用户名: 密码: 验证码:
黑芥子酶协助蛋白基因启动子功能的缺失分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十字花科植物中存在一个特殊的底物—酶系统,即硫苷—黑芥子酶系统(Glucosinolate-Myrosinase system)。在植物体内,黑芥子酶往往与黑芥子酶结合蛋白和黑芥子酶协助蛋白一起以复合体的形式存在。iMyAP是一种存在于营养器官中的诱导表达的蛋白。创伤、MeJA,JA和ABA处理能使iMyAP启动子启动iMyAP基因转录。
     为了进一步了解iMyAP基因启动子的功能结构特征,确定iMyAP基因启动子的核心启动子(core promoter)大小,我们将油菜(Brassica napus)iMyAP基因转录起始位点上游-1868bp区段的全部和部分(分为5个不同长度)插到GUS报告基因的前面,并将融合子转入模式植物拟南芥(Arabidopsis thalina)基因组中。在拟南芥的遗传背景下来剖析iMyAP基因启动子的功能结构。
     研究结果显示,甲基茉莉酸和创伤处理能使iMyAP启动子启动GUS基因在植株体内表达。地上部分与地下部分相比较,地上部分染色较深,而地下部分染色较浅;微管组织染色较深,薄壁组织染色较浅;茎叶与根的接合区染色最深。
     通过缺失分析发现只需要iMyAP启动子全长序列中从-1到-370区段的370bp的长度就可以实现全长启动子的诱导功能。带有的370bp长片段的M4-5植株受创伤和茉莉酸处理后,都能启动GUS基因的表达,并且GUS基因在组织中的表达部位和强度基本一致;进一步缺失到只有153bp长时,创伤和茉莉酸处理不能诱导GUS基因的表达,说明这段DNA序列不具备在诱导条件下启动基因表达的功能。通过在PLACE网站上对这段370bp的序列进行基序分析,发现在占总长约为19%的这370bp长的序列上,包含有iMyAP全部8类诱导基序,并拥有全长iMyAP启动子唯一的1个与茉莉酸诱导相关的基序;唯一的1个与生长素诱导有关的基序;与创伤诱导有关的基序两个中的1个,唯一的1个与生长素诱导有关的基序;唯一的1个与糖诱导有关的基序;与创伤诱导有关的基序两个中的1个;与无氧诱导有关的基序ANAERO1CONSENSUS四个中的3个;与干旱脱水诱导有关的6种基序,其中MYCATERD1和MYCATRD22是全长启动子中唯一的基序。这些数据与GUS组织化学染色的结果一起充分说明了370bp长启动子片断代表了诱导型iMyAP启动子的基本特征,是iMyAP启动子的核心结构,即iMyAP启动子的核心启动子。这是首次确定iMyAP启动子的核心启动子大小。
     370bp长的核心启动子不仅能受甲基茉莉酸和创伤诱导启动基因的表达,而且还具有细胞组织特异型启动子的特征。该核心启动子在正常生长条件下,能启动GUS基因在气孔器保卫细胞中特异表达,成为了一个典型的细胞组织特异型启动子。但是,我们目前已知的器官组织细胞特异性表达的基序通常都不在370bp的范围之内。这种表面看似矛盾的现象暗示:是否可能存在一种未知的保卫细胞特异表达的基序,这有待我们进一步的实验来证实。这种因为缺失一定长度后获得的“启动子”在保持原有启动子功能的同时,又能产生出新的启动功能,这种现象尚未见有报道。
     对M4-1到M4-6进行的GUS定量分析结果显示:在—1868~—1506bp之间的363bp长的核苷酸序列上存在增强子,因为这段序列的缺失导致GUS活性有一个较大幅度的下降。这是首次在iMyAP启动子上发现有增强子的存在。
     核心启动子能在高温胁迫和正常条件下都能启动GUS基因在气孔保卫细胞里表达。但是从被染色气孔保卫细胞的数量来讲,高温下气孔染色的数量明显低于正常条件下气孔染色的数量,说明高温有抑制370bp片段启动GUS基因在保卫细胞中表达的作用。
     核心启动子能在低温胁迫和正常条件下都能启动GUS基因在气孔保卫细胞里表达。但是气孔保卫细胞的染色数量也明显低于正常条件下气孔染色的数量。通过PLACE对启动子全长序列分析,在370bp的序列上没有找到目前已知的与低温反应有关的基序,所以通过核心启动子的进一步实验解剖分析,将会找到新的与低温反应有关的基序。
     受低温处理的M4-1植株其根部只在维管束部分和第三层柱细胞(third story columella cell,S3)中部的2个细胞有深的GUS染色,而维管束外围的薄壁组织和根尖伸长区不染色。蓝色在根尖弯曲的相反方向一侧,伸长区与成熟区的交界部位,其中柱部分大约一半有蓝色,另一半没有蓝色;就柱细胞而言,S3的中间两个有蓝色,其中与弯曲方向相反的一个柱细胞染色明显比另一个强,这两个观测事实似乎暗示iMyAP可能参与根向重力性(gravitropism)的某个过程。这个推测有待进一步的实验证实。
In the Cruciferae plant there is a special substrate - enzyme system, namely glucosinolate -myrosinase system. In vivo, Myrosinases usually occur in complexes with myrosinase-bingingprotein and myrosinase-associated protein, iMyAP is one of myrosinase-associated proteinspresent in vegetative organ, which can be promoted by iMyAP promoter induced by wounding,MeJA, JA and the ABA treatment.
     In order to further understand the function- structure characteristic of iMyAP genepromoter, to identify the size of core promoter of iMyAP promoter, we divided the whole-1868bp promoter into 5 fragments, inserted the 5 fragments and whole promoter just beforeGUS gene and transferred the fusions into Arabidopsis genome. Then the functional structure ofiMyAP gene promoter was analyzed on the arabidopsis heredity background.
     The results showed that the methyl jasmonnic acid(MeJA) and wounding processing canmake iMyAP promoter propel the GUS gene expression in the whole plant. The up-ground wasstained deeper than the underground and the vascular tissue deeper than the parenchyma. Thejoint area of leafstalk and root was stained the deepest.
