new family of Cdc42 and TC10 GTPase-interactingproteins. Mol Cell Biol, 1999. 19(10): p. 6585-97.
    16. Joberty, G., et al., The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol, 2000.2(8): p. 531-9.
    17. Ponting, C.P., et al., PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays, 1997.19(6): p. 469-79.
    18. Kerem, B., et al., Identification of the cystic fibrosis gene: genetic analysis. Science, 1989. 245(4922): p. 1073-80.
    19. Riordan, J.R., et al., Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 1989. 245(4922): p. 1066-73.
    20. Kopito, R.R., Biosynthesis and degradation of CFTR. Physiol Rev, 1999. 79(1 Suppl): p. S167-73.
    21. Yoo, J.S., et al., Non-conventional trafficking of the cystic fibrosis transmembrane conductance regulator through the early secretory pathway. J Biol Chem, 2002. 277(13): p. 11401-9.
    22. Lukacs, G.L., et al., Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation. Biochem J, 1997.328 (Pt 2): p. 353-61.
    23. Prince, L.S., et al., Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal. J Biol Chem, 1999. 274(6): p. 3602-9.
    24. Weixel, K.M. and N.A. Bradbury, The carboxyl terminus of the cystic fibrosis transmembrane conductance regulator binds to AP-2 clathrin adaptors. J Biol Chem, 2000. 275(5): p. 3655-60.
    25. Cheng, J., H. Wang, and W.B. Guggino, Modulation of mature cystic fibrosis transmembrane regulator protein by the PDZ domain protein CAL. J Biol Chem, 2004. 279(3): p. 1892-8.
    26. Swiatecka-Urban, A., et al., Myosin Ⅵ regulates endocytosis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem, 2004. 279(36): p. 38025-31.
    27. Gentzsch, M., et al., Endocytic trafficking routes of wild type and DeltaF508 cystic fibrosis transmembrane conductance regulator. Mol Biol Cell, 2004.15(6): p. 2684-96.
    28. Benharouga, M., et al., cooH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments. J Cell Biol, 2001. 153(5): p. 957-70.
    29. Kuo, A., et al., Transmembrane transforming growth factor-alpha tethers to the PDZ domain-containing, Golgi membrane-associated protein p59/GRASP55. Embo J, 2000. 19(23): p. 6427-39.
    30. Shorter, J., et al., GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell free system. Ernbo J, 1999.18(18): p. 4949-60.
    31. Shen, B.Q., J.H. Widdicombe, and R.J. Mrsny, Effects oflovastatin on trafficking of cystic fibrosis transmembrane conductance regulator in human tracheal epithelium. J Biot Chem, 1995.270(42): p. 25102-6.
    32. Klionsky, D.J. and S.D. Emr, Autophagy as a regulated pathway of cellular degradation. Science, 2000. 290(5497): p. 1717-21.
    33. Xue, L., G.C. Fletcher, and A.M. Tolkovsky, Autophagy is activated by apoptotic signalling in sympathetic neurons. an alternative mechanism of death execution. Mol Cell Neurosci, 1999.14(3): p. 180-98.
    34. Dudek, H., et al., Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science, 1997. 275(5300): p. 661-5.
    35. Schwartz, L.M., et al., Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci U S A, 1993.90(3): p. 980-4.
    36. Reme, C.E. and M. Sulser, Diurnal variation of autophagy in rod visual cells in the rat. Albrecht Von Graefes Arch Klin Exp Ophthalmol, 1977. 203(3-4): p. 261-70.
    37. Thumm,.M. and T. Kadowaki, The loss of Drosophila APG4/AUT2 function modifies the phenotypes of cut and Notch signaling pathway mutants. Mol Genet Genomics, 2001. 266(4): p. 657-63.
    38. Liang, X.H., et al., Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interactingprotein. J Virol, 1998.72(11): p. 8586-96.
    39. Kametaka, S., et al., Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem, 1998. 273(35): p. 22284-91.
    40. Liang, X.H., et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999. 402(6762): p. 672-6.
    41. Kihara, A., et al., Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep, 2001.2(4): p. 330-5.
    42. Landsend, A.S., et al., Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci, 1997. 17(2): p. 834-42.
    43. Takayama, C., et al., Light-and electron-microscopic localization of the glutamate receptor channel delta 2 subunit in the mouse Purkinje cell. Neurosci Lett, 1995. 188(2): p. 89-92.
