有机光电器件的界面特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,有机光电器件由于其具有成本低,重量轻、材料容易设计合成、可做成大面积,显示柔性易弯曲折叠、制备过程简单等优点引起了越来越多的关注。各种功能的有机光电器件相继被开发出来,例如有机发光二极管可以用在平板显示和固态照明,有机光伏电池作可以作为清洁可再生的能源可有效缓解当前社会的能源需求,有机场效应晶体可用来作为显示背板和智能卡片,还有有机存储,传感器等等显示了巨大的应用前景。在有机光电器件中,界面对器件的性能和工作寿命有重要的影响。虽然我们在有机光电器件领域已经取得了重大的突破进展,但由于在有机界面中存在界面偶极、电子极化、电荷转移激子等现象,传统的无机半导体理论不能完全适用于有机界面,对有机界面的物理机制缺乏清晰的认识,限制了有机光电器件的进一步发展,因此有必要对有机界面进行深入的研究进一步理解其深层的物理机制。
     本文主要通过光电子能谱技术,对叠层有机光电器件中间连接层、正置和倒置结构有机光伏电池的界面电子结构和能级排列进行了系统的研究,此外还研究了电学掺杂、基底修饰和不同电子传输层对界面势垒的调控影响以及退火处理对有机异质结薄膜表面和界面电子结构的影响。具体内容如下:
     (1)叠层有机光电器件的中间连接层界面电子结构和能级排列
     对采用有机HATCN为中间连接层p型材料的中间连接层的界面电子结构:(a) MADN/NPB,(b) Li:Bphen/NPB,(c) HATCN/NPB,(d) Li:Bphen/HATCN/NPB的能级排列进行了对比分析,讨论了HATCN和Li:Bphen在中间连接层的作用;在此基础上了利用Bphen和TPBI替代MADN制备了高效稳定的白光有机发光器件,分析了界面能级排列和电子注入对器件的影响,最后研究了叠层有机光伏电池的中间连接层(a) Bphen/SubPc,(b) HATCN/SubPc,(c) Li:Bphen/SubPc,(d)Li:Bphen/HATCN/SubPc的界面电子结构和能级排列,分析了界面连接层对有机光伏电池的影响。
     (2)界面调控对电子注入势垒的影响
     首先研究了不同浓度CsF掺杂Alq3的电子结构,分析了n型掺杂电子传输层对电子注入势垒的影响,接着分析了不同电子传输层材料的界面能级排列以及对电子注入势垒的影响,最后研究了基底修饰的ITO界面的能级排列,分析了基底修饰对界面电子结构的影响。
     (3)正置和倒置结构有机光伏电池的界面电子结构和能级排列
     通过UPS研究了SubNc/C60, MoO3/SubNc/C60, Cs2CO3/SubNc/C60,和C60/SubNc,MoO3/C60/SubNc, Cs2CO3/C60/SubNc界面的电子结构和能级排列,分析了MoO3和Cs2CO3对界面能级的作用以及正置和倒置结构能级排列的不同,用SubPc代替SubNc,研究了SubPc/C60, MoO3/SubPc/C60, Cs2CO3/SubPc/C60和C60/SubPc,MoO3/C60/SubPc, Cs2CO3/C60/SubPc界面的电子结构和能级排列,分析MoO3和Cs2CO3对不同材料界面能级的作用以及正置和倒置结构能级排列的不同,并进一步制备了对应的器件来验证理论分析结果。(4)退火对有机体薄膜界面特性的影响
     研究了CuPc/C60, TiOPc/C60, PTCDA/C60和CuPc:C60, TiOPc:C60, PTCDA:C60薄膜在不同退火温度下的电子结构,分析了退火处理对不同结构的材料有机薄膜表相分离的影响。在此基础上,用PTCDA代替C60,研究了CuPc/PTCDA,CuPc:PTCDA和TiOPc/PTCDA, TiOPc:PTCDA退火后的电子结构变化,验证了分子结构对退火过程中相分离的影响。
Organic electronics have been attracted intensive and increasing attention in thepast two decades due to their potential advantages of low cost, compatibility with largearea and flexible substrates,versatile chemical design and synthesis, light weight andease of fabrication. Fully functional devices including organic light-emitting diodes(OLEDs), organic photovoltaic cells (OPVs), organic field-effect transistors (OFETs),photodetectors and memory have all been demonstrated and show great prospects ininformation techonology application. For example,OLEDs can be used for flat paneldisplays and solid-state Lighting, OPVs as a renewable and clean energy can effectivelyalleviate the current energy needs of the community and OFETs can be used to fabricatethe display backplanes and smart cards. It is widely recognized that the interface play animportant role in determine the performance and lifetime of organic electronic devices.Despite impressive breakthroughs in organic electronics technology have been achieved,a thorough understanding of the underlying physics within organic devices is stilllacking because of the formation of interface dipole, electronic polarization andcharge-transfer excitons in the organic interface. It is not applicable to accuratelydescribe and predictthe interfacial electronic structures and energy level alignment withconventional models in inorganic semiconductors. Therefore, it is necessary toinvestigate the organic interface to get a deep understanding of the underlying physicalmechanisms.