     370bp fragment is enough for finishing the induced function of whole promoter by deletionanalysis. M4 - 5 with 370bp fragment. can start up the GUS gene expression after being treatedby wounding and methyl jasmonic acid and the blue position and blue intensity is consistent withone of M4-1. When the whole promoter was deleted to 153bp, the wounding and the jasmonicacid treatment cannot induce the GUS gene expression in M4-6, which means that this 153bpDNA sequence does not have the induction function after treated by wounding and MeJA. Byuse of the the PLACE, we analyzed the motif in the 370 fragment and found that the fragmentaccounting for 19% of whole promoter has all kinds of 8 motifs relative to induction of wholeiMyAP promoter and includes a sole JA-responsive motif in the whole promoter; a soleauxin-responsive motif, a sole sugar-responsive motif, one of two wounding-responsive motifs,three of four anaerobically-responsing motif, all 6 type motifs relative to dehydration-responsive(among the 6 type motifs MYCATERD1 and MYCATRD22 are sole). These data and the resultsof GUS histochemical stain together fully showed that the 370bp fragment has represented thebasic characteristic of induction function of iMyAP promoter, namely the cor promoter of theiMyAP promoter. This is the first time to identified the size of the iMyAP core promoter.
     Not only the 370bp core promoter can start the gene expression after wounding and MeJAtreatment, but also the core promoter has the characteristic of cell-specific promoter. The corepromoter can start the GUS gene expression specifically in the guard-cell under normal growthcondition, ands act as a typical tissue-specific promoter. But all known tissue-specific motifs arenot found in the 370bp core promoter. Under the ostensible contradictory phenomenon, it is hintsthat there is an unknown guard-cell-specific motif in the core promoter. Further experimentalneed to be done for this deduction. This phenomenon has not been reported until now that the new promoter from the primary promoter deletion not only maintains the function of primaryiMyAp, but brings novel promoter function.
     The GUS quantitative analysis results from M4-1 to M4-6 demonstrated that at less there isan enhance element between - 1868~- 1506bp(363bp), because the 363bp loss caused GUSactivity decrease in larger scale. It is first time to find enhance element in iMyAP promoter.
     The core promoter can propel the GUS gene expression in guard cell under highertemperature stress and normal growth condition. But based on the stained guard cell numbers,the blue guard cell numbers are fewer under higher temperature than normal temperature. It issuggested that higher temperature inhibits the GUS gene expression promoted by 370bp in guardcell.
     The core promoter can also propel the GUS gene expression in guard cell under lowertemperature stress and normal growth condition. But the stained guard-cell numbers are fewerunder lower temperature stress than normal growth condition. No known motif related to lowertemperature response had been found in the 370bp by PLACE. So further deletion analysis of thecore promoter will be helpful to find new motif responsive to lower temperature stress.
     At the root tip of M4-1 treated by lower temperature treatment, deeper GUS dye werealong the vascular bundle and in two central cell of the third story columella cell(S3), and theparenchyma tissue around the vascular bundle and the elongation zone were stained nothing.Opposite the curving direction, in the elongation zone, half central cylinder was stained blue,another half wasn't stained. Speaking of the S3 columella, two have the blue color, but the cellopposite curving direction was obviously stained more intensive and the size was biggercompared to another one. According to the two observation facts, it is inferred that iMyAPpossibly participates in the response of root gravitropism. This extrapolation waits for the furtherexperimental confirmation.
引文
1 Bussy A:Sur la formation de l'huile essentielle de moutarde. J.Pharm 27: 464-471,1840
    