    44. Grant, S.G. and T.J. O'Dell, Multiprotein complex signaling and the plasticity problem. Curr Opin Neurobiol, 2001.11(3): p. 363-8.
    45. Kennedy, M.B., Signal-processing machines at the postsynaptic density. Science, 2000. 290(5492): p. 750-4.
    46. Scannevin, R.H. and R.L. Huganir, Postsynaptic organization and regulation of excitatory synapses. Nat Rev Neurosci, 2000. 1(2): p. 133-41.
    47. Sheng, M., Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci USA, 2001.98(13): p. 7058-61.
    48. Yue, Z., et al., A novel protein complex linking the delta 2 glutamate receptor and autophagy." implications for neurodegeneration in lurcher mice. Neuron, 2002. 35(5): p. 921-33.
    49. Norman, D.J., et al., The lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development, 1995. 121(4): p. 1183-93.
    50. Selimi, F., et al., Target-related and intrinsic neuronal death in Lurcher mutant mice are both mediated by caspase-3 activation. J Neurosci, 2000.20(3): p. 992-1000.
    51. Wullner, U., et al., Apoptotic cell death in the cerebellum of mutant weaver and lureher mice. Neurosci Lett, 1995. 200(2): p. 109-12.
    52. Doughty, M. L., et al., Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J Neurosci, 2000.20(10): p. 3687-94.
    53. Selimi, F., M. W. Vogel, and J. Mariani, Bax inactivation in lurcher mutants rescues cerebellar granule cells but not purkinje cells or inferior olivary neurons. J Neurosci, 2000.20(14): p. 5339-45.
    54. Schwarzler, A., H. J. Kreienkamp, and D. Richter, Interaction of the somatostatin receptor subtype 1 with the human homolog of the Shkl kinase-binding protein from yeast. J Biol Chem, 2000.275(13): p. 9557-62.
    55. Zitzer, H., et al., Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain. J Biol Chem, 1999. 274(46): p. 32997-3001.
    56. Helboe, L., C. E. Stidsen, and M. Moller, Immunohistochemieal and cytochemical localization of the somatostatin receptor subtype sst1 in the somatostatinergic parvocellular neuronal system of the rat hypothalamus. J Neurosci, 1998. 18(13): p. 4938-45.
    57. Schreff, M., et al., Distribution, targeting, and internalization of the sst4 somatostatin receptor in rat brain. J Neurosci, 2000.20(10): p. 3785-97.
    58. Handel, M., et al., Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience, 1999.89(3): p. 909-26.
    59. Vanetti, M., et al., Cloning and expression of a novel mouse somatostatin receptor (SSTR2B). FEBS Lett, 1992. 311(3): p. 290-4.
    60. Neuberger, G., et al., Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol, 2003. 328(3): p. 581-92.
    61. Strowski, M. Z., et al., Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes. an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology, 2000. 141(1): p. 111-7.
    62. Wente, W., et al., Interactions with PDZ domain proteins PIST/GOPC and PDZK1 regulate intracellular sorting of the somatostatin receptor subtype 5. J Biol Chem, 2005. 280(37): p. 32419-25.
    63. Sarret, P., et al., Role of amphiphysin Ⅱ in somatostatin receptor trafficking in neuroendocrine cells. J Biol Chern, 2004. 279(9): p. 8029-37.
    64. Gentzsch, M., et al., The PDZ-binding chloride channel CIC-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZproteins. J Biol Chem, 2003.278(8): p. 6440-9.
    65. Heydorn, A., el al., A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylrnaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J Biol Chem, 2004. 279(52): p. 54291-303.
    66. Swiatecka-Urban, A., et al., PDZ domain interaction controls the endocytic recycling of the cystic fibrosis transmembrane conductance regulator. J Biol Chem, 2002. 277(42): p. 40099-105.
    67. Kuliawat, R., et al,, Syntaxin-6 SNARE involvement in secretory and endocytic pathways of cultured pancreatic beta-cells. Mol Biol Cell, 2004.15(4): p. 1690-701.
    68. Simonsen, A., et al., The Rab5 effector EEAl interacts directly with syntaxin-6. J Biol Chem, 1999. 274(4I): p. 28857-60.
    69. He, J., et al., Interaction with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) inhibits betal-adrenergic receptor surface expression. J Biol Chem, 2004.279(48): p. 50190-6.
    70. Cuadra, A.E., et al., AMPA receptor synaptic targeting regulated by stargazin interactions with the Golgi-resident PDZ protein nPIST. J Neurosci, 2004.24(34): p. 7491-502.
