PI3K-Akt-mTOR信号通路参与调控细胞分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PI3K-Akt-mTOR信号通路在生物体内众多细胞信号通路中占据相当重要的地位,参与调控如增殖、代谢、生长、分化、凋亡等多种生命现象,同时在炎症、肿瘤、代谢和心血管疾病的发病机制中起重要作用,对PI3K-Akt-mTOR通路的研究是目前生命科学研究领域的热点。
     本文的第一部分探讨mTOR信号通路与细胞分化之间的关系。细胞分化的异常可以引起多种疾病,肿瘤就是一种分化异常的疾病。而PI3K-Akt-mTOR通路涉及多个原癌基因和抑癌基因,该通路的异常活化在肿瘤中最为常见。实验结果表明,mTOR信号通路的过度活化对细胞分化起着阻碍的作用。同时研究结果表明,mTOR信号通路对于分化的影响是通过对Notch信号通路的调控来实现的。该调控过程涉及多个分子的参与,形成了mTOR—p63—Jagged-1—Notch的通路对分化进行调控。此项研究对于探讨肿瘤发生机制和治疗都有着重要的作用。
     本文的第二部分主要研究PI3K-Akt-mTOR信号通路对胰岛素信号通路的调控机制。实验结果表明,PI3K-Akt-mTOR信号通路中的重要受体PDGFR对胰岛素信号通路起着重要的调控作用。PDGFR对胰岛素信号通路的调控是通过对胰岛素通路下游分子胰岛素受体底物(insulin receptor substrates,IRS)的调控来实现的。
     本文的第三部分旨在比较PI3K-Akt-mTOR信号通路在间充质干细胞(Mesenchymal stem cells,MSCs)和脂肪前体细胞系3T3-L1的成脂肪分化过程中的作用。实验结果表明,在3T3-L1成脂肪分化过程中需要mTOR信号通路的激活,而且这个过程需要胰岛素的参与。而在MSCs的成脂肪分化过程中,mTOR信号通路却呈现下调趋势。因此,mTOR信号通路在这两种前体细胞中的作用是不同的,这是由上述两种细胞的本质和在生物体内所起的作用不同所决定的。
PI3K-Akt-mTOR signal pathway plays various roles in cell metabolism, proliferation, apoptosis, growth and differentiation. Malfunction of this pathway has been implicated in human cancer, inflammation, metabolism, and cardiovascular disease. Therefore, this pathway is regarded as one of the most important signaling pathways and is currently under intensive investigation.
     Aberrant cell differentiation can result in many disorders, such as cancer. Cancer is a differentiation defective disease. In the first part of this thesis, we investigated the relationship between mTOR signal pathway and cell differentiation. Multiple proto-oncogenes and tumor-suppressor genes in PI3K-Akt-mTOR signal pathway are frequently altered in tumors. Our experimental results show that over-activation of mTOR signal pathway suppresses cell differentiation, which is Notch dependent and through p63—Jagged-1—Notch cascade. Our findings may gain some insights into the mechanism of tumorigenesis and provide novel approaches for cancer therapy.
     In the second part of this thesis, we demonstrated that PDGFR, an important RTK in PI3K-Akt-mTOR signal pathway, contributes significantly to the regulation of insulin signaling through regulating IRS (insulin receptor substrates) which is pivot in the downstream of insulin pathway.
     In the third part of this thesis, we studied the effects of the activity of PI3K-Akt-mTOR signal pathway on the differentiation of MSCs (Mesenchymal stem cells) and murine 3T3-L1 preadiocyte cell line. The activation of mTOR signal pathway is required for the differentiation of murine 3T3-L1 preadiocyte cell line which is insulin-dependant. On the contrary, mTOR signal pathway is down-regulated during the differentiation of MSCs.
引文
1 Wang,Z.;Su,Z.Z.;Fisher,P.B.;Wang,S.;VanTuyle,G.;Grant,S.,Evidence of a functional role for the cyclin-dependent kinase inhibitor p21(WAF1/CIP1/MDA6) in the reciprocal regulation of PKC activator-induced apoptosis and differentation in human myelomonocytic leukemia cells.Exp Cell Res 1998,244,(1),105-16.
    2 Gera,J.F.;Mellinghoff,I.K.;Shi,Y.;Rettig,M.B.;Tran,C.;Hsu,J.H.;Sawyers,C.L.;Lichtenstein,A.K.,AKT activity determines sensitivity to mammalian target of rapamycin(mTOR) inhibitors by regulating cyclin D1 and c-myc expression.J Biol Chem 2004,279,(4),2737-46.
    3 Saal,L,H.;Holm,K.;Maurer,M.;Memeo,L.;Su,T.;Wang,X.;Yu,J.S.;Malmstrom,P.O.;Mansukhani,M.;Enoksson,J.;Hibshoosh,H.;Borg,A.;Parsons,R.,PIK3CA mutations correlate with hormone receptors,node metastasis,and ERBB2,and are mutually exclusive with PTEN loss in human breast carcinoma.Cancer Res 2005,65,(7),2554-9.
    4 Roovers,R.C.;Laeremans,T.;Huang,L.;De Taeye,S.;Verkleij,A.J.;Revets,H.;de Haard,H.J.;van Bergen en Henegouwen,P.M.,Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies.Cancer Immunol Immunother 2007,56,(3),303-317.
    5 LoPiccolo,J.;Blumenthal,G.M.;Bemstein,W.B.;Dennis,P.A.,Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations.Drug Resist Updat 2008,11,(1-2),32-50.
    6 Legrier,M.E.;Yang,C.P.;Yan,H.G.;Lopez-Barcons,L.;Keller,S.M.; Perez-Soler, R.; Horwitz, S. B.; McDaid, H. M., Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res 2007, 67, (23), 11300-8.
    7 Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S. I.; Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; Bigner, S. H.; Giovanella, B. C.; Ittmann, M.; Tycko, B.; Hibshoosh, H.; Wigler, M. H.; Parsons, R., PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997, 275, (5308), 1943-7.
    8 Tamburini, J.; Chapuis, N.; Bardet, V.; Park, S.; Sujobert, P.; Willems, L.; Ifrah, N.; Dreyfus, F.; Mayeux, P.; Lacombe, C.; Bouscary, D., Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 2008, 111, (1), 379-82.
    9 Hahnel, P. S.; Thaler, S.; Antunes, E.; Huber, C.; Theobald, M.; Schuler, M., Targeting AKT Signaling Sensitizes Cancer to Cellular Immunotherapy. Cancer Res 2008, 68, (10), 3899-906.
    10 Salmena, L.; Carracedo, A.; Pandolfi, P. P., Tenets of PTEN tumor suppression. Cell 2008,133, (3), 403-14.
    11 Ren, W.; Korchin, B.; Zhu, Q. S.; Wei, C.; Dicker, A.; Heymach, J.; Lazar, A.; Pollock, R. E.; Lev, D., Epidermal Growth Factor Receptor Blockade in Combination with Conventional Chemotherapy Inhibits Soft Tissue Sarcoma Cell Growth In vitro and In vivo. Clin Cancer Res 2008,14, (9), 2785-2795.
