蛋白质磷酸酶1(PP-1)对转录因子Pax-6的功能修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Pax-6是进化上一个保守而重要的转录因子,它在眼睛与大脑发育中起着主导基因的作用,决定着人类,小鼠,斑马鱼和果蝇的晶体细胞分化。
     到目前为止,不同形式的Pax-6已被发现,它们有着不同的分子量。但这并不意味着它们中的全部都已经被仔细的研究过,也并不意味着它们的蛋白质翻译后修饰作用被完整的诠释。前人的研究已经表明Pax-6是一个磷酸化蛋白,它受ERK,p38和HIPK2这三种激酶作用而发生磷酸化,并且它在磷酸化以后能大大的激活其转录的活性。然而,其去磷酸化修饰作用却不为人所知。
     为了了解Pax-6的脱磷酸化修饰作用,作者首先研究了蛋白质丝氨酸/苏氨酸磷酸酶使Pax-6脱磷酸化的可能性。研究结果表明,PP-1和PP-2A这两种蛋白质磷酸酶均能在体外使Pax-6脱磷酸化。第二,作者检测了是否PP-1与PP-2A这两种蛋白质磷酸酶能特异地在体内使Pax-6脱去磷酸基团。结果表明,只有PP-1能与Pax-6在体内发生反应,使其脱磷酸化。第三,通过免疫共沉降的办法,作者发现细胞内的大部分Pax-6与PP-1的α催化亚基,或者β催化亚基结合在一块;然而只有少量的α催化亚基或者β催化亚基与Pax-6结合;PP-2A的A,B,C三种亚基与Pax-6没有相互作用。第四,随着Calyculin A这种PP-1抑制剂处理浓度的提高,与Pax-6结合的PP-1α催化亚基或者β催化亚基依次减少。当在人类晶体上皮细胞(HLE)中高表达PP-1α时,Pax-6的脱磷酸化增强;而此时用Calyculin A处理则能在一定程度上缓解这种脱磷酸化的作用。最后,通过特异性RNAi干扰实验对内源性PP-1α催化亚基或者β催化亚基进行knock-down,作者发现Pax-6的磷酸化增强。
     因此,作者得出以下结论:PP-1α催化亚基和β催化亚基均参与Pax-6的脱磷酸化作用来调节其功能,而细胞内多数Pax-6蛋白由于PP-1的脱磷酸化作用而处于一种失活的状态,这导致一种静态的平衡。
Pax-6 is an evolutionarily conserved transcription factorand acts high up in the regulatory hierarchy controlling eyeand brain development in human, mouse, zebrafish, andDrosophila.
     Previous studies have shown that Pax-6 is aphosphoprotein and its phosphorylation by ERK, p38 andhomeodomain-interacting protein kinase 2 greatly enhances itstransactivation activity. However, the protein phosphatasesresponsible for the dephosphorylation of Pax-6 remain unknown.
     Here, we present both in vitro and in vivo evidence toshow that protein serine/threonine phosphatase-1 is a majorphosphatase, which directly dephosphorylates Pax-6. First,purified protein phosphatase-1 directly dephosphorylates Pax-6 in vitro. Second, immunoprecipitation-linked Western blotrevealed that both protein phosphatase-1αand proteinphosphatase-1βinteract with Pax-6. Thirdly, overexpressionof protein phosphatase-1αin human lens epithelial cellsleads to dephosphorylation of Pax-6. Finally, inhibition ofprotein phosphatase-1 activity by calyculin A or knockdown ofprotein phosphatase-1αand protein phosphatase-1βby RNAileads to enhanced phosphorylation of Pax-6. Moreover, ourresults also demonstrate that dephosphorylation of Pax-6 byprotein phosphatase-1 significantly modulates its function inregulating expression of both exogenous and endogenous genes.These results demonstrate that PP-1 acts as a major phosphatase to dephosphorylate Pax-6 and modulate itsfunction.
引文
[1] 翟中和,王喜忠,丁明孝.《细胞生物学》.北京:高等教育出版 社,2000,428-429.
    [2] Krueger KE, Srivastava S. Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics, 2006, 5(10): 1799-1810.
    [3] 胡笳,郭燕婷,李艳梅.蛋白质翻译后修饰研究进展.科学通报,2005,50(11):1061-1072.
    [4] Cantley LC, Auger KR, et al. Oncogenes and signal transduction. Cell, 1991, 64(2): 281-302.
    [5] Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell, 1990, 61(2): 203-212.
    [6] Li L, Dixon JE. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin Immunol, 2000, 12(1): 75-84.
    [7] Chen W, Arroyo JD, et al. Cancer-associated PP2A A alpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Res, 2005, 65(18): 8183-8192.
    [8] Pearson G, Robinson F, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 2001, 22(2): 153-183.
    [9] Lee T, Kim SJ, Sumpio BE. Role of PP2A in the regulation of p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain. J Cell Physiol, 2003 194(3): 349-355.
    [10] Collett MS, Erikson RL. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA, 1978, 75(4): 2021-2024.
    [11] Hunter T, Sefton BM. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA, 1980, 77(3): 1311-1315.
    [12] Levinson AD, Oppermann H, et al. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell, 1978, 15(2): 561-572.
    [13] Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature, 1984, 308(5961): 693-698.
    [14] Morrison DK. The Raf-1 kinase as a transducer of mitogenic signals. Cancer Cells, 1990, 2(12): 377-382.
    [15] Morrison DK, Kaplan DR, et al. Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF beta-receptor. Cell, 1989, 58(4): 649-657.
    [16] Pelech SL, Sanghera JS. MAP kinases: charting the regulatory pathways. Science, 1992, 257(5075): 1355-1356.
    [17] Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science, 1991, 253(5018): 401-406.
    [18] Charbonneau H, Tonks NK, Kumar S, et al. Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci USA, 1989, 86(14): 5252-5256.
    [19] Suganuma M, Fujiki H, et al. Okadaic acid: an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc Natl Acad Sci USA, 1988, 85(6): 1768-1771.
    [20] Bialojan C, Takai A. Inhibitory effect of a marine- sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J, 1988, 256(1): 283- 290.
    [21] Cohen P, Holmes CF, Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci, 1990, 15(3): 98-102.
    [22] Cohen P, Cohen PT. Protein phosphatases come of age. J Biol Chem, 1989, 264(36): 21435-21438.
    [23] Mumby MC, Walter G. Protein phosphatases and DNA tumor viruses: transformation through the back door? Cell Regul, 1991, 2(8): 589-598.
    [24] Pallas DC, Shahrik LK, et al. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein Phosphatase 2A. Cell, 1990, 60(1): 167-176.
    [25] Walter G, Ruediger R, et al. Association of protein Phosphatase 2A with polyoma virus medium tumor antigen. Proc Natl Acad Sci USA, 1990, 87(7): 2521-2525.
    [26] Scheidtmann KH, Mumby MC, et al. Dephosphorylation of simian virus 40 large-T antigen and p53 protein by protein Phosphatase 2A: inhibition by small-t. antigen. Mol Cell Biol, 1991, 11(4): 1996-2003.
    [27] Yang SI, Lickteig RL, et al. Control of protein Phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol, 1991, 11(4): 1988-1995.
    [28] Remenyi A, Good MC, Lim WA. Docking interactions in protein kinase and Phosphatase networks. Curr Opin Struct Biol, 2006, 16(6): 676-685.
    [29] Inagaki N, Ito M, et al. Spatiotemporal distribution of protein kinase and Phosphatase activities. Trends Biochem Sci, 1994, 19(11): 448-452.
    [30] Shi L, Potts M, Kennelly PJ. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev, 1998, 22(4): 229-253.
    [31] Jia Z. Protein phosphatases: structures and implications. Biochem Cell Biol, 1997, 75(1): 17-26.
    [32] Montalibet J, Skorey KI, Kennedy BP. Protein tyrosine Phosphatase: enzymatic assays. Methods, 2005, 35(1): 2-8.
    [33] Tiganis T, Bennett AM. Protein tyrosine Phosphatase function: the substrate perspective. Biochem J, 2007, 402(1): 1-15.
    
