球磨对石墨烯纳米片形态及电容性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是继锂离子电池之后的又一新型储能元件,近几年来逐渐成为新能源研究的热点。多孔碳材料由于具有较高的比表面积和稳定的化学性质而被广泛地用作超级电容器电极材料,但是由于其导电性较差、孔结构复杂等原因限制了其在超级电容器中的广泛应用。石墨烯作为一种单层的二维碳原子层,由于结构简单、导电性好、比表面积大而成为超级电容器电极材料的最佳选择之一
     本文以天然鳞片石墨和人造石墨为原料,通过氧化-热膨胀的方法制备出膨胀石墨,并在此基础上采用球磨法获得石墨烯纳米片,研究了石墨烯纳米片作为超级电容器电极材料的性能。对样品的形貌结构进行扫描电子显微镜、透射电子显微镜、X射线衍射、氮吸附比表面积测试、傅立叶红外光谱和拉曼光谱测试。在质量浓度为30%的KOH水溶液中进行了电化学充放电测试、循环伏安和交流阻抗测试。
     研究表明,以不同原料制备的膨胀石墨都具有蠕虫状多孔结构,膨胀人造石墨的体积膨胀倍率远小于膨胀天然石墨,但其比表面积却高于后者,分别为524m2·g-1和358m2·g-1。在相同充放电条件下,膨胀人造石墨电极的比电容量比膨胀天然石墨电极高,在100mA·g-1的电流密度下分别达到196F·g-1和157F·g-1,但随着电流密度逐渐增大到2000mA·g-1,前者的容量保持率低于后者。球磨后膨胀石墨的蠕虫状结构遭到破坏,形成片层状结构,随着球磨时间延长,碳原子堆垛层数先减少后增加,球磨3h样品堆垛层数最少,电镜照片显示其结构为相互堆叠的石墨烯纳米片。球磨后,且随着球磨时间延长,样品的比电容量先增加后减少,球磨3h时比电容量达到最大值,在100mA·g-1的电流密度为211F·g-1,4h和6h样品比容量有所降低,分别为170F·g-1和167F·g-1,但仍明显高于膨胀石墨电极。具体的原因可以从石墨烯纳米片的简单结构易于电解液的扩散、球磨过程中产生的表面缺陷有利于电荷的聚集等方面分析。随着电流密度不断增大,石墨烯纳米片电极都表现出了良好的容量保持率。
Supercapacitor is a new-generation energy storage device after lithium ion battery and attracts worldwide researchers'interests as a promising high-power energy source in many fields. Many porous carbon materials have been investigated for supercapacitor electrode materials for their high specific surface areas and chemical stability. However, their specific surface capacities are always much lower than the theoretical value, which should be attributed to the anfractuous pore-texture and poor electric conductibility. Graphene as a two-dimensional layer with one atomic thickness has been proposed a competitive material for supercapacitors applications for its high specific surface area, electric conductivity and simple layer structure.
     In this thesis, graphene nanosheets (GNSs) were synthesized by grinding the expanded graphite which was prepared from natural flake graphite and artificial graphite via the oxidation-thermal explosion method and were applied as the electrode materials for supercapacitor. The morphologies and structures of both expanded graphite and GNSs were characterized by Scanning Electron Microscope, Transmission Electron Microscope, X-ray Diffraction, nitrogen adsorption measurement, Fourier transform InfraRed spectrum and Raman spectrum mea. Electrochemical performances as electrode materials for supercapacitor were studied by constant current Galvanostatic charge/discharge test, cyclic voltammetry and alternating current impedance in 30wt.% KOH electrolyte.
     The results show that expanded graphites prepared from different raw materials all have a worm-like porous structure. Expanded artificial graphite has not only a larger specific surface area of 524m-g-1 than that of expanded natural flakes graphite,358m2·g-1 exactly, but also a higher expansion volume. Under the current density of 100mA·g-1, the specific capacity of expanded artificial graphite is obviously higher than expanded natural flake graphite,196F·g-1 and 157F·g-1 respectively. However, its capacity retention is lower than the latter as the current density increasing to 1000mA·g-1 gradually. After milling, the worm-like porous structures are broken into randomly-oriented graphene nanosheets with a size distribution from tens to hundreds nanometers. The stacking height of GNSs samples present a decreasing-increasing trend and reach a weakest point at 3h milling. Accordingly, the specific capacities of GNSs increase obviously after milling as the milling time increases from 2h to 6h, and GNS-3h electrode achieves a highest specific capacity of 211F·g-1 at a current density of 100mA·g-1. For GNS-4h and GNS-6h, although specific capacity values obviously fall back, 170F·g-1 and 167F·g-1 respectively, there is a significant improvement compared to that of expanded natural flakes graphite. The reasons should be attributed to the simple layer structures of GNSs samples, lattice defects on the GNSs surfaces produced during the ball-milling process and so on. At the same time, although the specific capacity slightly decreases with the increasing of the current load from 100 to 2000mA·g-1 for each sample, all the GNSs samples keep excellent capacity retentions.