    12 Shaw, R. J.; Cantley, L. C., Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006, 441, (7092), 424-30.
    13 Avila, N. A.; Dwyer, A. J.; Rabel, A.; Moss, J., Sporadic lymphangioleiomyomatosis and tuberous sclerosis complex with lymphangioleiomyomatosis: comparison of CT features. Radiology 2007, 242, (1), 277-85.
    14 Crooks, D. M.; Pacheco-Rodriguez, G.; DeCastro, R. M.; McCoy, J. P., Jr.; Wang, J. A.; Kumaki, F.; Darling, T.; Moss, J., Molecular and genetic analysis of disseminated neoplastic cells in lymphangioleiomyomatosis. Proc Natl Acad Sci U S A2004, 101,(50), 17462-7.
    15 Goncharova, E. A.; Krymskaya, V. P., Pulmonary lymphangioleiomyomatosis (LAM): progress and current challenges. J Cell Biochem 2008,103, (2), 369-82.
    16 Miyake, M.; Tateishi, U.; Maeda, T.; Kusumoto, M.; Satake, M.; Arai, Y.; Sugimura, K., Pulmonary lymphangioleiomyomatosis in a male patient with tuberous sclerosis complex. Radiat Med 2005, 23, (7), 525-7.
    17 Parent, R.; Kolippakkam, D.; Booth, G.; Beretta, L., Mammalian target of rapamycin activation impairs hepatocytic differentiation and targets genes moderating lipid homeostasis and hepatocellular growth. Cancer Res 2007, 67, (9), 4337-45.
    18 Folio, M. Y.; Mongiorgi, S.; Bosi, C.; Cappellini, A.; Finelli, C.; Chiarini, F.; Papa, V.; Libra, M.; Martinelli, G.; Cocco, L.; Martelli, A. M., The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res 2007, 67, (9), 4287-94.
    19 Han, S.; Khuri, F. R.; Roman, J., Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res 2006, 66, (1), 315-23.
    20 Shao, J.; Evers, B. M.; Sheng, H., Roles of phosphatidylinositol 3'-kinase and mammalian target of rapamycin/p70 ribosomal protein S6 kinase in K-Ras-mediated transformation of intestinal epithelial cells. Cancer Res 2004, 64, (1), 229-35.
    21 Katoh, M.; Katoh, M., WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007, 13, (14), 4042-5.
    22 Sahlgren, C.; Lendahl, U., Notch signaling and its integration with other signaling mechanisms. Regen Med 2006,1, (2), 195-205.
    23 Babaie, Y.; Herwig, R.; Greber, B.; Brink, T. C.; Wruck, W.; Groth, D.; Lehrach, H.; Burdon, T.; Adjaye, J., Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 2007,25, (2), 500-10.
    24 Mimeault, M.; Batra, S. K., Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006, 24, (11), 2319-45.
    25 Neves, H.; Weerkamp, F.; Gomes, A. C.; Naber, B. A.; Gameiro, P.; Becker, J. D.; Lucio, P.; Clode, N.; van Dongen, J. J.; Staal, R J.; Parreira, L., Effects of Deltal and Jagged1 on early human hematopoiesis: correlation with expression of notch signaling-related genes in CD34+ cells. Stem Cells 2006, 24, (5), 1328-37.
    26 de La Coste, A.; Freitas, A. A., Notch signaling: distinct ligands induce specific signals during lymphocyte development and maturation. Immunol Lett 2006,102,(1), 1-9.
    27 Tohda, S.; Murata-Ohsawa, M.; Sakano, S.; Nara, N., Notch ligands, Delta-1 and Delta-4 suppress the self-renewal capacity and long-term growth of two myeloblastic leukemia cell lines. Int J Oncol 2003,22, (5), 1073-9.
    28 Jaleco, A. C.; Neves, H.; Hooijberg, E.; Gameiro, P.; Clode, N.; Haury, M.; Henrique, D.; Parreira, L., Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 2001, 194, (7), 991-1002.
    29 Singh, N.; Phillips, R. A.; Iscove, N. N.; Egan, S. E., Expression of notch receptors, notch ligands, and fringe genes in hematopoiesis. Exp Hematol 2000, 28, (5), 527-34.
    30 Androutsellis-Theotokis, A.; Leker, R. R.; Soldner, R; Hoeppner, D. J.; Ravin, R.; Poser, S. W.; Rueger, M. A.; Bae, S. K.; Kittappa, R.; McKay, R. D., Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 2006, 442, (7104), 823-6.
    31 Ehebauer, M.; Hayward, P.; Martinez-Arias, A., Notch signaling pathway. Sci STKE 2006, 2006, (364), cm7.
    32 Liu, Z. J.; Xiao, M.; Balint, K.; Smalley, K. S.; Brafford, P.; Qiu, R.; Pinnix, C. C.; Li, X.; Herlyn, M., Notchl signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 2006, 66, (8), 4182-90.
    33 Kumamoto, H.; Ohki, K., Detection of Notch signaling molecules in ameloblastomas. J Oral Pathol Med 2008, 37, (4), 228-34.
    34 Sjolund, J.; Johansson, M.; Manna, S.; Norin, C.; Pietras, A.; Beckman, S.; Nilsson, E.; Ljungberg, B.; Axelson, H., Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. J Clin Invest 2008, 118,(1), 217-28.
    35 Li, J. L.; Sainson, R. C.; Shi, W.; Leek, R.; Harrington, L. S.; Preusser, M.; Biswas, S.; Turley, H.; Heikamp, E.; Hainfellner, J. A.; Harris, A. L., Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 2007, 67, (23), 11244-53.
    36 Henning, K.; Heering, J.; Schwanbeck, R.; Schroeder, T.; Helmbold, H.; Schafer, H.; Deppert, W.; Kim, E.; Just, U., Notchl activation reduces proliferation in the multipotent hematopoietic progenitor cell line FDCP-mix through a p53-dependent pathway but Notchl effects on myeloid and erythroid differentiation are independent of p53. Cell Death Differ 2008,15, (2), 398-407.
    37 Chan, S. M.; Weng, A. P.; Tibshirani, R.; Aster, J. C.; Utz, P. J., Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood 2007,110, (1), 278-86.
    38 Yeo, S. Y.; Chitnis, A. B., Jagged-mediated Notch signaling maintains proliferating neural progenitors and regulates cell diversity in the ventral spinal cord. Proc Natl Acad Sci U S A 2007, 104, (14), 5913-8.
    39 Cheng, P.; Nefedova, Y.; Corzo, C. A.; Gabrilovich, D. I., Regulation of dendritic-cell differentiation by bone marrow stroma via different Notch ligands. Blood 2007, 109, (2), 507-15.
    40 Liu, Y.; Pathak, N.; Kramer-Zucker, A.; Drummond, I. A., Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 2007, 134, (6), 1111-22.
    41 Kiernan, A. E.; Xu, J.; Gridley, T., The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2006,2, (1), e4.
    42 Stump, G.; Durrer, A.; Klein, A. L.; Lutolf, S.; Suter, U.; Taylor, V., Notchl and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech Dev 2002,114, (1-2), 153-9.