    71. Stroh, T., et al., lntracellular dynamics of sst5 receptors in transfected COS-7 cells: maintenance of cell surface receptors during ligand-induced endocytosis. Endocrinology, 2000. 141(1): p. 354-65.
    72. Nakamura, N., et al., Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol, 1995. 131(6 Pt 2): p. 1715-26.
    73. Short, B., et al., A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J Cell Biol, 2001. 155(6): p. 877-83.
    74. Griffith, K.J., et al., Molecular cloning of a novel 97-kd Golgi complex autoantigen associated with Sjogren's syndrome. Arthritis Rheum, 1997.40(9): p. 1693-702.
    75. Fritzler, M.J., et al., Molecular characterization of two human autoantigens: unique cDNAs encoding 95-and 160-kD proteins of a putative family in the Golgi complex. J Exp Med, 1993. 178(1): p. 49-62.
    76. Misumi, Y., et al., Molecular characterization of GCP170, a 170-kDa protein associated with the cytoplasmic face of the Golgi membrane. J Biol Chem, 1997. 272(38): p. 23851-8.
    77. Erlich, R., et al., Molecular characterization of trans-Golgi p230. A human peripheral membrane protein encoded by a gene on chromosome 6p12-22 contains extensive coiled-coil alpha-helical domains and a granin motif. J Biol Chem, 1996. 271(14): p. 8328-37.
    78. Fritzler, M.J., et al., Molecular characterization of Golgin-245, a novel Golgi complex protein containing a granin signature. J Biol Chem, 1995. 270(52): p. 31262-8.
    79. Jakymiw, A., et al., Identification and characterization of a novel Golgi protein, golgin-67. J Biol Chem, 2000.275(6): p. 4137-44.
    80. Bascom, R.A., S. Srinivasan, and R.L. Nussbaum, Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain. J Biol Chem, 1999.274(5): p. 2953-62.
    81. Linstedt, A.D. and H.P. Hauri, Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol Biol Cell, 1993. 4(7): p. 679-93.
    82. Hicks, S.W. and C.E. Machamer, The NH2-terminal domain of Golgin-160 contains both Golgi and nuclear targeting information. J Biol Chem, 2002. 277(39): p. 35833-9.
    83. Maag, R.S., et al., Caspase-resistant Golgin-160 disrupts apoptosis induced by secretory pathway stress and ligation of death receptors. Mol Biol Cell, 2005.16(6): p. 3019-27.
    84. Mancini, M., et al., Caspase-2 is localized at the Golgi complex and cleaves golgin-160 duringapoptosis. J Cell Biol, 2000. 149(3): p. 603-12.
    85. Vinson, C.R., S. Co.nover, and EN. Adler, A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature, 1989. 338(6212): p. 263-4.
    86. Wang, Y., et al., A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J Biol Chem, 1996. 271(8): p. 4468-76.
    87. Bhanot, P., et al., A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 1996. 382(6588): p. 225-30.
    88. Park, W.J., J. Liu, and P.N. Adler, The frizzled gene of Drosophila encodes a membrane protein with an odd number of transmembrane domains. Mech Dev, 1994. 45(2): p. 127-37.
    89. Sato, A., et al., Dfrizzled-3, a new Drosophila Wnt receptor, acting as an attenuator of Wingless signaling in wingless hypomorphic mutants. Development, 1999. 126(20): p. 4421-30.
    90. Schumacher, S., et al., Chicken acidic leucine-rich EGF-like domain containing brain protein (CALEB), a neural member of the EGF family of differentiation factors, is implicated in neuriteformation. J Cell Biol, 1997. 136(4): p. 895-906.
    91. Watanabe, E., et al., Neuroglycan C, a novel membrane-spanning chondroitin sulfate proteoglycan that is restricted to the brain. J Biol Chem, 1995. 270(45): p. 26876-82.
    92. Yasuda, Y., et al., Cloning and chromosomal mapping of the human gene of neuroglycan C (NGC), a neural transmembrane chondroitin sulfate proteoglycan with an EGF module. Neurosci Res, 1998.32(4): p. 313-22.
    93. Schumacher, S., et al., CALEB binds via its acidic stretch to the fibrinogen-like domain of tenascin-C or tenascin-R and its expression is dynamically regulated after optic nerve lesion. J Biol Chem, 2001. 276(10): p. 7337-45.