引文
[1]Kroto H W, Heath J R, Brien S O. C60:Buckminster fullerene [J]. Nature,1985, 318:162-163.
    [2]Lijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [3]陈晓妹,刘亚菲,胡中华.高性能炭电极材料的制备和电化学性能研究[J].功能材料,2008,5(39):771-778.
    [4]Novoselov K S. Electric field effect in atomically thin carbon films [J]. Science, 2004,306:666-669.
    [5]Novoselov K S, Jiang D, Sehedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals [J]. PNAS,2005,102 (30): 10451-10453.
    [6]Jannik C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S. The structure of suspended graphene sheets [J]. Nature,2007,446:60-63.
    [7]Fasolino A, Los J H, Katsnelson M I. Intrisinc ripples in graphene [J]. Nature Materials,2007,6:858-861.
    [8]Lee C G, Wei X D, Jeffrey W K, James H. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008,321:385-388.
    [9]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva IV, Dubonos S V, Firsov A A. Two-dimensional gas of massless dirac fermions in graphene [J]. Nature,2005,438:197-200.
    [10]Zhang Y B, Tan Y W, Stormer H L. Experimental observation of the quantum hall effect and Berry's Phase in graphene [J]. Nature,2005,438:201-204.
    [11]Novoselov K S, Jiang Z, Zhang Y. Room-temperature quantum hall effect in graphene[J]. Science,2007,315:1379.
    [12]De-Aero L G, Zhang Y, Kumar A, Zhou C. Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition [J]. IEEE Transactions on Nanotechnology,2009,8(2):135-138.
    [13]Li X S, Cai W W, An J H, Kim S, Nah J H, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science,2009,324: 1312-1314.
    [14]Kim K S, Hong S H, Lee K S. Continuous synthesis of nanostructured sheetlike carbons by thermal Plasma decomposition of methane [J]. IEEE Transactions on Plasma Science,2007,35(2):434-443.
    [15]Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M. Substrate-free gas-phase synthesis of graphene sheets [J]. Nano Letters,2008,8(7):2012-2016.
    [16]Wang X B, You H Y, Liu F M. Large-scale synthesis of few-layered graphene using CVD [J]. Chem.Vap. Deposition,2009,15:53-56.
    [17]Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium [J]. Nature Materials.2008,5(7):406-411.
    [18]Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N. Electronic confinement and coherence in patterned epitaxial graphene [J]. Science,2006,312 (5777):1191-1196.
    [19]Gomez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets [J]. Nano Letters,2007,7(11):3499-3503.
    [20]Wu Z S, Ren W C, Gao L B, Zhao J P, Chen ZP, Liu B L, Tang D M, Yu B, Jiang C B, Cheng H M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation [J]. ACS Nano, 2009,3(2):411-417.
    [21]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated Graphite Oxide. Carbon,2007,45 (7): 1558-1565.
    [22]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets. Nature nanotechnology,2007,3:101-105.
    [23]Schniepp H C. Functionalized single graphene sheets derived from splitting graphite oxide [J]. Journal of Physical Chemistry B,2006,110 (11):8535-8539.
    [24]Viculis L M, Mack J J, Mayer O M. Intercalation and exfoliation routes to graphite nano-platelets [J]. Journal of Materials Chemistry,2004,974 (15):974-978.
    [25]Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials [J]. Nature,2006,442:282-286.
    [26]Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Preparation and characterization of graphene oxide paper [J]. Nature,2007,448:457-460.
    [27]Guo P, Song H H, Chen X H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications,2009,11:1320-1324.
    [28]Martin W, Raoph J B. What are batteries, fuel cells, and supercapacitors [J]. Chemical Reviews,2004,104 (10):4245-4269.
    [29]Becker H I. Electric double layer capacitor [P]. USP,2800616.1957-07-23.
    [30]张浩,曹高萍,杨裕生,徐斌,张文峰.电化学双电层电容器用新型炭材料及其应用前景[J].化学进展,2008,20(10):1495-1500.
    [31]田志宏,赵海雷,李玥,王治峰,仇卫华.非对称型电化学超级电容器的研究进展[J].电池,2006,36(6):469-471.
    [32]Wang Y G, Lou J Y, Wu W, Wang C X, Xia Y Y. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds [J]. Electrochemical Society,2006,153,A1425.