    [34] Ceulemans H, Stalmans W, and Bollen M. Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. Bioessays, 2002, 24(4): 371-381.
    [35] Doonan JH, MacKintosh C, et al. A cDNA encoding rabbit muscle protein Phosphatase 1 alpha complements the Aspergillus cell cycle mutation, bimGll. J Biol Chem, 1991, 266(28): 18889-18894.
    [36] Sangrador A, Andres I, et al. Growth arrest of Schizosaccharomyces pombe following overexpression of mouse type 1 protein phosphatases. Mol Gen Genet, 1998, 259(5): 449-456.
    [37] Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem, 1989, 58: 453-508.
    
    [38] Brandt H, Killilea SD, Lee EY. Activation of phosphorylase Phosphatase by a novel procedure: evidence for a regulatory mechanism involving the release of a catalytic subunit from enxyme-inhibitor complex (es) of higher molecular weight. Biochem Biophys Res Commun, 1974, 61(2): 598-604.
    
    [39] Brandt H, Capulong ZL, Lee EY. Purification and properties of rabbit liver phosphorylase Phosphatase. J Biol Chem, 1975, 250(20): 8038-8044.
    
    [40] Tung HY, Resink TJ, et al. The catalytic subunits of protein phosphatase-1 and protein Phosphatase 2A are distinct gene products. Eur J Biochem, 1984, 138(3): 635-641.
    
    [41] Silberman SR, Speth M, et al. Isolation and characterization of rabbit skeletal muscle protein phosphatases C-I and C-II. J Biol Chem, 1984, 259(5): 2913-2922.
    