    2 Ettlinger,M.G.& Kjaer, A. Sulfur compounds in plants. Rec. Adv. Phytochem, 1968, 1:49-144
    
    3 Rodman,J.E., Price,R.A.,Karol,K., et al. Nucleotide sequence of the rbcL gene indicate monopyly of mustard oil plants. Ann Missouri Bot. Gard, 1993,80:686-699
    
    4 Fenwick,G.R., Heaney,R.K., & Mullin,W.J. Glucosinolates and their breakdown products in food and food plants. Crit Rev.Food Sci.Nutri. 1983,18:123-201
    
    5 Kroyman, J., Textor, S., Tokuhisa, J.G, et al. A gene controlling variation in Arabidopsis thaliana glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol. 2001,127:1077-1088
    
    6 Textor, S., Bartram, S., Kroyman, J., et al. Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain elongation cycle. Planta, 2004, 218: 1026-1035
    
    7 Wittstock U, Halkier BA. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J BiolChem 2000, 275:14659-14666
    
    8 Hull AK, Rekha V, Celenza JL. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA ,2000,97:2379-2384
    
    9 Armengaud P, Breitling R, Amtmann A. The potassiumdependent trans&riptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol, 2004, 136:2556-2576.
    
    10 Bones A & Slupphaug G. Purification, characterization and partial amino acid sequencing of β -thioglucosidase from Brassica napus L. J Plant Physiol. 134:722-729
    
    11 Falk A, Xue J, Lenman M & Rask L. Sequence of a cDNA clone encoding the enzyme myrosinase and expression of myrosinase in different tissue of Brassica napus. Plant Sci, 1992,83:181-186
    
    12 Falk A, Ek B, Rask L. Characterization of a new myrosinase in Brassica napus. Plant Mol Biol. 1995; 27(5):863-74.
    
    13 Chadchawan S, Bishop J, Thangstad OP, et al. Arabidopsis cDNA sequence encoding myrosinase. Plant Physiol. 1993 Oct;103(2):671-678.
    
    14 Burmeister WP, Cottaz S, Driguez H, et al. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure. 1997; 5(5):663-75.
    
    15 Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem, 2000, 275:33712-33717.
    
    16 Hansen CH, Wittstock U, Olsen CE, et al. Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic lucosinolates. JBiol Chem, 2001, 276:11078-11085.
    
    17 Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA.Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem. 2000, 275:33712-17
    