    [33]. Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5V class cathode material of Li-ion secondary battery [J]. Electrochim. Acta,2004, 49:219-227.
    [34]Wang Y G, Lou J Y, Wu W, Wang C X, Xia Y Y. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds Ⅲ. Capacity fading mechanism of LiCo1/3Ni1/3Mn1/3O2 at different PH electrolyte solutions [J]. Electrochemical Society.,2007,154:A228-234.
    [35]Qu D Y. Studies of activated carbons used in double-layer capacitors [J]. Power Sources,2002,109:403.
    [36]Gryglewicz G, Machnikowski J, Grabowska E L, Lota G, Frackowiak E. Effect of pore size distribution of coal-based activated carbons on double layer capacitance [J]. Electrochimica Acta,2005,50:1197-1206.
    [37]Lia W, Reichenauerc G, Frickeb J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors [J]. Carbon,2002,40: 2955-2959.
    [38]Vivekchand S R C, Rout C S, Subrahmanyam K S, Govindaraj A, Rao C N R. Graphene-based electrochemical supercapacitors [J]. Chemical. Sciences,2008, 120:9-13.
    [39]Fuertesb A B, Lota G, Centeno T A, Frackowiak E. Templated mesoporous carbons for supercapacitor application [J]. Electrochimica Acta.2005,50:2799-2805.
    [40]Frackowiak E, Metenier K, Bertagna V, Beguin F. Supercapacitor electrodes from multiwalled carbon nanotubes [J]. Applied Physics Letters,2000,77:2421-2423.
    [41]Kinoshita K. Carbon:Electrochemical and Physicochemical Properties [M]. New York:Kodansa Press,1988.326.
    [42]Yata S, Okamoto E, Satake H, Kubota H, Fujii M, Taguehi T, Kinoshita H. Polyacence capacitors [J]. Power Sources,1996,60 (2):207-212.
    [43]Kierzek K, Frackowiak E, Lota C, Gryglewicz C, Machnikowski J. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochimica Acta,2004,49:515-523.
    [44]胡中华,万翔,刘亚菲,赵国华.改性活性碳双电层电容器电极材料研究[J].电子元件与材料,2006,25(8):11-15.
    [45]Frackowiak E, Beguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon,2002,40:1775-1787.
    [46]Frackowiak E, Jurewicz K, Delpeux S, Beguin F. Nanotubular materials for supercapacitors [J]. Power Sources,2001,97-98:822-825.
    [47]Frackowiak E, Metenier K, Bertagna V, Beguin F. Supercapacitor electrodes from multiwalled carbon nanotubes. Applied Physics Letters,2000,77 (15):2421-2423.
    [48]Frackowiak E, Jurewicz K, Szostak K, Delpeuxb S, Beguinb F. Nanotubular materials as electrodes for supercapacitors [J]. Fuel Processing Technology,2002, 77-78:213-219.
    [49]Zhang H, Cao G P, Yang Y S. Using a cut-paste method to prepare a carbon nanotubes for electrode, Nano technology,2007,18,195607.
    [50]Zhang H, Cao G P, Y. Yang S, Gu Z N. Comparison between electrochemical p & properties of aligned carbon nanotubes array and entangled carbon nanotube electrodes [J]. Electrochemical Society,2008,155:K19-K22.
    [51]Zhang H, Cao G P, Yang Y S. Electrochemical properties of ultra-long, aligned, carbon nanotubes array electrode in organic electrolyte [J]. Power Sources,2007, 172:476-480.
    [52]Probstle H, Schmitt C, Fricke J. Button cell supercapacitors with monolithic aerogels [J]. Power Sources,2002,105:189-194.
    [53]Hwang S, Hyun S. Capacitance control of carbon aerogel electrodes [J]. Non-crystalline solids,2004,347:238-245.
    [54]Wei Y Z, Fang B, Iwasa S, Kumagai M. A novel electrode material for electric double-layer capacitors [J]. Power sources,2005,141:386-391.
    [55]Miura K, Nakagawa H, Okamoto H. Production of high density activated carbon fiber by a hot briquetting method [J]. Carbon,2000,38 (1),119-125.
    [56]吴海芳,胡中华.活性碳纤维制备双电层电容器[J].炭素技术,2004,23(1),12-16.
    [57]Severini F, Formaro L, Pegoraro M, Posca L. Chemical modification of carbon fiber surfaces [J]. Carbon,2002,40 (5):735-741.
    [58]Kim C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors [J]. Power Sources,2005,142: 382-388.