    94. Massague, J. and A. Pandiella, Membrane-anchored growth factors. Annu Rev Biochem, 1993.62: p. 515-41.
    95. Riese, D.J., 2nd and D.F. Stem, Specificity within the EGF family/ErbB receptor family signaling network. Bioessays, 1998.20(1): p. 41-8.
    96. Huang, Y.Y. and E.R. Kandel, Modulation of both the early and the late phase of mossy fiber LTP by the activation of beta-adrenergic receptors. Neuron, 1996. 16(3): p. 611-7.
    97. McGaugh, J.L., Memory—α century of consolidation. Science, 2000. 287(5451): p. 248-51.
    98. Thomas, M.J., et al., Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CAl region. Neuron, 1996.17(3): p. 475-82.
    99. Wang, S.J., L.L. Cheng, and P.W. Gean, Cross-modulation of synaptic plasticity by beta-adrenergic and 5-HTlA receptors in the rat basolateral amygdala. J Neurosci, 1999. 19(2): p. 570-7.
    100. Watanabe, Y., et al., Opposite regulation by the beta-adrenoceptor-cyclic AMP system of synaptic plasticity in the medial and lateral amygdala in vitro. Neuroscience, 1996.71(4): p. 1031-5.
    101. Winder, D.G., et al., ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron, 1999. 24(3): p. 715-26.
    102. Dorn, G.W., 2nd and J.D. Molkentin, Manipulating cardiac contractility in heart failure: data from mice and men. Circulation, 2004. 109(2): p. 150-8.
    103. Lohse, M.J., S. Engelhardt, and T. Eschenhagen, What is the role of beta-adrenergic signaling in heart failure? Circ Res, 2003.93(10): p. 896-906.
    104. Xiang, Y. and B.K. Kobilka, Myocyte adrenoceptor signaling pathways. Science, 2003. 300(5625): p. 1530-2.
    105. Hu, L.A., et al., beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J Biol Chem, 2000. 275(49): p. 38659-66.
    106. Xu, J., et al., beta 1-adrenergie receptor association with the synaptie scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J Biol Chem, 2001. 276(44): p. 41310-7.
    107. He, J., et al., Glycosylation of beta(1)-adrenergic receptors regulates receptor surface expression anddimerization. Biochem Biophys Res Commun, 2002. 297(3): p. 565-72.
    108. Hu, L.A., et al., GIPC interacts with the betal-adrenergic receptor and regulates betal-adrenergic recep.tor-mediated ERK activation. J Biol Chem, 2003. 278(28): p. 26295-301.
    109. Pak, Y., N. Pham, and D. Rotin, Direct binding of the betal adrenergic receptor to the cyclic AMP-dependent guanine nucleotide exchange factor CNrasGEF leads to Ras activation. Mol Cell Biol, 2002.22(22): p. 7942-52.
    110. Hung, A.Y. and M. Sheng, PDZ domains: structural modules for protein complex assembly. J Biol Chem, 2002. 277(8): p. 5699-702.
    111. De Vries, L., et al., GIPC, a PDZ domain containing protein, interacts specifically with the C terminus ofRGS-GAIP. Proc Natl Acad Sci U S A, 1998.95(21): p. 12340-5.
    112. Hirao, K., et al., A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J Biol Chem, 1998. 273(33): p. 21105-10.
    113. Hunt, C.A., L.J. Schenker, and M.B. Kennedy, PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci, 1996. 16(4): p. 1380-8.
    114. Pham, N., et al., The guanine nucleotide exchange factor CNrasGEF activates ras in response to cAMP and cGMP. Curr Biol, 2000. 10(9): p. 555-8.
    115. Abou-Haila, A. and D.R. Tulsiani, Mammalian sperm acrosome:formation, contents, and function. Arch Biochem Biophys, 2000.379(2): p. 173-82.
    116. Blendy, J.A., et al., Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature, 1996. 350(6570): p. 162-5.
    117. Nantel, E, et al., Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature, 1996. 380(6570): p. 159-62.
    118. Lalonde, L., et al., Male infertility associated with round-headed acrosomeless spermatozoa. Fertil Steril, 1988.49(2): p. 316-21.
    119. Singh, G., Ultrastructural features of round-headed human spermatozoa. Int J Fertil, 1992. 37(2): p. 99-102.
    120. Rybouchkin, A., et al., Analysis of the oocyte activating capacity and chromosomal complement of round-headed human spermatozoa by their injection into mouse oocytes. Hum Reprod, 1996. 11(10): p. 2170-5.