    [42] Egloff MP, Cohen PT, et al. Crystal structure of the catalytic subunit of human protein Phosphatase 1 and its complex with tungstate. J Mol Biol, 1995, 254(5): 942- 959.
    
    [43] Goldberg J, Huang HB, et al. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature, 1995, 376(6543): 745-753.
    
    [44] Maynes JT, Bateman KS, et al. Crystal structure of the tumorpromoter okadaic acid bound to protein phosphatase- 1. J Biol Chem, 2001, 276(47): 44078-44082.
    [45] Kita A, Matsunaga S, et al. Crystal structure of the complex between calyculin A and the catalytic subunit of protein Phosphatase 1. Structure, 2002, 10(5): 715-724.
    
    [46] Shenolikar S, Nairn AC. Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res, 1991, 23: 1-121.
    
    [47] Stralfors P, Hiraga A, Cohen P. The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur J Biochem. 1985, 149(2): 295-303.
    
    [48] Tang PM, Bondor JA, et al. Molecular cloning and expression of the regulatory (RG1) subunit of the glycogen-associated protein Phosphatase. J Biol Chem, 1991, 266(24): 15782-15789.
    
    [49] Hubbard MJ, Dent P, et al. Targetting of protein Phosphatase 1 to the sarcoplasmic reticulum of rabbit skeletal muscle by a protein that is very similar or identical to the G subunit that directs the enzyme to glycogen. Eur J Biochem, 1990, 189(2): 243-249.
    
    [50] Chisholm AA, Cohen P. The myosin-bound form of protein Phosphatase 1 (PP-1M) is the enzyme that dephosphory- lates native myosin in skeletal and cardiac muscles. Biochim Biophys Acta, 1988, 971 (2) : 163-169.
    
    [51] Jakes S, Mellgren RL, Schlender KK. Isolation and characterization of an inhibitor-sensitive and a polycation-stimulated protein Phosphatase from rat liver nuclei. Biochim Biophys Acta, 1986, 888(1): 135-142.
    [52] Johnson GL, Brautigan DL, et al. Sequence homologies between type 1 and type 2A protein phosphatases. Mol Endocrinol, 1987, 1(10): 745-748.
    
    
    [53] Ballou LM, Brautigan DL, Fischer EH. Subunit structure and activation of inactive phosphorylase Phosphatase. Biochemistry, 1983, 22(14): 3393-3399.
    
    [54] Jurgensen S, Shacter E, et al. On the mechanism of activation of the ATP X Mg(II)-dependent phosphoprotein Phosphatase by kinase FA. J Biol Chem, 1984, 259(9): 5864-5870.
    
    [55] Tung HY, Cohen P. The protein phosphatases involved in cellular regulation. Comparison of native and reconstituted Mg-ATP-dependent protein phosphatases from rabbit skeletal muscle. Eur J Biochem, 1984, 145(1): 57- 64.
    
    [56] DePaoli-Roach AA. Synergistic phosphorylation and activation of ATP-Mg-dependent phosphoprotein Phosphatase by F A/GSK-3 and casein kinase II (PCO. 7). J Biol Chem, 1984, 259(19): 12144-12152.
    
    [57] Holmes CF, Kuret J, et al. Identification of the sites on rabbit skeletal muscle protein Phosphatase inhibitor- 2 phosphorylated by casein kinase-II. Biochim Biophys Acta, 1986, 870(3): 408-416.
    
    [58] Brautigan DL, Sunwoo J, et al. Cell cycle oscillation of Phosphatase inhibitor-2 in rat fibroblasts coincident with p34cdc2 restriction. Nature, 1990, 344(6261): 74-78.
    