    18 Naur P, Petersen BL, Mikkelsen MD, et al. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol, 2003, 133:63-72.
    19 Hemm MR, Ruegger MO, Chappie C. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell, 2003, 15:179-194
    20 Hansen CH, Du L, Naur P, Olsen CE, et al. CYP83B1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J Biol Chem, 2001, 276:24790-24796
    21 Bak S, Tax FE, Feldmann KA, et al. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell, 2001, 13:101-111.
    22 Reintanz B, Lehnen M, Reichelt M, et al. bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short chain aliphatic glucosinolates. Plant Cell, 2001, 3:351-367
    23 Smolen G, Bender J. Arabidopsis cytochrome P450 cyp83Bl mutations activate the tryptophan biosynthetic pathway. Genetics, 2002, 160:323-332.
    24 Zhao Y, Hull AK, Gupta NR, et al. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP72B2 and CYP79B3. Genes Dev, 2002, 16:3100-3112.
    25 Chen S, Glawischnig E, Jorgensen K, et al. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J, 2003, 33:923-937,
    26 Agrawal AA, Kurashige NS. A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol, 2003, 29:1403-1415.
    27 Reymond P, Bodenhausen N, Van Poecke RM, et al. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell, 2004, 16:3132-3147.
    28 ikkelsen MD, Petersen BL, Glawischnig E, et al. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol, 2003, 131:298-308.
    29 Traw MB, Kim J, Enright S, et al. Negative cross-talk between salicylate- and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Mol Ecol 2003, 12:1125-1135.
    30 Cipollini D, Enright S, Traw MB, Bergelson J. Salicylic acid inhibits jasmonic induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol Ecol, 2004, 13:1643-1653.
    31 Giamoustaris A, & Mithen R. The effect of modifying the glucosinolate content of leaves on oilseed rape (Brassica napus ssp-oleifera) on its interaction with specialist and generalist pests Ann Appl Biol, 1995, 126:347-363
    32 Louda S & Mole S. Glucosinolates, chemistry and ecology. In: Herbivores. Their Interaction with Secondary Plant Metabolites, G A Rosenthal and M R Berenbaum(eds), pp.123-164.1991, Academic Press, San Diego.
    33 Lenman M, Rodin J, Josefsson LG, Rask L. Immunological characterization of rapeseed myrosinase. Eur J Biochem. 1990,194(3):747-53
    34 Falk A, Taipalensuu J, Ek B, Characterization of rapeseed myrosinase-binding protein. Planta, 1995,195(3):387-95
    35 Taipalensuu J, Falk A, Rask L. A wound- and methyl jasmonate-inducible transcript coding for a myrosinase-associated protein with similarities to an early nodulin. Plant Physiol, 1996,110(2):483-91.
    36 Taipalensuu J, Eriksson S, Rask L. The myrosinase-binding protein from Brassica napus seeds possesses lectin activity and has a highly similar vegetatively expressed wound-inducible counterpart. Eur J Biochem,1997b,250(3):680-88.
    37 Ute Wittstock, Niels A, et al. Successful herbivore attack due to metabolic diversion of a plant chemical defense. PNAS.2004,101(14)4859-64
    38 Bones AM, Rossiter JT. The myrosinase-glucosinolate system, its organization and biochemistry. Physiologia Plantarum, 1996, 97: 194-208.
    
    39 Rask L, Andreasson E, Ekbom B, et al. Myrosinase, gene family evolution and herbivore defense in Brassicaceae. Plant Molecular Biology, 2000, 42: 92-113.
    
    40 Bones A : Slupphaug G: Distribution of β -thioglucosidase activity in intact plants, cell and tissue cultures and regenerant plants of Brassica napus L. Exp Bot. 1990,41:737-744
    
    41 Lenman M, Falk A, Rodin J, et al. Differential expression of myrosinase gene families. Plant Physiology. 1993,103: 703-711.
    
    42 Bjorkman R, Janson JC. Studies on myrosinases. I. Purification and characterization of a myrosinase from white mustard seed(Sinapis alba, L.).Biochim Biophys Acta. 1972 28;276(2):508-18.
    
    43 Lonnerdal B, Janson JC. Studies on myrosinase. II. Purification and characterization of a myrosinase from rapeseed (Brassica napus L). Biochim Biophys Acta. 1972, 278(1):175-83.
    
    44 Bones A & Slupphaug G. Purification, characterization and partial amino acid sequencing of β -thioglucosidase from Brassica napus L. J Plant Physiol. 134:722-729.
    
    45 Falk A, Xue J, Lenman M & Rask L. Sequence of a cDNA clone encoding the enzyme myrosinase and expression of myrosinase in different tissue of Brassica napus. Plant Sci, 1992,83:181-186
    
    46 Falk A, Ek B, Rask L. Characterization of a new myrosinase in Brassica napus. Plant Mol Biol 1995; 27(5):863-74
    
    47 Chadchawan S, Bishop J, Thangstad OP, et al. Arabidopsis cDNA sequence encoding myrosinase. Plant Physiol. 1993 Oct;103(2):671.
    
    48 urmeister WP, Cottaz S, Driguez H, et al. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure. 1997; 5(5):663-75.
    
    49 Chen S & Halkier BA. Functional expression and characterization of the myrosinase MYR1 from Brassica napus in Saccaromyces cerevisiae. Prot Exp Pur. 1999, 17:414-420.
    