    121. Ito, H., et al., Identification of a PDZ protein, PIST, as a binding partnerfor Rho effector Rhotekin: biochemical and cell-biological characterization of Rhotekin-PIST interaction. Biochem J, 2006.397(3): p. 389-98.
    122. Meyer, G., et al., The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology, 2004.47(5): p. 724-33.
    123. Chih, B., H. Engelman, and E Scheiffele, Control of excitatory and inhibitory synapse formation by neuroligins. Science, 2005. 307(5713): p. 1324-8.
    124. Comoletti, D., et al., Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1 beta. J Biol Chem, 2003. 278(50): p. 50497-505.
    125. Grifman, M., et al., Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc Natl Acad Sci U S A, 1998.95(23): p. 13935-40.
    126. Prange, O., et al., A balance between excitatory and inhibitory synapses is controlled by PSD-95 andneuroligin. Proc Natl Acad Sci U S A, 2004. 101(38): p. 13915-20.
    127. Kurschner, C., et al., CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci, 1998.11(3): p. 161-72.
    128. Sara, Y., et al., Selective capability of SynCAM and neuroligin for functional synapse assembly. J Neurosci, 2005.25(1): p. 260-70.
    129. Hata, Y., S. Butz, and T.C. Sudhof, CASK. a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci, 1996.16(8): p. 2488-94.
    130. Ichtchenko, K., T. Nguyen, and T.C. Sudhof, Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem, 1996.271(5): p. 2676-82.
    131. Irie, M., et al., Binding of neuroligins to PSD-95. Science, 1997.277(5331): p. 1511-5.
    132. Sugita, S., et al., A stoichiometrie complex of neurexins and dystroglycan in brain. J Cell Biol, 2001.154(2): p. 435-45.
    133. Ushkaryov, Y.A., et al., Conserved domain structure of beta-neurexins. Unusual cleaved signal sequences in receptor-like neuronal cell-surface proteins. J Biol Chem, 1994. 269(16): p. 11987-92.
    134. Ushkaryov, Y.A., et al., Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor a.nd laminin. Science, 1992.257(5066): p. 50-6.
    135. Chubykin, A.A., et al., Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism. J Biol Chem, 2005. 280(23): p. 22365-74.
    136. Bolliger, M.F., et al., Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. Biochem J, 2001. 356(Pt 2): p. 581-8.
    137. Levinson, J.N., et al., Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1 beta in neuroligin-induced synaptic specificity. J Biol Chem, 2005. 280(17): p. 17312-9.
    138. Ichtchenko, K., et al., Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell, 1995.81(3): p. 435-43.
    139. Nam, C.I. and L. Chen, Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci U S A, 2005. 102(17): p. 6137-42.
    140. Scheiffele, P., et al., Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell, 2000. 101(6): p. 657-69.
    141. Butz, S., M. Okamoto, and T.C. Sudhof, A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell, 1998.94(6): p. 773-82.
    142. Brose, N., et al., Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science, 1992.256(5059): p. 1021-5.
    143. Hata, Y., et al., Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron, 1993.10(2): p. 307-15.
    144. Campagna, J.A., M.A. Ruegg, and J.L. Bixby, Agrin is a differentiation-inducing "stop signal"for motoneurons in vitro. Neuron, 1995.15(6): p. 1365-74.
    145. Hatten, M.E., Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol, 1985. 100(2): p. 384-96.
    146. Hsueh, Y.P., et al., Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J Cell Biol, 1998. 142(1): p. 139-51.
    147. Botti, S.A., et al., Electrotactins: a class of adhesion proteins with conserved electrostatic and structural motifs. Protein Eng, 1998. 11(6): p. 415-20.
    148. Uehida, N., et al., The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J Cell Biol, 1996. 135(3): p. 767-79.
    149. Missler, M., R. Fernandez-Chacon, and T.C. Sudhof, The making of neurexins. J Neurochem, 1998.71(4): p. 1339-47.
    150. Brose, N., Synaptic cell adhesion proteins and synaptogenesis in the mammalian central nervous system. Naturwissenschaften, 1999.86(11): p. 516-24.
    151. Rao, A., K.J. Harms, and A.M. Craig, Neuroligation: building synapses around the neurexin-neuroligin link. Nat Neurosci, 2000.3(8): p. 747-9.