    43 Oldershaw, R. A.; Tew, S. R.; Russell, A. M.; Meade, K.; Hawkins, R.; McKay, T. R.; Brennan, K. R.; Hardingham, T. E., Notch signaling through Jagged-1 is necessary to initiate chondrogenesis in human bone marrow stromal cells but must be switched off to complete chondrogenesis. Stem Cells 2008, 26, (3), 666-74.
    44 Karanu, F. N.; Yuefei, L.; Gallacher, L.; Sakano, S.; Bhatia, M., Differential response of primitive human CD34- and CD34+ hematopoietic cells to the Notch ligand Jagged-1. Leukemia 2003,17, (7), 1366-74.
    45 Varnum-Finney, B.; Purton, L. E.; Yu, M.; Brashem-Stein, C.; Flowers, D.; Staats, S.; Moore, K. A.; Le Roux, I.; Mann, R.; Gray, G.; Artavanis-Tsakonas, S.; Bernstein, I. D., The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 1998, 91, (11), 4084-91.
    46 Hay, N.; Sonenberg, N., Upstream and downstream of mTOR. Genes Dev 2004, 18,(16), 1926-45.
    47 Asnaghi, L.; Bruno, P.; Priulla, M.; Nicolin, A., mTOR: a protein kinase switching between life and death. Pharmacol Res 2004, 50, (6), 545-9.
    48 Holz, M. K.; Ballif, B. A.; Gygi, S. P.; Blenis, J., mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 2005, 123, (4), 569-80.
    49 Kim, D. H.; Sarbassov, D. D.; Ali, S. M.; King, J. E.; Latek, R. R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D. M., mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110,(2), 163-75.
    50 Hara, K.; Maruki, Y.; Long, X.; Yoshino, K.; Oshiro, N.; Hidayat, S.; Tokunaga, C.; Avruch, J.; Yonezawa, K., Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110, (2), 177-89.
    51 Kim, C. H.; Neiswender, H.; Baik, E. J.; Xiong, W. C.; Mei, L., Beta-catenin interacts with MyoD and regulates its transcription activity. Mol Cell Biol 2008, 28, (9), 2941-51.
    52 52. Murakami, M.; Ohkuma, M.; Nakamura, M., Molecular mechanism of transforming growth factor-beta-mediated inhibition of growth arrest and differentiation in a myoblast cell line. Dev Growth Differ 2008, 50, (2), 121-30.
    53 53. Hewitt, J.; Lu, X.; Gilbert, L.; Nanes, M. S., The Muscle Transcription Factor MyoD Promotes Osteoblast Differentiation by Stimulation of the Osterix Promoter. Endocrinology 2008.
    54 54. Furlong, M. A.; Mentzel, T.; Fanburg-Smith, J. C., Pleomorphic rhabdomyosarcoma in adults: a clinicopathologic study of 38 cases with emphasis on morphologic variants and recent skeletal muscle-specific markers. Mod Pathol 2001,14, (6), 595-603.
    55 55. Davie, J. K.; Cho, J. H.; Meadows, E.; Flynn, J. M.; Knapp, J. R.; Klein, W. H., Target gene selectivity of the myogenic basic helix-loop-helix transcription factor myogenin in embryonic muscle. Dev Biol 2007, 311, (2), 650-64.
    56 56. Miyake, M.; Hayashi, S.; Sato, T.; Taketa, Y.; Watanabe, K.; Hayashi, S.; Tanaka, S.; Ohwada, S.; Aso, H.; Yamaguchi, T., Myostatin and MyoD family expression in skeletal muscle of IGF-1 knockout mice. Cell Biol Int 2007, 31, (10), 1274-9.
    57 57. Gerhart, J.; Elder, J.; Neely, C.; Schure, J.; Kvist, T.; Knudsen, K.; George-Weinstein, M., MyoD-positive epiblast cells regulate skeletal muscle differentiation in the embryo. J Cell Biol 2006, 175, (2), 283-92.
    58 58. Casteilla, L.; Cousin, B.; Carmona, M., PPARs and Adipose Cell Plasticity. PPAR Res 2007, 2007, 68202.
    59 59. Takada, I.; Suzawa, M.; Matsumoto, K.; Kato, S., Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts. Ann N Y Acad Sci 2007,1116,182-95.
    60 60. Gagnon, A.; Dods, P.; Roustan-Delatour, N.; Chen, C. S.; Sorisky, A., Phosphatidylinositol-3,4,5-trisphosphate is required for insulin-like growth factor 1-mediated survival of 3T3-L1 preadipocytes. Endocrinology 2001, 142, (1), 205-12.
    61 Park, I. H.; Chen, J., Mammalian target of rapamycin (mTOR) signaling is required for a late-stage fusion process during skeletal myotube maturation. J Biol Chem 2005,280, (36), 32009-17.
    62 Fre, S.; Huyghe, M.; Mourikis, P.; Robine, S.; Louvard, D.; Artavanis-Tsakonas, S., Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005,435, (7044), 964-8.
    63 Apelqvist, A.; Li, H.; Sommer, L.; Beatus, P.; Anderson, D. J.; Honjo, T.; Hrabe de Angelis, M.; Lendahl, U.; Edlund, H., Notch signalling controls pancreatic cell differentiation. Nature 1999,400, (6747), 877-81.
    64 Fortini, M. E.; Rebay, I.; Caron, L. A.; Artavanis-Tsakonas, S., An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature 1993, 365, (6446), 555-7.
    65 Krzemien, J.; Dubois, L.; Makki, R.; Meister, M.; Vincent, A.; Crozatier, M., Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 2007,446, (7133), 325-8.
    66 Mandal, L.; Martinez-Agosto, J. A.; Evans, C. J.; Hartenstein, V.; Banerjee, U., A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 2007,446, (7133), 320-4.
    67 Ross, D. A.; Kadesch, T., Consequences of Notch-mediated induction of Jagged1. Exp Cell Res 2004,296, (2), 173-82.
    68 Nguyen, B. C.; Lefort, K.; Mandinova, A.; Antonini, D.; Devgan, V.; Delia Gatta, G.; Koster, M. I.; Zhang, Z.; Wang, J.; Tommasi di Vignano, A.; Kitajewski, J.; Chiorino, G.; Roop, D. R.; Missero, C.; Dotto, G. P., Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 2006, 20, (8), 1028-42.
    69 Sasaki, Y.; Ishida, S.; Morimoto, I.; Yamashita, T.; Kojima, T.; Kihara, C.; Tanaka, T.; Imai, K.; Nakamura, Y.; Tokino, T., The p53 family member genes are involved in the Notch signal pathway. J Biol Chem 2002,277, (1), 719-24.
    70 Bourdon, J. C., p53 Family isoforms. Curr Pharm Biotechnol 2007, 8, (6), 332-6.
    71 Marchini, S.; Marabese, M.; Marrazzo, E.; Mariani, P.; Cattaneo, D.; Fossati, R.; Compagnoni, A.; Fruscio, R.; Lissoni, A. A.; Broggini, M, DeltaNp63 expression is associated with poor survival in ovarian cancer. Ann Oncol 2008, 19, (3), 501-7.