    50 ue JP, Lenman M, Falk A, Rask L. The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by agene family. Plant Mol Biol. 1992;18(2):387-98.
    
    51 ue J, Jorgensen M, Pihlgren U, Rask L. The myrosinase gene family in Arabidopsis thaliana: gene organization, expression and evolution. Plant Mol Biol. 1995; 27(5):911-22.
    
    52 Taipalensuu J, Andreasson E, Eriksson S and Rask L. Regulation of the wounding-induced myrosinase-associated protein transcript in Brassica napus plants. Eur. J Biochem., 1997, 247:963-971
    
    53 Andreasson E, Taipalensuu J, Rask L, Meijer J. Age-dependent wound induction of a myrosinase-associated protein from oilseed rape (Brassica napus). Plant Mol Biol, 1999,41 (2): 171-80
    
    54 Geshi N & Brandt A. Two jasmonate-inducible myrosinase-binding protei from Brassiac napus L. seedings with homology to jacalin. Planta, 204: 295-304
    
    55 Bones A and Invesen TH. Myrosin cell and myrosinase. Israeli Journal of Botany, 1985, 34:351-375
    
    56 Giamoustaris A and Mithen R. The effect of modifying the glucosinolate content of leaves on oilseed rape (Brasicca napus sspoleifera) on its interaction with specialist and generalist pests. Ann Appl Biol. 1995,126:347-363
    
    57 Louda S and Mole S. Glucosinolates,chemistry and ecology.In:herbivores.Their Interaction with Secondary Plant Metabolites, GA Rosenthal and MR Berenbaum (eds),pp:123-164. Academic Press, San Diego
    