     In this thesis, the interface electronic structure and energy level alignment of theinterconnector in tandem organic electronics devices and OPV devices with normal andinverted structures have been systematically investigated by ultraviolet and X-rayphotoemission spectroscopies (UPS and XPS). In addation, the effect of electrical doping, substrate modification and electron transport layer on the interfacial barrier andthe characteristics of the organic heteojunction films after thermal annealing also havebeen studied. More details are listed below:
     (1) Interfacial electronic structures and energy alignments of interconnectors in tandemorganic electronic devices
     The interfacial electronic structures and energy level alignments of intermediateconnectors using HATCN as p-type layer, including (a) MADN/NPB,(b)Li:Bphen/NPB,(c) HATCN/NPB,(d) Li:Bphen/HATCN/NPB were studied via UPSand XPS. The function of Li:Bphen and HATCN in the interconnectors was discussedby analysing the energy level alignment. Based on the above results, high efficient andstable white light emitting diode was fabricated using TBPI and Bphen as replacementof MADN to see the effect of electron injection on device performance. Finally, theeffect of interconnectors including (a) Bphen/SubPc,(b) HATCN/SubPc,(c)Li:Bphen/SubPc,(d) Li:Bphen/HATCN/SubPc on the tandem OPV devices werediscussed by studying the interfacial electronic structures and energy level alignments.
     (2) Effect of interfacial tuning on the injection barrier
     The effect of electrical doping on the electron injection barrier was discussed bystudying the electronic structure and energy level alignment of CsF:Alq3films withdifferent doping concentration. Next, the electronic structures of different electrontransport layers (ETL) were studied via XPS and UPS. The effect of ETL on theinjection and device performance was investigated by combine the electronic structureand energy level alignment. The electronic structures of organic film on modified ITOsubstrates were aslo investigated via XPS and UPS.
     (3) Interfacial electronic structures and energy alignments of organic photovoltaic cellswith normal and inverted structures
     The Interfacial electronic structures and energy alignments between SubNc/C60,MoO3/SubNc/C60, Cs2CO3/SubNc/C60, and C60/SubNc, MoO3/C60/SubNc,Cs2CO3/C60/SubNc were studied via XPS and UPS. The differences between nomal andinverted structures with MoO3and Cs2CO3were discussed. The Interfacial electronic structure and energy alignment of SubPc intead of SubNc were also studied toinvestigate the impact of device strcture with MoO3and Cs2CO3on the interfacialelectronic structure and energy level alignment. The corresponding devices were alsofabricated to validate the above analysis.
     (4) Effect of thermal annealing on the organic film
     The electronic structures of CuPc/C60, TiOPc/C60, PTCDA/C60bilayers andCuPc:C60, TiOPc:C60, PTCDA:C60mixed films were studied by XPS and UPS. Adetailed analysis of phase separation between organic films with different molecularstructures was gived based on the XPS and UPS results. Then the electronic structuresof CuPc/PTCDA,CuPc:PTCDA and TiOPc/PTCDA, TiOPc:PTCDA were also studiedto prove the relations between molecular structures and phase separation.
引文
[1] Tang C W. Two‐layer organic photovoltaic cell[J]. Applied Physics Letters,1986,48(2):183-185.
    [2] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based onconjugated polymers[J]. nature,1990,347(6293):539-541.