    [59] Aitken A, Bilham T, Cohen P. Complete primary structure of protein Phosphatase inhibitor-1 from rabbit skeletal muscle. Eur J Biochem, 1982, 126(2): 235-246.
    [60] Nimmo GA, Cohen P. The regulation of glycogen metabolism. Purification and characterisation of protein Phosphatase inhibitor-1 from rabbit skeletal muscle. Eur J Biochem, 1978, 87(2): 341-351.
    [61] Morimoto Y, Morimoto H, et al. The protein Phosphatase inhibitors, okadaic acid and calyculin A, induce apoptosis in human submandibular gland ductal cell line HSG cells. Oral Dis, 1999, 5(2): 104-110.
    [62] Axton JM, Dombradi V, et al. One of the protein Phosphatase 1 isoenzymes in Drosophila is essential for mitosis. Cell, 1990, 63(1): 33-46.
    [63] Baker SH, Frederick DL, et al. Alaninescanning mutagenesis of protein Phosphatase type 1 in the yeast Saccharomyces cerevisiae. Genetics, 1997, 145(3): 615- 626.
    [64] Cheng A, Dean NM, Honkanen RE. Serine/threonine protein Phosphatase type lgammal is required for the completion of cytokinesis in human A549 lung carcinoma cells. J Biol Chem, 2000, 275(3): 1846-1854.
    [65] Doonan JH, Morris NR. The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian phosphoprotein Phosphatase 1. Cell, 1989, 57(6): 987-996.
    [66] Fernandez A, Brautigan DL, Lamb NJ. Protein Phosphatase type 1 in mammalian cell mitosis: chromosomal localization and involvement in mitotic exit. J Cell Biol, 1992, 116(6): 1421-1430.
    [67] Hisamoto N, Sugimoto K, and Matsumoto K. The Glc7 type 1 protein Phosphatase of Saccharomyces cerevisiae is required for cell cycle progression in G2/M. Mol Cell Biol, 1994, 14(5): 3158-3165.
    [68] Ohkura H, Yanagida M. S. pombe gene sds22+ essential for a midmitotic transition encodes a leucine-rich repeat protein that positively modulates protein phosphatase-1. Cell, 1991, 64(1): 149-157.
    [69] Stark MJ. Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast, 1996, 12(12): 1647-1675.
    [70] Andreassen PR, Lacroix FB, et al. Differential subcellular localization of protein phosphatase-1 alpha, gammal, and delta isoforms during both interphase and mitosis in mammalian cells. J Cell Biol, 1998, 141(5): 1207-1215.
    [71] Bloecher A, Tatchell K. Dynamic localization of protein Phosphatase type 1 in the mitotic cell cycle of Saccharomyces cerevisiae. J Cell Biol, 2000, 149(1): 125-140.
    [72] Liu CW, Wang RH, et al. Inhibitory phosphorylation of PPlalpha catalytic subunit during the G(1)/S transition. J Biol Chem, 1999, 274(41): 29470-39475.
    [73] Ayllon V, Cayla X, et al. The anti-apoptotic molecules Bcl-xL and Bcl-w target protein Phosphatase lalpha to Bad. Eur J Immunol, 2002, 32(7): 1847-1855.
    [74] Ayllon V, Cayla X, et al. Bcl-2 targets protein Phosphatase 1 alpha to Bad. J Immunol, 2001, 166(12): 7345-7352.
    [75] Ayllon V, Martinez A, et al. Protein Phosphatase lalpha is a Ras-activated Bad Phosphatase that regulates interleukin-2 deprivation-induced apoptosis. EMBO J, 2000, 19(10): 2237-2246.
    [76] Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev, 2004, 84(1): 1-39.
    [77] Arroyo JD, Hahn WC. Involvement of PP2A in viral and cellular transformation. Oncogene, 2005, 24(52): 7746- 7755.
    [78] Usui H, Imazu M, et al. Three distinct forms of type 2A protein Phosphatase in human erythrocyte cytosol. J Biol Chem, 1988, 263(8): 3752-3761.
    [79] Orgad S, Brewis ND, et al. The structure of protein Phosphatase 2A is as highly conserved as that of protein Phosphatase 1. FEBS Lett, 1990, 275(1-2): 44-48.
    [80] Chen SC, Kramer G, Hardesty B. Isolation and partial characterization of an Mr 60,000 subunit of a type 2A Phosphatase from rabbit reticulocytes. J Biol Chem, 1989, 264(13): 7267-7275.
    [81] Hemmings BA, Adams-Pearson C, et al. Stone SR. alpha- and beta-forms of the 65-kDa subunit of protein Phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry, 1990, 29(13): 3166-3173.
    [82] Walter G, Ferre F, et al. Molecular cloning and sequence of cDNA encoding polyoma medium tumor antigen-associated 61-kDa protein. Proc Natl Acad Sci USA, 1989, 86(22): 8669-8672.
    [83] Kamibayashi C, Lickteig RL, et al. Expression of the A subunit of protein Phosphatase 2A and characterization of its interactions with the catalytic and regulatory subunits. J Biol Chem, 1992, 267(30): 21864-21872.
    
    [84] Ruediger R, Roeckel D, et al. Identification of binding sites on the regulatory A subunit of protein Phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol, 1992, 12(11): 4872-4882.
    
    [85] Xing Y, Xu Y, et al. Structure of protein Phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell, 2006, 127(2): 341-353.
    
    
    [86] Xu Y, Xing Y, et al. Structure of the protein Phosphatase 2A holoenzyme. Cell, 2006, 127(6): 1239-1251.
    
    [87] Ronne H, Carlberg M, et al. Protein Phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis. Mol Cell Biol, 1991, 11(10): 4876-4884.
    
    [88] Sneddon AA, Cohen PT, Stark MJ. Saccharomyces cerevisiae protein Phosphatase 2A performs an essential cellular function and is encoded by two genes. EMB0 J, 1990, 9(13): 4339-4346.
    
    [89] Van Zyl W, Huang W, et al. Inactivation of the protein Phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae. Mol Cell Biol, 1992, 12(11): 4946-4959.
    