    72 Murray-Zmijewski, F.; Lane, D. P.; Bourdon, J. C., p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 2006, 13, (6), 962-72.
    73 Rufini, A.; Weil, M.; McKeon, F.; Barlattani, A.; Melino, G.; Candi, E., p63 protein is essential for the embryonic development of vibrissae and teeth. Biochem Biophys Res Commun 2006, 340, (3), 737-41.
    74 Rehman ,AO;Wang ,CY.,Notch signaling in the regulation of tumor angiogenesis. Trends Cell Biol. 2006,16,(6):293-300.
    1 Ricort,J.M.;Binoux,M.,Insulin-like growth factor-binding protein-3 activates a phosphotyrosine phosphatase.Effects on the insulin-like growth factor signaling pathway.J Biol Chem 2002,277,(22),19448-54.
    2 Kulkarni,R.N.,Receptors for insulin and insulin-like growth factor-1 and insulin receptor substrate-1 mediate pathways that regulate islet function.Biochem Soc Trans 2002,30,(2),317-22.
    3 Kozma,S.C.;Thomas,G.,Regulation of cell size in growth,development and human disease:PI3K,PKB and S6K.Bioessays 2002,24,(1),65-71.
    4 Stolovich,M.;Tang,H.;Homstein,E.;Levy,G.;Cohen,R.;Bae,S.S.;Bimbaum,M.J.;Meyuhas,O.,Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation.Mol Cell Biol 2002,22,(23),8101-13.
    5 Lingohr,M.K.;Dickson,L.M.;Wrede,C.E.;McCuaig,J.F.;Myers,M.G.,Jr.;Rhodes,C.J.,IRS-3 inhibits IRS-2-mediated signaling in pancreatic beta-cells.Mol Cell Endocrinol 2003,204,(1-2),85-99.
    6 Urso,B.;Ilondo,M.M.;Holst,P.A.;Christoffersen,C.T.;Ouwens,M.;Giorgetti,S.;Van Obberghen,E.;Naor,D.;Tomqvist,H.;De Meyts,P.,IRS-4 mediated mitogenic signalling by insulin and growth hormone in LB cells,a murine T-cell lymphoma devoid of IGF-I receptors.Cell Signal 2003,15,(4),385-94.
    7 Vollenweider,P.,Insulin resistant states and insulin signaling.Clin Chem Lab Med 2003,41,(9),1107-19.
    8 Hinault,C.;Mothe-Satney,I.;Gautier,N.;Van Obberghen,E.,Amino acids require glucose to enhance,through phosphoinositide-dependent protein kinase 1, the insulin-activated protein kinase B cascade in insulin-resistant rat adipocytes. Diabetologia 2006,49, (5), 1017-26.
    9 Chiang, S. H.; Hou, J. C.; Hwang, J.; Pessin, J. E.; Saltiel, A. R., Cloning and functional characterization of related TC10 isoforms, a subfamily of Rho proteins involved in insulin-stimulated glucose transport. J Biol Chem 2002, 277, (15), 13067-73.
    10 Chiang, S. H.; Baumann, C. A.; Kanzaki, M.; Thurmond, D. C.; Watson, R. T.; Neudauer, C. L.; Macara, I. G.; Pessin, J. E.; Saltiel, A. R., Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 2001,410, (6831), 944-8.
    11 Chen, Y. H.; Hung, P. F.; Kao, Y. H., IGF-I downregulates resistin gene expression and protein secretion. Am J Physiol Endocrinol Metab 2005, 288, (5), E1019-27.
    12 Lizcano, J. M.; Alessi, D. R., The insulin signalling pathway. Curr Biol 2002, 12, (7), R236-8.
    13 Tengholm, A.; Meyer, T., A PI3-kinase signaling code for insulin-triggered insertion of glucose transporters into the plasma membrane. Curr Biol 2002, 12, (21), 1871-6.
    14 Thirone, A. C.; Huang, C.; Klip, A., Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab 2006, 17, (2), 72-8.
    15 15. Kido, Y.; Nakae, J.; Hribal, M. L.; Xuan, S.; Efstratiadis, A.; Accili, D., Effects of mutations in the insulin-like growth factor signaling system on embryonic pancreas development and beta-cell compensation to insulin resistance. J Biol Chem 2002, 277, (39), 36740-7.
    16 Withers, D. J.; Burks, D. J.; Towery, H. H.; Altamuro, S. L.; Flint, C. L.; White, M. R, Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet 1999, 23, (1), 32-40.
    17 Brady, M. J., IRS2 takes center stage in the development of type 2 diabetes. J Clin Invest 2004, 114, (7), 886-8.
    18 Schubert, M.; Brazil, D. P.; Burks, D. J.; Kushner, J. A.; Ye, J.; Flint, C. L.; Farhang-Fallah, J.; Dikkes, P.; Warot, X. M.; Rio, C.; Corfas, G.; White, M. F., Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 2003,23, (18), 7084-92.
    19 Arribas, M.; Valverde, A. M.; Benito, M., Role of IRS-3 in the insulin signaling of IRS-1-deficient brown adipocytes. J Biol Chem 2003,278, (46), 45189-99.
    20 Sesti, G.; Federici, M.; Hribal, M. L.; Lauro, D.; Sbraccia, P.; Lauro, R., Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. Faseb J 2001,15, (12), 2099-111.
    21 White, M. F., IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 2002,283, (3), E413-22.
    22 Hellawell, G. O.; Turner, G. D.; Davies, D. R.; Poulsom, R.; Brewster, S. F.; Macaulay, V. M., Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res 2002,62, (10), 2942-50.
    23 O'Connor, J. C.; Sherry, C. L.; Guest, C. B.; Freund, G. G., Type 2 diabetes impairs insulin receptor substrate-2-mediated phosphatidylinositol 3-kinase activity in primary macrophages to induce a state of cytokine resistance to IL-4 in association with overexpression of suppressor of cytokine signaling-3. J Immunol 2007,178, (11), 6886-93.
    24 Zhang, H.; Bajraszewski, N.; Wu, E.; Wang, H.; Moseman, A. P.; Dabora, S. L.; Griffin, J. D.; Kwiatkowski, D. J., PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 2007,117, (3), 730-8.
    25 Lubell, J., IRS seeks bond answers. Wants to know how bond proceeds are being used. Mod Healthc 2007, 37, (35), 8-9.
    26 Xu, P.; Jacobs, A. R.; Taylor, S. I., Interaction of insulin receptor substrate 3 with insulin receptor, insulin receptor-related receptor, insulin-like growth factor-1 receptor, and downstream signaling proteins. J Biol Chem 1999, 274, (21), 15262-70.
    27 Hribal, M. L.; Tornei, F.; Pujol, A.; Menghini, R.; Barcaroli, D.; Lauro, D.; Amoruso, R.; Lauro, R.; Bosch, F.; Sesti, G.; Federici, M., Transgenic mice overexpressing human G972R IRS-1 show impaired insulin action and insulin secretion. J Cell Mol Med 2008.