    58 Mithem RF and Magrath R. Glucosinolates and resistance to Leptosphaeria maculans in wild and cultivated Brassica species. Plant Breed, 1992, 108: 60-68
    59 Brader G, Tas E, Tapio Palva E. Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol, 2001, 126: 849-860.
    60 路静,赵华燕,何奕昆,宋艳茹.高等植物启动子及其应用研究进展.自然科学进展,2004,14(8):856-862.
    61 朱玉贤,李毅.现代分子生物学.北京:高等教育出版社,1997,p181-194.
    62 刘良式等,植物分子遗传学,北京,科学出版社,1997,p192-216
    63 Joshi C R An inspectiont of the domain between putative TATA box and translation start site in 79 plant genen. Nucleic Acid Research, 1987,15: 6643-6653.
    64 李一醌,王金发.高等植物启动子研究进展.植物学报,1998,15(增刊):1-6
    65 Lutcke H A,Chow K C,Mickel FS, Selection of AUG initiation codons differs in plants and animals[J].The Embo. Journal, 1987,6: 43-48.
    66 BP, NJSMIN LEWIN. GENE Ⅵ[M]. Oxford University Press,1997, pp 302-305.
    67 吴乃虎.基因工程原理(下)[M].北京,科学出版社,2001,pp74—75.
    68 Michael Carey S T S. Transccription Regulation in Eukaryotes Concepts, Strategies, and Techniaues. Cold Spring Harbor Laboratory Press, 2001.
    69 Gusmaroli G, Tonelli, Mantovani R. Regulation of novel members of Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits.Gene.,2002,283 (1—2): 41—48.
    70 Mary E, Willams R F, Chua Nam—Uai. Sequences Flanking the Hexameric G-Box Core CACGTG Affect the Specificity of Protein Binding. The Plant Cell, 1992,4: 485-496.
    71 Wweising K, Kahl G. Towards an understanding of plant gene regulation—the action of nuclear factors. Z. Naturforsch. C., 11991, 46: 1-11.
    72 Chua N H, Benfey P N. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription on plants. Science, 1990,250: 959-966.
    73 Mitsuhara I, Ugaki M, Hirochika H, Ohshima M et al. Efficient promoter cassettes for enhanced. expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol, 1996, 37 (1): 49-59
    74 McElroy D, Brettell R. I. S. Foreign gene expreeion in transgenic cereals. Trends in Biotechnology, 1994,12: 62-68.
    75 Angenon G, Van Montagu M, Depicker A. Analysis of the stop codon context in plant nuclear genes. FEBS Lett. 1990,271(1-2): 144-146.
    76 Seagull R W. The plant cytoskeleton. Critical reviews in plant sciences.1989,8: 131-167.
    77 McElroy D, Zhang W, Cao J, and Wu R. Isolation of an Efficient Actin Promoter for Use in Rice Transformation. The Plant Cell 2: 163-171.
    78 Schug J., Schuller W.-P, Kappen C. et al. Promoter related to tissue specificity as measured by Shannon entropy. Genome Biology, 2005, 6: R33
    79 Buzeli RA, Cascardo JC, Rodrigues LA, et al. Tissue-specific regulation of BiP genes: a cis-acting regulatory domain is required for BiP promoter activity in plant meristems. Plant Mol Biol. 2002, 50(4-5): 757-71.
    80 蒋浩,秦红,虞红梅.Cloning and function of the phloem protein gene promoter from Cucurbita maxima. Journal of Agricultural Biotechnology(农业生物技术学报),1999,7(1): 63-68.
    81 Nitz I, Berkefeld H, Puzio PS, Grundler FM. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci. 2001,161(2): 337-346.
    82 Borisjuk NV, Borisjuk LG, Logendra S. Production of recombinant proteins in plant root exudates. Nat Biotechnol. 1999,17(5):466-9.
    83 Trindade LM, Horvath B, Bachem C, et al. Isolation and functional characterization of a stolon specific promoter from potato (Solanum tuberosum L.).Gene. 2003 Jan 16;303:77-87.
    84 魏建华等.质素生物合成途径及调控的研究进展.植物学报,2001,43(8):771
    85 Bell-Lelong DA, Cusumano JC, Meyer K, Chapple C. Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiol. 1997 Mar; 113(3):729-38.
    86 Marraccini P, Courjault C, Caillet V, et al. Rubisco small subunit of Coffea arabica: cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants. Plant Physiology and Biochemistry, 2003, 41(1):17-25.
    87 Taniguchi M, Izawa K, Ku MS, et al. The promoter for the maize C4 pyruvate, orthophosphate dikinase gene directs cell- and tissue-specific transcription in transgenic maize plants. Plant Cell Physiology, 2000, 41(1):42
    88 Koltunow A M, Truettner J, Cox K H, et al. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell, 1990, 2:1201-1224.
    89 Paul W, Hodge R, Smartt S, et al. The isolation and characterization of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Mol Biol. 1992;19(4):611-22.
    90 Albani D, Robert LS, Donaldson PA, et al. Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development. Plant Mol Biol. 1990; 15(4):605-622.
    91 Singh M, Bhalla P L., Xu HL and Singh M B.Isolation and characterization of a flowering plant male gametic cell-specific promoter.FEBS Letters,2003,542(1-3):47-52.
    92 周晓红,陈晓光,张晓东等.番茄果实特异性E8启动子的基因克隆与序列分析.第一军医大学学报,2003,23(1):25-28
    93 Sandhu JS, Krasnyanski SF, Domier LL, Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res. 2000;9(2):127-35.
    94 毛自朝,于秋菊,甄伟等.果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响.科学通报,2002,47(6):444-448.
    95 Takaiwa F, Kikuchi S and Oono K. The structure of rice storage protein glutelin precursor deduced from cDNA. FEB S Letters, 1986,206(1):33-35.
    96 Wu HK, et al. Analysis of 5'region of glutelin genes from wild rice species. Bot Bull Acad Sin, 1996,37:41-44.
    97 Yoshihara T, Washida H and Takaiwa F. A 45-bp proximal region containing AACA and GCN4 motif is sufficient to confer endosperm-specific expression of the rice storage protein glutelin gene, GluA-3. FEBS Letters, 1996,383, (3):213-218.
    98 Marta Vasconcelos, Karabi Datta, Norman Oliva, et al. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Science,2003,164(3):371-378.
    99 Datta K, et al. Bioengineered'golden'indica rice cultivars with β-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotech J, 2003,1 (2):81.
    100 YE L, LI, SONG YR. Construction of plant seed-specific expression vectors pSCB and pSCAB and the obtainment of transgenic Brassica napus H165 expressing poly-3-hydroxybutyrate synthetic genes. Chinese Science Bulletin, 2000,45(13): 1206-1211.
    101 ZHANG J, LI.Li. SONG Y. Identification of seed-specific promoter nap300 and its comparison with 7S promoter. Progress in Natural Science, 2002,12(10):737-741.
    