    [90] Healy AM, Zolnierowicz S, et al. CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein Phosphatase. Mol Cell Biol, 1991, 11(11) : 5767-5780.
    [91] Klee CB, Krinks MH. Purification of cyclic 3', 5'- nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry, 1978, 17(1): 120-126.
    
    [92] Wang JH, Desai R. Modulator binding protein. Bovine brain protein exhibiting the Ca~(2+) -dependent association with the protein modulator of cyclic nucleotide phosphodiesterase. J Biol Chem, 1977, 252(12): 4175-4184.
    
    [93] Klee CB, Crouch TH, Krinks MH. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA, 1979, 76(12): 6270-6273.
    
    [94] Stewart AA, Ingebritsen TS, et al. Discovery of a Ca~(2+)- and calmodulin-dependent protein Phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett, 1982, 137(1): 80-84.
    
    [95] Guerini D, Klee CB. Cloning of human calcineurin A: evidence for two isozymes and identification of a polyproline structural domain. Proc Natl Acad Sci USA, 1989, 86(23): 9183-9187.
    
    [96] Ito A, Hashimoto T, et al. The complete primary structure of calcineurin A, a calmodulin binding protein homologous with protein phosphatases 1 and 2A. Biochem Biophys Res Commun, 1989, 163(3): 1492-1497.
    
    [97] Kincaid RL, Giri PR, et al. Cloning and characterization of molecular isoforms of the catalytic subunit of calcineurin using nonisotopic methods. J Biol Chem, 1990, 265(19): 11312-11319.
    
    [98] Kincaid RL, Nightingale MS, Martin BM. Characterization of a cDNA clone encoding the calmodulin-binding domain of mouse brain calcineurin. Proc Natl Acad Sci USA. 1988, 85(23): 8983-8987.
    [99] Kuno T, Takeda T, et al. Evidence for a second isoform of the catalytic subunit of calmodulin-dependent protein Phosphatase (calcineurin A). Biochem Biophys Res Commun, 1989, 165(3): 1352-1358.
    [100]McPartlin AE, Barker HM, Cohen PT. Identification of a third alternatively spliced cDNA encoding the catalytic subunit of protein Phosphatase 2B beta. Biochim Biophys Acta, 1991, 1088(2): 308-310.
    [101]Muramatsu T, Giri PR, et al. Molecular cloning of a calmodulin-dependent Phosphatase from murine testis: identification of a developmentally expressed nonneural isoenzyme. Proc Natl Acad Sci USA, 1992, 89(2): 529-533.
    [102]Abe H, Tamura S, Kondo H. Localization of mRNA for protein Phosphatase 2C in the brain of adult rats. Brain Res Mol Brain Res, 1992, 13(4): 283-288.
    [103]Brewis ND, Street AJ, et al. PPX, a novel protein serine/threonine Phosphatase localized to centrosomes. EMBO J, 1993, 12 (3): 987-996.
    [104]Chen MX, McPartlin AE, et al. A novel human protein serine/threonine Phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. EMBO J, 1994, 13(18): 4278-4290.
    [105]Bastians H, Ponstingl H. The novel human protein serine/threonine Phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppel, which are involved in cell cycle regulation.J Cell Sci, 1996, 109(12): 2865-2874.
    [106]Huang X, Honkanen RE. Molecular cloning, expression, and characterization of a novel human serine/threonine protein Phosphatase, PP7, that is homologous to Drosophila retinal degeneration C gene product (rdgC). J Biol Chem, 1998, 273(3): 1462-1468.
    [107]Saha MS, Servetnick M, Grainger RM. Vertebrate eye development. Curr Opin Genet Dev, 1992, 2(4): 582-588.
    [108]Grainger RM. Embryonic lens induction: shedding light on vertebrate tissue determination. Trends Genet, 1992, 8(10): 349-355.
    [109]Wistow GJ, Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem, 1988, .57: 479-504.
    [110]Hill RE, Favor J, et al. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature, 1991, 354(6354): 522-525.
    
    [111]Krauss S, Johansen T, et al. Zebrafish pax[zf-a]: a paired box-containing gene expressed in the neural tube EMBO J, 1991, 10(12): 3609-3019.
    [112]Ton CC, Hirvonen H, et al. Positional cloning and characterization of a paired boxand homeobox-containing gene from the aniridia region. Cell, 1991, 67(6): 1059- 1074.
    [113]Walther C, Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development, 1991, 113(4): 1435-1449.
    [114]Glaser T, Walton DS, Maas RL Genomic structure, evolutionary conservation and aniridia mutations in the human Pax6 gene. Nature Genet, 1992, 2 (3): 232-239.
    [115]Quiring R, Walldorf U, et al. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and aniridia in humans. Science, 1994, 265(5173): 785-789.
    