    152. Dean, C., et al., Neurexin mediates the assembly ofpresynaptic terminals. Nat Neurosci, 2003.6(7): p. 708-16.
    153. Biederer, T., et al., SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science, 2002. 297(5586): p. 1525-31.
    154. Graf, E.R., et al., Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell, 2004. 119(7): p. 1013-26.
    155. Song, J.Y., et al., Neuroligin l is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci U S A, 1999.96(3): p. 1100-5.
    156. Jamain, S., et al., Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet, 2003.34(1): p. 27-9.
    157. Laumonnier, F., et al., X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet, 2004. 74(3): p. 552-7.
    158. Garner, C.C., J. Nash, and R.L. Huganir, PDZ domains in synapse assembly and signalling. Trends Cell Biol, 2000.10(7): p. 274-80.
    159. Goda, Y. and G.W. Davis, Mechanisms of synapse assembly and disassembly. Neuron, 2003.40(2): p. 243-64.
    160. Dresbach, T., et al., The presynaptic cytomatrix of brain synapses. Cell Mol Life Sci, 2001. 58(1): p. 94-116.
    161. Li, Z. and M. Sheng, Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol, 2003.4(11): p. 833-41.
    162. McGee, A.W. and D.S. Bredt, Assembly and plasticity of the glutamatergic postsynaptic specialization. Curr Opin Neurobiol, 2003.13(1): p. 111-8.
    163. Rosenmund, C., J. Rettig, and N. Brose, Molecular mechanisms of active zone function. Curr Opin Neurobiol, 2003.13(5): p. 509-19.
    164. Dresbach, T., et al., Synaptic targeting of neuroligin is independent of neurexin and SAP90/PSD95 binding. Mol Cell Neurosci, 2004.27(3): p. 227-35.
    165. Iida, J., et al., Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. Mol Cell Neurosci, 2004.27(4): p. 497-508.
    166. Nishimura, W., et al., Interaction of synaptic scaffolding molecule and Beta -catenin. J Neurosci, 2002.22(3): p. 757-65.
    167. Niethammer, M., et al., CRIPT, a.novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90. Neuron, 1998.20(4): p. 693-707.
    168. Craig, A.M. and H. Boudin, Molecular heterogeneity of central synapses: afferent and target regulation. Nat Neurosci, 2001.4(6): p. 569-78.
    169. Kirn, E. and M. Sheng, PDZ domain proteins of synapses. Nat Rev Neurosci, 2004, 5(10): p. 771-81.
    170. Washbourne, P., et al., Cell adhesion molecules in synapse formation. J Neurosci, 2004. 24(42): p. 9244-9.
    171. Lee, S.H. and M. Sheng, Development of neuron-neuron synapses. Curr Opin Neurobiol, 2000.10(1): p. 125-31.
    172. Ziv, N.E., Recruitment of synaptic molecules during synaptogenesis. Neuroscientist, 2001. 7(5): p. 365-70.
    173. Ziv, N.E. and S.J. Smith, Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron, 1996. 17(1): p. 91-102.
    174. Zoghbi, H.Y., Postnatal neurodevelopmental disorders: meeting at the synapse? Science, 2003.302(5646): p. 826-30.
    175. Chih, B., et al., Disorder-associated mutations lead to functional inactivation of neuroligins. Hum Mol Genet, 2004. 13(14): p. 1471-7.
    176. Comoletti, D., et al., The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci, 2004.24(20): p. 4889-93.
    177. Lise, M.F. and A. El-Husseini, The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci, 2006. 63(16): p. 1833-49.
    1. Schultz, J., et al., SMART. a web-based tool for the study of genetically mobile domains. Nucleic Acids Res, 2000.28(1): p. 231-4.
    2. Pallen, M.J. and C.P. Ponting, PDZ domains in bacterial proteins. Mol Microbiol, 1997. 26(2): p. 411-3.
    3. Ponting, C.P., Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci, 1997. 6(2): p. 464-8.
    4. Liao, D.I., et al., Crystal structures of the photosystem Ⅱ Dl C-terminal processing protease. Nat Struct Biol, 2000.7(9): p. 749-53.
    5. Venter, J.C., et al., The sequence of the human genome. Science, 2001. 291(5507): p. 1304-51.
    6. Zagulski, M., C.J. Herbert, and J. Rytka, Sequencing and functional analysis of the yeast genome. Acta Biochim Pol, 1998. 45(3): p. 627-43.
    7. Niethammer, M., et al., CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90. Neuron, 1998.20(4): p. 693-707.
    8. Songyang, Z., et al., Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science, 1997. 275(5296): p. 73-7.
    9. Kim, E., et al., Clustering of Shaker-type K+ channels by interaction with a family of membrane-associatedguanylate kinases. Nature, 1995.378(6552): p. 85-8.