    28 Renstrom, F.; Buren, J.; Svensson, M.; Eriksson, J. W., Insulin resistance induced by high glucose and high insulin precedes insulin receptor substrate 1 protein depletion in human adipocytes. Metabolism 2007, 56, (2), 190-8.
    29 Araki, E.; Lipes, M. A.; Patti, M. E.; Bruning, J. C.; Haag, B., 3rd; Johnson, R. S.; Kahn, C. R., Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 1994, 372, (6502), 186-90.
    30 Glickman, M. H.; Ciechanover, A., The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002, 82, (2), 373-428.
    31 Kornitzer, D.; Ciechanover, A., Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol 2000,182, (1), 1-11.
    32 Steppan, C. M.; Wang, J.; Whiteman, E. L.; Birnbaum, M. J.; Lazar, M. A., Activation of SOCS-3 by resistin. Mol Cell Biol 2005,25, (4), 1569-75.
    33 Rui, L.; Yuan, M.; Frantz, D.; Shoelson, S.; White, M. R, SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 2002,277, (44), 42394-8.
    34 Tee, A. R.; Manning, B. D.; Roux, P. P.; Cantley, L. C.; Blenis, J., Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003, 13,(15), 1259-68.
    35 Zhang, H.; Cicchetti, G.; Onda, H.; Koon, H. B.; Asrican, K.; Bajraszewski, N.; Vazquez, F.; Carpenter, C. L.; Kwiatkowski, D. J., Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 2003, 112, (8), 1223-33.
    36 Palomero, T.; Dominguez, M.; Ferrando, A. A., The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle 2008, 7, (8).
    37 Ahn, Y.; Hwang, C. Y.; Lee, S. R.; Kwon, K. S.; Lee, C., Tumor suppressor PTEN mediates a negative regulation of E3 ubiquitin-protein ligase Nedd4. Biochem J 2008.
    38 Luo, J.; Field, S. J.; Lee, J. Y.; Engelman, J. A.; Cantley, L. C., The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol 2005,170, (3), 455-64.
    39 Nobukini, T.; Thomas, G., The mTOR/S6K signalling pathway: the role of the TSC1/2 tumour suppressor complex and the proto-oncogene Rheb. Novartis Found Symp 2004,262, 148-54; discussion 154-9,265-8.
    40 Holmes, G. L.; Stafstrom, C. E., Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 2007,48, (4), 617-30.
    41 Huang, J.; Dibble, C. C.; Matsuzaki, M.; Manning, B. D., The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008.
    42 Harrington, L. S.; Findlay, G. M.; Gray, A.; Tolkacheva, T.; Wigfield, S.; Rebholz, H.; Barnett, J.; Leslie, N. R.; Cheng, S.; Shepherd, P. R.; Gout, I.; Downes, C. P.; Lamb, R. F., The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004,166, (2), 213-23.
    43 Shah, O. J.; Wang, Z.; Hunter, T., Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004,14, (18), 1650-6.
    44 Hiratani, K.; Haruta, T.; Tani, A.; Kawahara, J.; Usui, I.; Kobayashi, M., Roles of mTOR and JNK in serine phosphorylation, translocation, and degradation of IRS-1. Biochem Biophys Res Commun 2005, 335, (3), 836-42.
    45 Rhodes, C. J., Type 2 diabetes-a matter of beta-cell life and death? Science 2005, 307, (5708), 380-4.
    46 Gual, P.; Gremeaux, T.; Gonzalez, T.; Le Marchand-Brustel, Y.; Tanti, J. F., MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612 and 632. Diabetologia 2003, 46, (11), 1532-42.
    47 Juhan-Vague, I.; Morange, P. E.; Alessi, M. C., The insulin resistance syndrome: implications for thrombosis and cardiovascular disease. Pathophysiol Haemost Thromb 2002, 32, (5-6), 269-73.
    48 Berg, C. E.; Lavan, B. E.; Rondinone, C. M., Rapamycin partially prevents insulin resistance induced by chronic insulin treatment. Biochem Biophys Res Commun 2002,293, (3), 1021-7.
    49 Ozes, O. N.; Akca, H.; Mayo, L. D.; Gustin, J. A.; Maehama, T.; Dixon, J. E.; Donner, D. B., A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci U S A 2001, 98, (8), 4640-5.
    50 Balasubramanyam, M.; Sampathkumar, R.; Mohan, V., Is insulin signaling molecules misguided in diabetes for ubiquitin-proteasome mediated degradation? Mol Cell Biochem 2005,275, (1-2), 117-25.
    51 Um, SH.; D'Alessio, D.; Thomas, G., Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 2006, 3, (6), 393-402.
    1 P.Cornelius,O.A.Mac Dougald,M.D.Lane,Regulation of adipocyte development,Annu.Rev.Nutr.14(1994) 99-129.
    2 P.J. Smith, L.S. Wise, R. Berkowitz, C. Wan, C.S. Rubin, Insulin-like growth factor-1 is an essential regulator of the differentiation of 3T3-L1 adipocytes, J. Biol. Chem. 263 (1988) 9402-9408.
    3 S. Wullschleger, R. Loewith, M.N. Hall, TOR Signaling in Growth and Metabolism, Cell 124 (2006) 471-484.
    4 J.E. Kim, J. Chen, Regulation of Peroxisome Proliferator-Activated Receptor-Activity by Mammalian Target of Rapamycin and Amino Acids in Adipogenesis, Diabetes 53 (2004) 2748-2756.
    5 M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R, Marshak, Multilineage potential of adult human mesenchymal stem cells, Science 284 (1999) 143-147.
    6 P. Bianco, P.G. Robey, Marrow stromal stem cells, J. Clin. Invest. 105 (2000) 1663-1668.
    7 Y. Jiang, B.N. Jahagirdar, R.L. Reinhardt, R.E. Schwartz, C.D. Keene, X.R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W.C. Low, D.A. Largaespada, C.M. Verfaillie, Pluripotency of mesenchymal stem cells derived from adult marrow, Nature 418 (2002) 41-49.
    8 B. Fang, M. Shi, L. Liao, S. Yang, Y. Liu, R.C. Zhao, Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flk1+/CD31-/CD34-progenitors, J. Hematother. Stem Cell Res. 12 (2003) 603-613.
    9 P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick, Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng. 7 (2001) 211-228.
    10 H. Hauner, G. Entenmann, M. Wabitsch, D. Gaillard, G. Ailhaud, R. Negrel, E.F. Pfeiffer, Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium, J. Clin. Invest. 84 (1989)1663-1670.
    11 R. Loewith, M.N. Hall, TOR signaling in yeast: temporal and spatial control of cell growth, in: M.N. Hall, M. Raff, G. Thomas (Eds.), Cell Growth: Control of Cell Size, Cold Spring Harbor Laboratory Press, New York, 2004, pp. 139-165.
    12 H.J. Cho, J.Y. Park, H.W. Lee, Y.S. Lee, J.B. Kim, Regulation of adipocyte differentiation and insulin action with rapamycin, Biochem. Biophys. Res. Commun. 321 (2004) 942-948.