    [116]Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science, 1995, 267(5205): 1788-1792.
    
    [117]Martin P, Carriere C, et al. Characterization of a paired box- and homeobox-containing quail gene (Pax-QNR) expressed in the neuroretina. Oncogene, 1992, 7(9): 1721-1728.
    
    [118]Hanson IM, Fletcher JM, et al. Mutations at the PAX6 locus are found in heterogenous anterior segment malformations including Peter's anomaly. Nature Genet, 1994, 6(2): 168-173.
    
    [119]Glaser T, Jepeal L, et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nature Genet, 1994, 7(4): 463-471.
    
    [120]Grindley JC, Davidson DR, Hill RE. The role of Pax-6 in eye and nasal development. Development, 1995, 121(5): 1433-1442.
    
    [121]Li HS, Yang JM, et al. Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev Eiol, 1994, 162(1): 181-194.
    
    [122]Fujiwara M, Uchida T, et al. Uchida rat (rSey): a new mutant rat with craniofocal abnormalities resembling those of the mouse Small eye mutant. Differentiation, 1994, 57(1): 31-38.
    [123] Quinn JC, West JD, Hill RE. Multiple functions for Pax6 in mouse eye and nasal development. Genes Dev, 1996, 10(4): 435-446.
    [124] Schmahl W, Knoedlseder M, et al. Defects of neuronal migration and the pathogenesis of cortical malformations are associated with Small eye (Sey) in the mouse, a point mutation at the Pax-6-1ocus. Acta Neuropathol (Berl), 1993, 86(2): 126-135.
    [125] Stoykova A, Fritsch R, et al. Forebrain patterning defects in Small eye mutant mice. Development, 1996, 122(11): 3453-3465.
    [126] Dellovade TL, Pfaff DW, Schwanzel-Fukuda M. Olfactory bulb development is altered in small-eye (Sey) mice. J Comp Neurol, 1998, 402(3): 402-418.
    [127] Mastick GS, Davis NM, et al. Pax-6 functions in boundary formation and axon guidance in the embryonic mouse forebrain. Development. 1997, 124(10): 1985-1997.
    [128] Ton CC , Hirvonen H, et al. Positional cloning and characterization of a paired box and homeobox containing gene from the aniridia region. Cell, 1991, 67(6): 1059-1074.
    [129] Hanson IM, Fletcher JM, et al. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters' anomaly. Nat Genet, 1994, 6(2): 168-173.
    [130] 朱玉贤,李毅.《现代分子生物学》.第二版.北京:高等教育出版社,2002,255-266.
    [131] Weisz L, Damalas A, et al. Mutant p53 Enhances Nuclear Factor {kappa}B Activation by Tumor Necrosis Factor {alpha} in Cancer Cells. Cancer Res, 2007, 67(6): 2396- 2401.
    [132]Ding WX, Ni HM, et al. A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells. Mol Cancer Ther, 2007, 6(3): 1062-1069.
    [133]Lehmann BD, McCubrey JA, et al. A Dominant Role for p53- Dependent Cellular Senescence in Radiosensitization of Human Prostate Cancer Cells. Cell Cycle, 2007, 6(5): 595-605.
    [134]Vikhanskaya F, Lee MK, et al. Cancer-derived p53 mutants suppress p53-target gene expression-potential mechanism for gain of function of mutant p53. Nucleic Acids Res, 2007, Epub ahead of print.
    [135]Bond GL, Levine AJ. A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene, 2007, 26(9): 1317-1323.
    [136]Imamichi Y, Konig A, et al. Collagen type I-induced Smad-interacting protein 1 expression downregulates E- cadherin in pancreatic cancer. Oncogene, 2006, Epub ahead of print.
    [137]Jungert K, Buck A, et al. Smad-Spl complexes mediate TGFbeta-induced early transcription of oncogenic Smad7 in pancreatic cancer cells. Carcinogenesis, 2006, 27(12): 2392-2401.
    
    [138]Noda D, Itoh S, et al. ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-beta/Smad- induced growth arrest of prostate cells. Oncogene, 2006, 25(41): 5591-5600.
    [139] Kang Y, He W, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA, 2005, 102(39): 13909-13914.
    [140] Han C, Demetris AJ, et al. Transforming growth factorbeta (TGF-beta) activates cytosolic phospholipase A2alpha (cPLA2alpha)-mediated prostaglandin E2 (PGE)2/EP1 and peroxisome proliferator-activated receptor-gamma (PPAR-gamma)/Smad signaling pathways in human liver cancer cells. A novel mechanism for subversion of TGF-beta-induced mitoinhibition. J Biol Chem, 2004, 279(43): 44344-44354.
    [141] Nefedova Y, Gabrilovich DI. Targeting of Jak/STAT pathway in antigen presenting cells in cancer. Curr Cancer Drug Targets, 2007, 7(1): 71-77.
    [142] Spano JP, Milano G, et al. JAK/STAT signalling pathway in colorectal cancer: a new biological target with therapeutic implications. Eur J Cancer, 2006, 42(16): 2668-2670.
    [143] 朱玉贤,李毅.《现代分子生物学》第二版.北京:高等教育出版社,2002,199-207.
    [144] 朱玉贤,李毅.《现代分子生物学》第二版.北京:高等教育出版社,2002,255-265.
    [145] Quiring R, Walldorf U, et al. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science, 1994, 265(5173): 785-789.
    [146]Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science, 1995, 267(5205): 1788-1792.
    