    102 Subramanian S, Rajagopal B, Rock CD. Harlequin (hlq) and short blue root (sbr), two Arabidopsis mutants that ectopically express an abscisic acid- and auxin-inducible transgenic carrot promoter and have pleiotropic effects on morphogenesis. Plant Mol Biol. 2002 May;49(1):93-105.
    103 Narusaka Y, Nakashima K, Shinwari ZK, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.Plant J. 2003 Apr;34(2): 137-48.
    
    104 Zhao Hui-Wu, Chen Yang-Jian, Hu Yuan-Lei, et al. Construction of a trehalose-6-phosphate synthase gene driven by drought-responsive promoter and expression of drought-resistance in transgenic tobacco. Acta Botanica Sinica, 2002, 42(6):616-619
    
    105 Xue GP. An AP2 domain transcription factor HvCBFl activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. Biochim Biophys Acta. 2002 Aug 19;1577(1):63-72.
    
    106 Brown AP, Dunn MA, Goddard NJ, Hughes MA. Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vulgare L) gene blt101.1 .Planta. 2001; 213(5):770-780.
    
    107 Czarnecka E, Key JL, Gurley WB. Regulatory domains of the Gmhspl7.5-E heat shock promoter of soybean. Mol. Cell. Biol., 1989,9(8):3457-3463.
    
    108 Rieping M, Schoffl F. Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet. 1992; 231 (2):226-32.
    
    109 Martinez-Hernandez A, Lopez-Ochoa L, et al. Arguello-Astorga G, Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals. Plant Physiol. 2002;128(4):1223-33.
    
    110 Yadav V, Kundu S, Chattopadhyay D, et al. Light regulated modulation of Z-box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5, in Arabidopsis. Plant J. 2002; 31(6):741-53.
    
    111 Wang ZY, Kenigsbuch D, Sun L, et al. A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell. 1997; 9(4): 491-507.
    
    112 Liu Z, Taub CC, McClung CR. Identification of an Arabidopsis thaliana ribulose-l,5-bisphosphate carboxylase/oxygenase activase (RCA) minimal promoter regulated by light and the circadian clock. Plant Physiol. 1996, 112(1): 43-51.
    
    113 Song F, Goodman RM. Cloning and identification of the promoter of the tobacco Sar8.2b gene, a gene involved in systemic acquired resistance. Gene. 2002; 290(1-2): 115-124.
    
    114 Hiraga S, Ito H, Sasaki K, et al. Wound-induced expression of a tobacco peroxidase is not enhanced by ethephon and suppressed by methyl jasmonate and coronatine. Plant Cell Physiol. 2000; 41(2): 165-170.
    
    115 Sasaki K, Hiraga S, Ito H, et al. A wound-inducible tobacco peroxidase gene expresses preferentially in the vascular system. Plant Cell Physiol. 2002; 43(1): 108-117.
    
    116 Kaothien P, Kawaoka A, Ebinuma H, et al. Ntliml, a PAL-box binding factor, controls promoter activity of the horseradish wound-inducible peroxidase gene. Plant Mol Biol. 2002; 49(6): 591-599.
    