    13 A. Bell, L. Grander, A. Sorisky, Rapamycin Inhibits Human Adipocyte Differentiation in Primary Culture, Obes. Res. 8 (2000) 249-254.
    14 M. Krampera, S. Glennie, J. Dyson, D. Scott, R. Laylor, E. Simpson, Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide, Blood, 101 (2003) 3722-3729.
    15 K.L. Blanc, L. Tammik, B. Sundberg, S.E. Haynesworth, O. Ringden, Mesenchymal Stem Cells Inhibit and Stimulate Mixed Lymphocyte Cultures and Mitogenic Responses Independently of the Major Histocompatibility Complex, Scand. J. Immunol. 57 (2003) 11-20.
    16 A. Bartholomew, C. Sturgeon, M. Siatskas, K. Ferrer, K. McIntosh, S. Patil, Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo, Exp. Hematol. 30 (2002) 42-48.
    17 C. Gotherstrom, O. Ringden, M. Westgren, C. Tammik, K.L. Blanc, Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells, Bone Marrow Transplant 32 (2003) 265-272.
    18 I. Rasmusson, O. Ringden, B. Sundberg, K.L. Blanc, Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells, Transplantation 76 (2003) 1208-1213.
    19 R. Parent, D. Kolippakkam, G. Booth, L. Beretta, Mammalian target of rapamycin activation impairs hepatocytic differentiation and targets genes moderating lipid homeostasis and hepatocellular growth, Cancer Res. 67 (2007) 4337-4345.
    20 U.K. Singha, Y. Jiang, S. Yu, M. Luo, Y. Lu, J. Zhang, G. Xiao, Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells, J. Cell Biochem. 103 (2008) 434-446.
    21 C. Phornphutkul, K.Y. Wu, V. Auyeung, Q. Chen, P.A. Gruppuso, mTOR signaling contributes to chondrocyte differentiation, Dev. Dyn. 237 (2008) 702-712.
    22 Zhang, H.; Bajraszewski, N.; Wu, E.; Wang, H.; Moseman, A. P.; Dabora, S. L.; Griffin, J. D.; Kwiatkowski, D. J., PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 2007,117, (3), 730-8.
    23 A. Gagnon, S. Lau, A. Sorisky, Rapamycin-Sensitive Phase of 3T3-L1 Preadipocyte Differentiation After Clonal Expansion, J. Cell Physiol. 189 (2001) 14-22.
    24 K.A. Martin, S.S. Schalm, C. Richardson, Regulation of ribosomal S6 kinase 2 by effectors of the phosphoinositide3-kinase pathway, J. Biol. Chem. 276 (2000) 7884-7891.
    25 Y. Cao, Z. Sun, L. Liao, Y. Meng, Q. Han, R.C. Zhao, Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo, Biochem. Biophys. Res. Commun. 332(2005) 370-379.
    26 Y.C. Liang, S.Y. Lin-Shiau, C.F. Chen, J.K. Lin, Inhibition of cyclin-dependent kinase 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest of human breast carcinoma cells by (-)-epigallocatechin-3-gallate, J. Cell. Biochem. 75 (1998) 1-12.
    27 Y. Tao, H. Maegawa, S. Ugi, The transcription factor AP-2beta causes cell enlargement and insulin resistance in 3T3-L1 adipocytes, Endocrinology. 147(2006) 1685-1696.
    28 Q. Gao, M.J. Wolfgang, S. Neschen, Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 4661-4666.
    29 O. L. Bacquer, E. Petroulakis, S. Paglialunga, Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2, J. Clin. Invest. 117(2007)387-396.
    30 Rhodes, C. J., Type 2 diabetes-a matter of beta-cell life and death? Science 2005, 307, (5708), 380-4.
    31 J.E. Kim, J. Chen, Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis, Diabetes 53 (2004) 2748-2756.
    1 D.N.Amin,D.R.Bielenberg,E.Lifshits,J.V.Heymach,and M.Klagsbrun,Targeting EGFR activity in blood vessels is sufficient to inhibit tumor growth and is accompanied by an increase in VEGFR-2 dependence in tumor endothelial cells.Microvasc Res(2008).
    2 R.M.Amin,K.Hiroshima,Y.Miyagi,T.Kokubo,K.Hoshi,T.Fujisawa,and Y.Nakatani,Role of the PI3K/Akt,mTOR,and STK11/LKB1 pathways in the tumorigenesis ofsclerosing hemangioma of the lung.Pathol Int 58(2008) 38-44.
    3 B.L.Black,K.L.Ligon,Y.Zhang,and E.N.Olson,Cooperative transcriptional activation by the neurogenic basic helix-loop-helix protein MASH1 and members of the myocyte enhancer factor-2(MEF2) family.J Biol Chem 271(1996)26659-63.
    4 R.Boni,A.O.Vortmeyer,G.Burg,G.Hofbauer,and Z.Zhuang,The PTEN tumour suppressor gene and malignant melanoma.Melanoma Res 8(1998)300-2.
    5 D.Boyer,R.Quintanilla,and K.K.Lee-Fruman,Regulation of catalytic activity of S6 kinase 2 during cell cycle.Mol Cell Biochem 307(2008) 59-64.
    6 J.M.Boylan,P.Anand,and P.A.Gruppuso,Ribosomal protein S6 phosphorylation and function during late gestation liver development in the rat. J Biol Chem 276 (2001) 44457-63.
    7 L. Bozulic, B. Surucu, D. Hynx, and B.A. Hemmings, PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 30 (2008) 203-13.
    8 E. Buck, A. Eyzaguirre, J.D. Haley, N.W. Gibson, P. Cagnoni, and K.K. Iwata, Inactivation of Akt by the epidermal growth factor receptor inhibitor erlotinib is mediated by HER-3 in pancreatic and colorectal tumor cell lines and contributes to erlotinib sensitivity. Mol Cancer Ther 5 (2006) 2051-9.
    9 M. Butzal, S. Loges, M. Schweizer, U. Fischer, U.M. Gehling, D.K. Hossfeld, and W. Fiedler, Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Exp Cell Res 300 (2004) 65-71.
    10 C. Cao, S. Lu, A. Sowa, R. Kivlin, A. Amaral, W. Chu, H. Yang, W. Di, and Y. Wan, Priming with EGFR tyrosine kinase inhibitor and EGF sensitizes ovarian cancer cells to respond to chemotherapeutical drugs. Cancer Lett (2008).
    11 Y. Cao, Z. Sun, L. Liao, Y. Meng, Q. Han, and R.C. Zhao, Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332 (2005) 370-9.
    12 J. Castellvi, A. Garcia, F. Rojo, C. Ruiz-Marcellan, A. Gil, J. Baselga, and S. Ramon y Cajal, Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer 107 (2006) 1801-11.
    13 X.L. Chen, K.H. Ren, H.W. He, and R.G. Shao, Involvement of PI3K/AKT/GSK3beta pathway in tetrandrine-induced G1 arrest and apoptosis. Cancer Biol Ther 7 (2008).
    14 G.Z. Cheng, S. Park, S. Shu, L. He, W. Kong, W. Zhang, Z. Yuan, L.H. Wang, and J.Q. Cheng, Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr Cancer Drug Targets 8 (2008) 2-6.