    [147]Callaerts P, Haider G, Gehring WJ. PAX-6 in development and evolution. Annu Rev Neurosci, 1997, 20: 483-532.
    
    [148]Hill RE, Hanson IM. Molecular genetics of the Pax gene family. Curr Opin Cell Biol, 1992, 4(6): 967-972.
    
    [149]Underhill DA. Genetic and biochemical diversity in the Pax gene family. Biochem Cell Biol, 2000, 78(5), 629-638.
    
    [150]Gehring WJ. The master control gene for morphogenesis and evolution of the eye. Genes Cells, 1996, 1(1): 11-15.
    
    [151]Wada H, Satoh N. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci USA, 1994, 91(5): 1801-1804.
    
    [152]Carriere C, Plaza S, et al. Characterization of quail Pax-6 (Pax-QNR) proteins expressed in the neuroretina. Mol Cell Biol, 1993, 13(12): 7257-7266.
    
    [153]Cvekl A, Sax CM, et al. Complex array of positive and negative elements regulates the chicken aA-crystallin gene: involvement of Pax-6, USF, CREB and/or CREM, and AP-1 proteins. Mol Cell, 1994, 14(11): 7363-7376.
    
    [154]Cvekl A, Kashanchi F, et al. Transcriptional regulation of the mouse aA-crystallin gene: activation dependent on a cyclic AMP-responsive element (DE11CRE) and a Pax-6- binding site. Mol Cell Biol, 1995, 15(2): 653-660.
    
    [155]Cvekl A, Sax CM, et al. Pax- 6 and lens-specific transcription of the chicken 81 -crystallin gene. Proc Natl Acad Sci USA, 1995, 92(10): 4681-4685.
    [156]Richardson J, Cvekl A, Wistow G. Pax-6 is essential for lensspecific expression of crystallin. Proc Natl Acad Sci USA, 1995, 92(10): 4676-4680.
    
    [157]Carriere C, Plaza S, et al. Nuclear localization signals, DNA binding, and transactivation properties of quail Pax-6 (Pax-QNR) isoforms. Cell Growth Differ, 1995, 6(12): 1531-1540.
    
    [158]Czerny T, Busslinger M. DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol Cell Biol, 1995, 15(5): 2858-2871.
    
    [159]Glaser T, Jepeal L, et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet, 1994, 7(4): 463-471.
    
    [160]Tang HK, Singh S, Saunders GF. Dissection of the transactivation function of the transcription factor encoded by the eye developmental gene PAX6. J Biol Chem, 1998, 273(13): 7210-7221.
    
    [161]Macdonald R, Barth KA, et al. Midline signalling is required for Pax gene regulation and patterning of the eyes. Development, 1995, 121(10): 3267-3278.
    
    [162]Ekker SC, Ungar AR, et al. Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol, 1995, 5(8): 944-955.
    
    [163]Pituello F, Yamada G, Gruss P. Activin.A inhibits Pax-6 expression and perturbs cell differentiation in the developing spinal cord in vitro. Proc Natl Acad Sci USA, 1995, 92(15): 6952-6956.
    [164]Ring BZ, Cordes SP, et al. Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development, 2000, 127(2): 307-317.
    [165]Kim JI, Li T, et al. Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc Natl Acad Sci USA, 1999, 96(7): 3781-3785.
    [166]Mizuno N, Mochii M, et al. Pax-6 and Prox 1 expression during lens regeneration from Cynops iris and Xenopus cornea: evidence for a genetic program common to embryonic lens development. Differentiation, 1999, 65(3): 141-149.
    [167]Tomarev SL Pax-6, eyes absent, and Prox 1 in eye development. Int J Dev Biol, 1997, 41(6): 835-842.
    [168]Jackson S, Gottlieb T, Hartley K. Phosphorylation of transcription factor Spl by the DNA-dependent protein kinase. Adv Second Messenger Phosphoprotein Res, 1993, 28: 279-286.
    [169]Finnie N, Gottlieb T, et al. Transcription factor phosphorylation by the DNA-dependent protein kinase. Biochem Soc Trans, 1993, 21 (4): 930-935.
    [170]Shamloo M, Soriano L, et al. Death-associated Protein Kinase Is Activated by Dephosphorylation in Response to Cerebral Ischemia. J Biol Chem, 2005, 280(51): 42290- 42299.
    [171]Mallick BN, Adya HV, Faisal M. Norepinephrine-stimulated increase in Na+, K+-ATPase activity in the rat brain is mediated through alphalA-adrenoceptor possibly by dephosphorylation of the enzyme. J Neurochem, 2000, 74(4): 1574-1578.
    