    117 Wang SJ, Lan YC, Chen SF, et al. Wound-response regulation of the sweet potato sporamin gene promoter region. Plant Mol Biol. 2002; 48(3): 223-231.
    118 Qin X, Zeevaart JA. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol. 2002; 128(2): 544-551.
    119 Shen Q, Chen ON, Brands A, et al. The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol. 2001; 45(3): 327-340.
    120 Sun L, Cai H, Xu W, et al. CaMV 35S promoter directs beta-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus. Mol Biotechnol. 2002; 20(3): 239-244.
    121 Yamauchi D, Zentella R, No TH. Molecular analysis of the barley (Hordeum vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers. Planta. 2002; 215(2): 319-26.
    122 then PW, Lu CA, Yu TS, et al. Rice alpha-amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. J Biol Chem. 2002; 277(16): 13641-9.
    123 Kyozuka J, Olive M, Peacock WJ, et al. Promoter elements required for developmental expression of the maize Adh1 gene in transgenic rice. Plant Cell. 1994; 6(6): 799-810.
    124 Granger CL, Cyr RJ. Characterization of the yeast copper-inducible promoter system in Arabidopsis thaliana. Plant Cell Rep. 2001; 20(3): 227-234.
    125 Michel KP, Pistorius EK, Golden SS. Unusual regulatory elements for iron deficiency induction of the idiA gene of Synechococcus elongatus PCC7942. J Bacteriol. 2001; 183 (17): 5015-5024.
    126 Marts KA, Walbot V. Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses. Plant Physiol. 1997; 113(1): 93-102.
    127 Bohlmann H, Vignutelli A, Hilpert B, et al. Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway. FEBS Letters. 1998; 437(3): 281-286.
    128 Gatz C, Lenk I. Promoters that response to chemical inducers. Trends in Plant Science. 1998, 3: 352-358
    129 Stalberg, K., Ellerstom, M., Josefsson, L. G. and Rask, L. Deletion analysis of a 2S seed storage protein promoter of Brassica napus in transgenic tobacco. Plant Mol. Biol. 1993, 23: 672-683
    130 Hajdukiewicz, P., Svab, Z. and Maliga, P. The small, versatile pPZP family of Agrobacterium Binary vectors for plant transformation. Plant Mol. Biol. 1994, 25: 989-994
    131 Inoue H., Nojima H., and Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene, 1990, 96: 23-28.
    132 Sambrook, J. and Russell, D. Molecular Cloning—A laboratory manual, third edition. Cool Harbor Laboratory Press,2001.《分子克隆实验指南》第三版,科学出版社,2002
    133 P.马利加D.E克莱森 W.格瑞森姆等著.刘进元,吴庆余译.植物分子生物学实验指南.科学出版社,2000.
    134 G.卡尔(Kahl,G.联邦德国),J.S谢尔(Schell,J.S.联邦德国),樊梦庚译.植物肿瘤的分子生物学[M].北京:科学出版社,1988.p118~127.
    135 Detef Weigel and Jane Glazebrook, Arabidopsis: A Laboratory Manual. Cold Spring Harbor Lab Press, 2002.
    136 Bechtold, N., Ellis, J., and Pelletier, G.. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris, Life Sciences, 1993, 316: 1194-1199.
    137 Clough SJ and Bent AF,. Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana. Plant J., 1998, 16: 735-743.
    138 Novel M, Novel G. Regulation of beta-glucuronidase synthesis in Escherichia coli K-12: constitutive mutants specifically derepressed for uidA expression. J. Bacteriol., 1976, 127(1): 406-17.
    139 Novel M, Novel G. Regulation of beta-glucuronidase synthesis in Escherichia coli K-12: pleiotropic constitutive mutations affecting uxu and uidA expression. J Bacteriol., 1976,127(1):418-32.
    140 Jefferson RA, Burgess SM, Hirsh D.Beta-Glucuronidase from Escherichia coli as a gene-fusion marker.PNAS, 1986, 83(22):8447-51.
    141 Jefferson, R.A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter 5: 387-405.
    142 Jefferson, R. A., T. A. Kavanagh, and M.W. Bevan. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6: 3901-3907.
    143 Kyle, J. W., Grubb, J. H., Galvin, N., an: "ogler, C. (1992) GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, pp. 189-203, Academic Press, New York
    144 Schulz, M. and G. Weissenbock. Dynamics of the tissue-specific metabolism of luteolin glucuronides in the mesophyll of rye primary leaves (Secale cereale) Z. Naturforsh. 1987, 43c:187-193.
    145 Chris A., Wozniak and Lowel D. Owens. Native β-glucuronidase activity in sugarbeet (Beta vulgaris).Physiologia Plantarum, 1994,90(4):763-768
    146 Ching-yeh Hu, Paula P. Chee, Robert H. Chesney, et al. Intrinsic GUS-like activities in seed plants. Plant Cell Reports,1990,9(1):1-5.
    147 Elison B. Blancaflor, Jeremiah M. Fasano, and Simon Gilroy. Mapping the Functional Roles of Cap Cells in the Response of Arabidopsis Primary Roots to Gravity. Plant Physiol. 1998, 116:213-222.
    148 张龙翔、张庭芳、李令媛等编著,生化实验方法和技术,1981年,164~169页,高等教育出版社
    149 Bradford, M. A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem., 1976, 72:248-254.
    150 Cabib, E. and Polacheck, I. Protein assay for dilute solutions. Methods in Enzymology, 1984, 104: 318-328
    151 Iris Ottenschla ger, Patricia Wolff, Chris Wolverton, et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. PNAS, 2003, 100(5): 2987-2991
    152 ROBYN M. PERRIN, LI-SEN YOUNG, NARAYANA MURTHY U.M., et al. Gravity Signal Transduction in Primary Roots.Annals of Botany, 2005, 96: 737-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700