    15 H.J. Cho, J. Park, H.W. Lee, Y.S. Lee, and J.B. Kim, Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem Biophys Res Commun 321 (2004) 942-8.
    16 J.E. Dancey, Therapeutic targets: MTOR and related pathways. Cancer Biol Ther 5 (2006) 1065-73.
    17 O. David, Akt and PTEN: new diagnostic markers of non-small cell lung cancer? J Cell Mol Med 5 (2001) 430-3.
    18 N.V. Dorrello, A. Peschiaroli, D. Guardavaccaro, N.H. Colburn, N.E. Sherman, and M. Pagano, S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314 (2006) 467-71.
    19 D.C. Fingar, and J. Blenis, Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23 (2004) 3151-71.
    20 F.B. Furnari, H. Lin, H.S. Huang, and W.K. Cavenee, Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci U S A 94 (1997) 12479-84.
    21 A. Gagnon, P. Dods, N. Roustan-Delatour, C.S. Chen, and A. Sorisky, Phosphatidylinositol-3,4,5-trisphosphate is required for insulin-like growth factor 1-mediated survival of 3T3-L1 preadipocytes. Endocrinology 142 (2001) 205-12.
    22 Y.G. Gangloff, M. Mueller, S.G. Dann, P. Svoboda, M. Sticker, J.F. Spetz, S.H. Um, E.J. Brown, S. Cereghini, G. Thomas, and S.C. Kozma, Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 24 (2004) 9508-16.
    23 J.F. Gera, I.K. Mellinghoff, Y. Shi, M.B. Rettig, C. Tran, J.H. Hsu, C.L. Sawyers, and A.K. Lichtenstein, AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin Dl and c-myc expression. J Biol Chem 279 (2004) 2737-46.
    24 J. Hanrahan, and J. Blenis, Rheb activation of mTOR and S6K1 signaling. Methods Enzymol 407 (2006) 542-55.
    25 T.E. Harris, and J.C. Lawrence, Jr., TOR signaling. Sci STKE 2003 (2003) re15.
    26 N. Hay, and N. Sonenberg, Upstream and downstream of mTOR. Genes Dev 18 (2004) 1926-45.
    27 J. Huang, C.C. Dibble, M. Matsuzaki, and B.D. Manning, The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol (2008).
    28 K. Inoki, Y. Li, T. Xu, and K.L. Guan, Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17 (2003) 1829-34.
    29 L.N. Jackson, S.D. Larson, S.R. Silva, P.G. Rychahou, L.A. Chen, S. Qiu, S. Rajaraman, and B.M. Evers, PI3K/Akt activation is critical for early hepatic regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol (2008).
    30 M. Jankiewicz, B. Groner, and S. Desrivieres, Mammalian target of rapamycin regulates the growth of mammary epithelial cells through the inhibitor of deoxyribonucleic acid binding Id1 and their functional differentiation through Id2. Mol Endocrinol 20 (2006) 2369-81.
    31 T. Jayaraman, and A.R. Marks, Rapamycin-FKBP12 blocks proliferation, induces differentiation, and inhibits cdc2 kinase activity in a myogenic cell line. J Biol Chem 268 (1993) 25385-8.
    32 L. Jirmanova, M. Afanassieff, S. Gobert-Gosse, S. Markossian, and P. Savatier, Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 21 (2002) 5515-28.
    33 T. Kawaguchi, Y. Yamashita, M. Kanamori, R. Endersby, K.S. Bankiewicz, S.J. Baker, G. Bergers, and R.O. Pieper, The PTEN/Akt pathway dictates the direct alphaVbeta3-dependent growth-inhibitory action of an active fragment of tumstatin in glioma cells in vitro and in vivo. Cancer Res 66 (2006) 11331-40.
    34 J.E. Kim, and J. Chen, regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53 (2004) 2748-56.
    35 T. Kohno, M. Takahashi, R. Manda, and J. Yokota, Inactivation of the PTEN/MMAC1/TEP1 gene in human lung cancers. Genes Chromosomes Cancer 22 (1998) 152-6.
    36 H. Korkaya, and M.S. Wicha, Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 21 (2007) 299-310.
    37 D.J. Kwiatkowski, Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther 2 (2003) 471-6.
    38 P. Laprise, P. Chailler, M. Houde, J.F. Beaulieu, M.J. Boucher, and N. Rivard, Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation by promoting adherens junction assembly and p38 MAPK activation. J Biol Chem 277 (2002) 8226-34.
    39 J. Li, C. Yen, D. Liaw, K. Podsypanina, S. Bose, S.I. Wang, J. Puc, C. Miliaresis, L. Rodgers, R. McCombie, S.H. Bigner, B.C. Giovanella, M. Ittmann, B. Tycko, H. Hibshoosh, M.H. Wigler, and R. Parsons, PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(1997)1943-7.
    40 Y. Li, M.N. Corradetti, K. Inoki, and K.L. Guan, TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 29 (2004) 32-8.
    41 Y. Lu, J. Zhou, C. Xu, H. Lin, J. Xiao, Z. Wang, and B. Yang, JAK/STAT and PI3K/AKT Pathways Form a Mutual Transactivation Loop and Afford Resistance to Oxidative Stress-Induced Apoptosis in Cardiomyocytes. Cell Physiol Biochem 21(2008)305-314.
    42 Y. Mamane, E. Petroulakis, O. LeBacquer, and N. Sonenberg, mTOR, translation initiation and cancer. Oncogene 25 (2006) 6416-22.
    43 K.A. Martin, S.S. Schalm, C. Richardson, A. Romanelli, K.L. Keon, and J. Blenis, Regulation of ribosomal S6 kinase 2 by effectors of the phosphoinositide 3-kinase pathway. J Biol Chem 276 (2001) 7884-91.
    44 D. Morgensztern, and H.L. McLeod, PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16 (2005) 797-803.
    45 H.A. Mostefai, A. Agouni, N. Carusio, M.L. Mastronardi, C. Heymes, D. Henrion, R. Andriantsitohaina, and M.C. Martinez, Phosphatidylinositol 3-Kinase and Xanthine Oxidase Regulate Nitric Oxide and Reactive Oxygen Species Productions by Apoptotic Lymphocyte Microparticles in Endothelial Cells. J Immunol 180 (2008) 5028-5035.
    46 M. Murakami, T. Ichisaka, M. Maeda, N. Oshiro, K. Hara, F. Edenhofer, H. Kiyama, K. Yonezawa, and S. Yamanaka, mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24 (2004)6710-8.
    47 V.D. Nair, and C.W. Olanow, Differential modulation of Akt/GSK-3beta pathway regulates apoptotic and cytoprotective signaling responses. J Biol Chem (2008).
    48 K. Nakamura, H. Sakaue, A. Nishizawa, Y. Matsuki, H. Gomi, E. Watanabe, R. Hiramatsu, M. Tamamori-Adachi, S. Kitajima, T. Noda, W. Ogawa, and M. Kasuga, PDK1 regulates cell proliferation and cell cycle progression through control of cyclin D1 and p27Kipl expression. J Biol Chem (2008).