    [59]Leitner K, Lerf A, Winter M, Besenhard J O, Villar-Rodil S, Suarez-Garcia F, Martinez-Alonso A, Tasc6n J M D. Nomex-derived activated fibers as electrode materials in carbon based supercapacitors [J]. Power sources,2006,153:419-423.
    [60]Toyoda M, Tani Y, Soneda Y. Exfoliated carbon fibers as an electrode for electric double layer capacitors in a 1 mol/dm3 H2SO4 electrolyte [J]. Carbon,2004,42: 2833-2837.
    [61]Nakagawa H. High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes [J]. Electrochemical Society,2000, 147 (1):38-42.
    [62]Miura K, Nakagawa H, Okamoto H. Production of high density activated carbon fiber by a hot briquetting method [J]. Carbon,2000,38 (1):119-125.
    [63]Shaijumon M M, Ou F S, Ci L J, Ajayan P M. Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes [J]. Chem. Commun. 2008,2373-2375.
    [64]Niu C M, Sichel E, Hoch R, Moy D, Tennent H. High power electrochemical capacitors based on carbon nanotube electrodes [J]. Appllied Physics Letters, 1997,70:1480-1482.
    [65]Diederich L, Barborini E, Piseri P, Podesta A, Milani P. Supercapacitors based on nanostructured carbon electrodes grown by cluster-beam deposition [J]. Appllied Physics Letters,1999,75:2662-2664.
    [66]An K H, Kim W S, Park Y S, Moon J M, Bae D J, Lim S C, Lee Y S, Lee Y H. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes [J]. Advanced Functional Materials.2001,11: 387-392.
    [67]Liu C G, Liu M, Li F, Cheng H M. Frequency response characteristic of single-walled carbon nanotubes as supercapacitor electrode material [J]. Appllied Physics Letters,2008,92:143108-143110.
    [68]Yoon B J, Jeong S H, Lee K H, Kim H S, Park C G, Han J H. Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes [J]. Chemical Physics Letters,2004,388:170-174.
    [69]Shaijumon M M, Ou F S, Ci L J, Ajayan P M. Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes [J]. Chemical Communications,2008,2373-2375.
    [70]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45:1558-1565.
    [71]Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials,2007,6: 183-191.
    [72]Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials [J]. Nature,2006,442:282-286.
    [73]Meryl S D, Sungjin P, Yanwu Z, Jinho A, Rodney R S. Graphene-based ultracapacitors [J]. Nano Letter,2008,8:3498-3502.
    [74]Zhao X, Tian H, Zhu M Y, Tian K, Wang J J, Kang F Y, Outlawb R A. Carbon nanosheets as the electrode material in supercapacitors [J]. Power Sources,2009, 194:1208-1212.
    [75]Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, Chen Y S. Supercapacitor devices based on graphene materials [J]. Phys. Chem. C 2009,113: 13103-13107.
    [76]Tamai H, Kouzu M, Morita M, Yasuda H. Highly mesoporous carbon electrodes for electric double-layer capacitors [J]. Electrochemical and solid-state letters. 2003,6:A214-A217.
    [77]Alvarez S, Blanco-Lopez MC, Miranda-Ordieres A J, Fuertes A B, Centeno T A. Electrochemical capacitor performance of mesoporous carbons obtained by templating technique [J]. Carbon,2005,43:866-870.
    [78]Hsisheng T, Yao J C, Chien-To H. Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching [J]. Carbon,2001,39:1981-1987.
    [79]Lewandowski A, Zajder M, Frackowiak E, Beguin F. Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte [J]. Electrochimica Acta,2001,46:2777-2780.
    [80]Lufurano F, Staiti P, Minutoli M. Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy [J]. Power Sources,2003, 124:314-320.
    [81]Randin J P, Yeager E. Differential capacitance study on the basal plane of stress-annealed pyrolytic graphite [J]. Electroanalytical Chemistry,1972,36: 257-276.
    [82]Randin J P, Yeager E. Differential capacitance study of stress-annealed pyrolytic graphite electrodes [J]. Electrochemical Society,1971,118:711-732.
    [83]Randin J P, Yeager E. Differential capacitance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes [J]. Electroanalytical Chemistry, 1975,58:313-322.
    [84]Kinoshita K. Carbon [M], Wiley, New York,1988.
    [85]Biniak S, Swiatkowski A, Pakula M, Radovic L R. Chemistry and physics of carbon [M]. Marcel Dekker, New York,2001.
    [86]Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys Rev. B,2000,61:14095-14107.
    [87]Mo Y W, Xia Y B, Huang X Q, Ju J H, Wang H, Raman spectro-analyses of diamond films deposited on alumina ceramics [J]. Acta Physica Sinica,1997,46 (3):618-624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700