    [172]Okamura H, Aramburu J, et al. Concerted Dephosphorylation of the Transcription Factor NFAT1 Induces a Conformational Switch that Regulates Transcriptional Activity. Mol Cell, 2000, 6(3): 539-550.
    
    [173]Kruchera NA, Rubin E, et al. Dephosphorylation of Rb (Thr-821) in response to cell stress. Exp Cell Res, 2006, 312(15): 2757-2763.
    
    [174]Mikkola I, Bruun JA, et al. Phosphorylation of the transactivation domain of Pax6 by extracellular signal- regulated kinase and p38 mitogen-activated protein kinase. J Biol Chem, 1999, 274(21): 15115-15126.
    
    [175]Kim EA, Noh YT, et al. Phosphorylation and transactivation of Pax6 by homeodomain-interacting protein kinase 2. J Biol Chem, 2006, 281(11): 7489-7497.
    
    [176]Chauhan BK, Reed NA, et al. A comparative cDNA microarray analysis reveals a spectrum of genes regulated by Pax6 in mouse lens. Genes Cells, 2002, 7(12): 1267-1283.
    
    [177]Grindley JC, Davidson DR, Hill RE. The role of Pax-6 in eye and nasal development. Development, 1995, 121(5): 1433-1442.
    
    [178]Richardson J, Cvekl A, Wistow G. Pax-6 is essential for lens-specific expression of zeta-crystallin. Proc Natl Acad Sci USA. 1995, 92(10): 4676-4680.
    [179]Cvekl A, Sax CM, et al. Pax-6 and lens-specific transcription of the chicken delta 1-crystallin gene. Proc Natl Acad Sci USA. 1995, 92(10): 4681-4685.
    [180]Davis JA, Reed RR. Role of Olf-1 and Pax-6 transcription factors in neurodevelopment. J Neurosci, 1996, 16(16): 5082-5094.
    [181]Gopal-Srivastava R, Cvekl A, Piatigorsky J. Pax-6 and alphaB-crystallin/small heat shock protein gene regulation in the murine lens. Interaction with the lens-specific regions, LSR1 and LSR2. J Biol Chem, 1996, 271(38): 23029-23036.
    [182]Altmann CR, Chow RL, et al. Lens induction by Pax-6 in Xenopus laevis. Dev Biol, 1997, 185(1): 119-123.
    [183]Zygar CA, Cook TL, Grainger RM. Gene activation during early stages of lens induction in Xenopus. Development, 1998, 125(17): 3509-3519.
    [184]Duncan MK, Haynes JI 2nd, et al. Dual roles for Pax-6: a transcriptional repressor of lens fiber cell-specific beta-crystallin genes. Mol Cell Biol, 1998, 18(9): 5579- 5586.
    [185]Duncan MK, Cvekl A, et al. Truncated forms of Pax-6 disrupt lens morphology in transgenic mice. Invest Ophthalmol Vis Sci, 2000, 41(2): 464-473.
    [186]Duncan MK, Kozmik Z, -et al. Overexpression of PAX6(5a) in lens fiber cells results in cataract and upregulation of (alpha)5(beta) 1 integrin expression. J Cell Sci, 2000, 113(18): 3173-3185.
    [187]Chauhan BK, Reed NA, et al. Identification of genes downstream of Pax6 in the mouse lens using cDNA microarrays. J Biol Chem, 2002, 277(13): 11539-11548.
    [188]Grogg MW, Call MK, et al. BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature, 2005, 438(7069): 858-862.
    [189]Hunter T, Karin M. The regulation of transcription by phosphorylation. Cell, 1992, 70(3): 375-387.
    [190]Klumpp S, Krieglstein J. Serine/threonine protein phosphatases in apoptosis. Curr Opin Pharmacol, 2002, 2(4): 458-462.
    [191] Li DW, Liu JP, et al. Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities. Oncogene. 2006, 25(21): 3006-3022.
    [192]Dohoney KM, Guillerm C, et al. Phosphorylation of p53 at serine 37 is important for transcriptional activity and regulation in response to DNA damage. Oncogene, 2004, 23(1): 49-57.
    [193]Lin X, Duan X, et al. PPM1A functions as a Smad Phosphatase to terminate TGFbeta signaling. Cell, 2006, 125(5): 915-928.
    [194]Letourneux C, Rocher G, Porteu F. B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J, 2006, 25(4): 727- 738.
    [195]Krucher NA, Rubin E, et al. Dephosphorylation of Rb (Thr-821) in response to cell stress. Exp Cell Res, 2006, 312(15): 2757-2763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700