    49 A. Neri, S. Marmiroli, P. Tassone, L. Lombardi, L. Nobili, D. Verdelli, M. Civallero, M. Cosenza, J. Bertacchini, M. Federico, A. De Pol, G.L. Deliliers, and S. Sacchi, The oral PKC-beta inhibitor enzastaurin (LY317615) suppresses signalling through the AKT pathway, inhibits proliferation and induces apoptosis in multiple myeloma cell lines. Leuk Lymphoma (2008) 1-10.
    50 M. Ohanna, A.K. Sobering, T. Lapointe, L. Lorenzo, C. Praud, E. Petroulakis, N. Sonenberg, P.A. Kelly, A. Sotiropoulos, and M. Pende, Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7 (2005) 286-94.
    51 E.N. Olson, M. Perry, and R.A. Schulz, Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol 172 (1995) 2-14.
    52 J.P. Osborne, J. Merrifield, and F.F. O'Callaghan, Tuberous sclerosis: what's new? Arch Dis Child (2008).
    53 N.R. Paling, H. Wheadon, H.K. Bone, and M.J. Welham, Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem 279 (2004) 48063-70.
    54 R. Parent, D. Kolippakkam, G. Booth, and L. Beretta, Mammalian target of rapamycin activation impairs hepatocytic differentiation and targets genes moderating lipid homeostasis and hepatocellular growth. Cancer Res 67 (2007) 4337-45.
    55 I.H. Park, R. Bachmann, H. Shirazi, and J. Chen, Regulation of ribosomal S6 kinase 2 by mammalian target of rapamycin. J Biol Chem 277 (2002) 31423-9.
    56 M. Pende, S.H. Um, V. Mieulet, M. Sticker, V.L. Goss, J. Mestan, M. Mueller, S. Fumagalli, S.C. Kozma, and G. Thomas, S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24 (2004) 3112-24.
    57 S. Phin, D. Kupferwasser, J. Lam, and K.K. Lee-Fruman, Mutational analysis of ribosomal S6 kinase 2 shows differential regulation of its kinase activity from that of ribosomal S6 kinase 1. Biochem J 373 (2003) 583-91.
    58 Z. Radisavljevic, AKT as locus of fragility in robust cancer system. J Cell Biochem (2008).
    59 T.M. Randis, K.D. Puri, H. Zhou, and T.G. Diacovo, Role of PI3Kdelta and PBKgamma in inflammatory arthritis and tissue localization of neutrophils. Eur J Immunol 38 (2008) 1215-24.
    60 B.K. Rasheed, T.T. Stenzel, R.E. McLendon, R. Parsons, A.H. Friedman, H.S. Friedman, D.D. Bigner, and S.H. Bigner, PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 57 (1997) 4187-90.
    61 G.P. Robertson, Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev 24 (2005) 273-85.
    62 F. Rojo, L. Najera, J. Lirola, J. Jimenez, M. Guzman, M.D. Sabadell, J. Baselga, and S. Ramon y Cajal, 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 13 (2007) 81-9.
    63 R.C. Roovers, T. Laeremans, L. Huang, S. De Taeye, A.J. Verkleij, H. Revets, H.J. de Haard, and P.M. van Bergen en Henegouwen, Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies. Cancer Immunol Immunother 56 (2007) 303-317.
    64 N. Rosen, and Q.B. She, AKT and cancer-is it all mTOR? Cancer Cell 10 (2006) 254-6.
    65 L.H. Saal, K. Holm, M. Maurer, L. Memeo, T. Su, X. Wang, J.S. Yu, P.O. Malmstrom, M. Mansukhani, J. Enoksson, H. Hibshoosh, A. Borg, and R. Parsons, PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65 (2005) 2554-9.
    66 L.N. Shoba, and J.C. Lee, Inhibition of phosphatidylinositol 3-kinase and p70S6 kinase blocks osteogenic protein-1 induction of alkaline phosphatase activity in fetal rat calvaria cells. J Cell Biochem 88 (2003) 1247-55.
    67 L. Shu, X. Zhang, and P.J. Houghton, Myogenic differentiation is dependent on both the kinase function and the N-terminal sequence of mammalian target of rapamycin. J Biol Chem 277 (2002) 16726-32.
    68 U.K. Singha, Y. Jiang, S. Yu, M. Luo, Y. Lu, J. Zhang, and G. Xiao, Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem 103 (2008) 434-46.
    69 N. Sonenberg, and A. Pause, Signal transduction. Protein synthesis and oncogenesis meet again. Science 314 (2006) 428-9.
    70 M.P. Storm, H.K. Bone, C.G. Beck, P.Y. Bourillot, V. Schreiber, T. Damiano, A. Nelson, P. Savatier, and M.J. Welham, Regulation of Nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. J Biol Chem 282 (2007) 6265-73.
    71 K. Takahashi, M. Murakami, and S. Yamanaka, Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells. Biochem Soc Trans 33 (2005) 1522-5.
    72 J.M. Tang, Q.Y. He, R.X. Guo, and X.J. Chang, Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer 51 (2006) 181-91.
    73 J.R. Testa, and A. Bellacosa, AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 98 (2001) 10983-5.
    74 G. Thomas, The S6 kinase signaling pathway in the control of development and growth. Biol Res 35 (2002) 305-13.
    75 F. Tremblay, A. Gagnon, A. Veilleux, A. Sorisky, and A. Marette, Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes. Endocrinology 146 (2005) 1328-37.
    76 M.J. Welham, M.P. Storm, E. Kingham, and H.K. Bone, Phosphoinositide 3-kinases and regulation of embryonic stem cell fate. Biochem Soc Trans 35 (2007) 225-8.
    77 P. Wlodarski, W. Grajkowska, M. Lojek, K. Rainko, and J. Jozwiak, Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathol 44 (2006) 214-20.
    78 Z. Wu, D. Gioeli, M. Conaway, M.J. Weber, and D. Theodorescu, Restoration of PTEN expression alters the sensitivity of prostate cancer cells to EGFR inhibitors. Prostate (2008).
    79 O.H. Yilmaz, and S.J. Morrison, The PI-3kinase pathway in hematopoietic stem cells and leukemia-initiating cells: A mechanistic difference between normal and cancer stem cells. Blood Cells Mol Dis (2008).
    80 A. Yoshioka, H. Miyata, Y. Doki, T. Yasuda, M. Yamasaki, M. Motoori, K. Okada, J. Matsuyama, Y. Makari, I. Sohma, S. Takiguchi, Y. Fujiwara, and M. Monden, The activation of Akt during preoperative chemotherapy for esophageal cancer correlates with poor prognosis. Oncol Rep 19 (2008) 1099-107.
    81 H.H. Zhang, A.I. Lipovsky, C.C. Dibble, M. Sahin, and B.D. Manning, S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell 24 (2006) 185-97.
    82 H. Zhao, J. Dupont, S. Yakar, M. Karas, and D. LeRoith, PTEN inhibits cell proliferation and induces apoptosis by downregulating cell surface IGF-IR expression in prostate cancer cells. Oncogene 23 (2004) 786-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700