    10. Schultz, J., et al., Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. Nat Struct Biol, 1998.5(1): p. 19-24.
    11. Marfatia, S.M., et al., Human homologue of the Drosophila discs large tumor suppressor protein forms an oligomer in solution. Identification of the self-association site. J Biol Chem, 2000. 275(18): p. 13759-70.
    12. Stricker, N.L., et al., PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminalpeptide sequences. Nat Biotechnol, 1997.15(4): p. 336-42.
    13. Maximov, A., T.C. Sudhof, and I. Bezprozvanny, Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem, 1999. 274(35): p. 24453-6.
    14. Borrell-Pages, M., et al., The carboxy-terminal cysteine of the tetraspanin L6 antigen is required for its interaction with SITAC, a novel PDZ protein. Mol Biol Cell, 2000. 11(12): p. 4217-25.
    15. Karthikeyan, S., et al., Crystal structure of the PDZ1 domain of human Na(+)/H(+) exchanger regulatory factor provides insights into the mechanism of carboxyl-terminal leucine recognition by class Ⅰ PDZ domains. J Mol Biol, 2001. 308(5): p. 963-73.
    16. Tochio, H., et al., Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associatedpeptide. Nat Struct Biol, 1999. 6(5): p. 417-21.
    17. Christopherson, K.S., et al., PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem, 1999. 274(39): p. 27467-73.
    18. Cheng, J., et al., A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression. J Biol Chem, 2002. 277(5): p. 3520-9.
    19. Cheng, J., H. Wang, and W.B. Guggino, Modulation of mature cystic fibrosis transmembrane regulator protein by the PDZ domain protein CAL. J Biol Chem, 2004. 279(3): p. 1892-8.
    20. Yao, R., et al., Identification of a PDZ domain containing. Golgi protein, GOPC, as an interaction partner of frizzled. Biochem Biophys Res Commun, 2001. 286(4): p. 771-8.
    21. Yue, Z., et al., A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron, 2002.35(5): p. 921-33.
    22. Wente, W., et al., Interactions with PDZ domain proteins PIST/GOPC and PDZKI regulate intracellular sorting of the somatostatin receptor subtype 5. J Biol Chem, 2005. 280(37): p. 32419-25.
    23. Ives, J.H., et ai., Microtubule-associated protein light chain 2 is a stargazin-AMPA receptor complex-interactingprotein in vivo. J Biol Chem, 2004. 279(30): p. 31002-9.
    24. Gentzsch, M., et al., The PDZ-binding chloride channel CIC-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins. J Biol Chem, 2003. 278(8): p. 6440-9.
    25. He, J., et al., Interaction with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) inhibits betal-adrenergic receptor surface expression. J Biol Chem, 2004. 279(48): p. 50190-6.
    26. Meyer, G., et al., The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology, 2004.47(5): p. 724-33.
    27. Delaglio, F., et al., NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR, 1995.6(3): p. 277-93.
    28. Wishart, D.S. and B.D. Sykes, The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR, 1994.4(2): p. 171-80.
    29. Wishart, D.S., B.D. Sykes, and F.M. Richards, The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy Biochemistry, 1992.31(6): p. 1647-51.
    30. Cornilescu, G., F. Delaglio, and A. Bax, Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR, 1999. 13(3): p. 289-302.
    31. Farrow, N.A., et al., Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry, 1994. 33(19): p. 5984-6003.
    32. Zhou, H., et al., Solution structure of AF-6 PDZ domain and its interaction with the C-terminal peptides from Neurexin and Bcr. J Biol Chem, 2005. 280(14): p. 13841-7.
    33. Hu, H.Y., et al., Identification of small molecule synthetic inhibitors of DNA polymerase beta by NMR chemical shift mapping. J Biol Chem, 2004. 279(38): p. 39736-44.
    34. Lian, L.Y., et al., Protein-ligand interactions: exchange processes and determination of ligand conformation and protein-ligand contacts. Methods Enzymol, 1994. 239: p. 657-700.
    35. Liu, D., et al., Three-dimensional solution structure of the N-terminal domain of DNA polymerase beta and mapping of the ssDNA interaction interface. Biochemistry, 1996. 35(20): p. 6188-200.
    36. Shindyalov, I.N. and P.E. Bourne, Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng, 1998. 11(9): p. 739-47.
    37. van Gunsteren, W.F., Billeter, S. R., Eising, A. A., Hunenberger, P. H., Kruger, P., Mark, A. E., Scott, W. R. & Tironi, I. G., Biomolecular simulation: The GROMOS96 manual and user guide (Vdf Hochschulverlag, Zurich) Biomolecular simulation: The GROMOS96 manual and user guide (Vdf Hoehschulverlag, Zurich). Vol. a. 1996.
    38. Zhu, J., Y.Y. Shi, and H.Y. Liu, Parametrization of a Generalized Born/Solvent-Accessible Surface Area Model and Applications to the Simulation of Protein Dynamics J. Phys. Chem. B, 2002. 106: p. 4844-4853.
    39. Laskowski, R.A., et al., AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR, 1996.8(4): p. 477-86.
    40. Cole, R. and J.P. Loria, FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data. J Biomol NMR, 2003.26(3): p. 203-13.
    41. Piserchio, A., et al., Association of the Cystic Fibrosis Transmembrane Regulator with CAL: Structural Features and Molecular Dynamics. Biochemistry, 2005. 44(49): p. 16158-66.
    42. Doyle, D.A., et al., Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell, 1996. 85(7): p. 1067-76.
    43. Kozlov, G., K. Gehring, and I. Ekiel, Solution structure of the PDZ2 domain from human phosphatase hPTPlE and its interactions with C-terminal peptides from the Fas receptor. Biochemistry, 2000. 39(10): p. 2572-80.
    44. Piserchio, A., et al., The PDZl domain of SAP90. Characterization of structure and binding. J Biol Chem, 2002.277(9): p. 6967-73.
    45. Fuentes, E.J., C.J. Der, and A.L. Lee, Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. J Mol Biol, 2004.335(4): p. 1105-15.
    46. Lockless, S.W. and R. Ranganathan, Evolutionarily conserved pathways of energetic connectivity in protein families. Science, 1999. 286(5438): p. 295-9.
    47. Strutt, D.I., Asymmetric localization of frizzled and the establishment of cell polarity in the Drosophila wing. Mol Cell, 2001.7(2): p. 367-75.
    48. Vinson, C. R., S. Conover, and P. N. Adler, A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature, 1989. 338(6212): p. 263-4.
    1. Gehring, W.J., M. Affolter, and T. Burglin, Homeodomain proteins. Annu Rev Bioehem, 1994.63: p. 487-526.
    2.柳德斌,陈克能,王彤,同源盒基因与肿瘤.国外医学肿瘤学分册,2001.28(6).
    3. Ippel, H., et al., The solution structure of the homeodomain of the rat insulin-gene enhancer protein isl-1. Comparison with other homeodomains. J Mol Biol, 1999. 288(4): p. 689-703.
    4. Krumlauf, R., Hox genes in vertebrate development. Cell, 1994.78(2): p. 191-201.
    5. Gehring, W.J., et al., Homeodomain-DNA recognition. Cell, 1994.78(2): p. 211-23.
    6. Watanabe, Y., et al., Transcription factors positively and negatively regulating the Na, K-ATPase alpha 1 subunitgene. J Biochem (Tokyo), 1993.114(6): p. 849-55.
    7. Williams, T.M., et al., Identification of a zinc finger protein that inhibits IL-2 gene expression. Science, 1991. 254(5039): p. 1791-4.
    8. Ikeda, K. and K. Kawakami, DNA binding through distinct domains of zinc-finger-homeodomain protein AREB6 has different effects on gene transcription. Eur J Biochem, 1995.233(1): p. 73-82.
    9. Andres, V., M.D. Chiara, and V. Mahdavi, A new bipartite DNA-binding domain: cooperative interaction between the cut repeat and homeo domain of the cut homeo proteins. Genes Dev, 1994.8(2): p. 245-57.
    10. German, M.S., et al., Synergistic activation of the insulin gene by a LIM-homeo domain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes Dev, 1992.6(11): p. 2165-76.
    11. Harada, R., et al., Conserved cut repeats in the human cut homeodomain protein function as DNA binding domains. J Biol Chem, 1994. 269(3): p. 2062-7.
    12. Treisman, J., E. Harris, and C. Desplan, The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes Dev, 1991.5(4): p. 594-604.
    13. Verrijzer, C.P., J.A. van Oosterhout, and P.C. van der Vliet, The Oct-1 POU domain mediates interactions between Oct-1 and other POU proteins. Mol Cell Biol, 1992.12(2): p. 542-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700