    [3] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied PhysicsLetters,1987,51(12):913-915.
    [4] Forrest S R. The path to ubiquitous and low-cost organic electronic appliances onplastic[J]. Nature,2004,428(6986):911-918.
    [5] Baldo M A, Thompson M E, Forrest S R. High-efficiency fluorescent organiclight-emitting devices using a phosphorescent sensitizer[J]. Nature,2000,403(6771):750-753.
    [6] Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes withfluorescent tube efficiency[J]. Nature,2009,459(7244):234-238.
    [7] Sun Y, Giebink N C, Kanno H, et al. Management of singlet and triplet excitons forefficient white organic light-emitting devices[J]. Nature,2006,440(7086):908-912.
    [8] Müller C D, Falcou A, Reckefuss N, et al. Multi-colour organic light-emittingdisplays by solution processing[J]. Nature,2003,421(6925):829-833.
    [9] Hagfeldt A, Gr tzel M. Molecular photovoltaics[J]. Accounts of Chemical Research,2000,33(5):269-277.
    [10] Dennler G, Scharber M C, Brabec C J. Polymer‐Fullerene Bulk‐HeterojunctionSolar Cells[J]. Advanced Materials,2009,21(13):1323-1338.
    [11] O'Regan B, Schwartz D T, Zakeeruddin S M, et al. ElectrodepositedNanocomposite n–p Heterojunctions for Solid-tate Dye-Sensitized Photovoltaics[J].Advanced Materials,2000,12(17):1263-1267.
    [12] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells[J]. AdvancedFunctional Materials,2001,11(1):15-26.
    [13] Blom P W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer:fullerene bulk heterojunction solar cells[J]. Advanced Materials,2007,19(12):1551-1566.
    [14] Jurchescu O D, Popinciuc M, van Wees B J, et al. Interface‐Controlled, High‐Mobility Organic Transistors[J]. Advanced Materials,2007,19(5):688-692.
    [15] Dimitrakopoulos C D, Malenfant P R L. Organic thin film transistors for large areaelectronics[J]. Advanced Materials,2002,14(2):99-117.
    [16] Katz H E, Lovinger A J, Johnson J, et al. A soluble and air-stable organicsemiconductor with high electron mobility[J]. Nature,2000,404(6777):478-481.
    [17] Chua L L, Zaumseil J, Chang J F, et al. General observation of n-type field-effectbehaviour in organic semiconductors[J]. Nature,2005,434(7030):194-199.
    [18] Crone B, Dodabalapur A, Lin Y Y, et al. Large-scale complementary integratedcircuits based on organic transistors[J]. Nature,2000,403(6769):521-523.
    [19] Naarmann H. Polymers, electrically conducting[J]. Ullmann's Encyclopedia ofIndustrial Chemistry,2002.
    [20] http://www.oledw.com/
    [21]黄春辉等,《有机电致发光材料与器件导论》.上海:复旦大学出版社,2005.
    [22] M. Pope, H. Kallmann, P. J. Magnante, J. Chem. Phys.38,2042(1963).
    [23] Helfrich W, Schneider W G. Recombination radiation in anthracene crystals[J].Physical Review Letters,1965,14(7):229.
    [24] Vincentt P S, Barlow W A, Hann R A, Robert G G. Thin solid Films,1982,94:171.
    [25] Braun D, Heeger A J. Visible light emission from semiconducting polymerdiodes[J]. Applied Physics Letters,1991,58(18):1982-1984.
    [26] Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made fromsoluble conducting polymers[J]. Nature,1992,357(6378):477-479.
    [27] Cao Y, Treacy G M, Smith P, et al. Solution‐cast films of polyaniline: optical‐quality transparent electrodes[J]. Applied physics letters,1992,60(22):2711-2713.
    [28] Kearns D., Calvin M., J.Chem.Phys,1958,29,950-951.
    [29] Ghosh A K, Morel D L, Feng T, et al. Photovoltaic and rectification properties ofAl/Mg phthalocyanine/Ag Schottky‐barrier cells[J]. Journal of Applied Physics,1974,45,230-236.
    [30] Weinberger, BR; Akhtar, M.; Gan, SC[J]. Synth. Met,1982,4:187-197.
    [31] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer froma conducting polymer to buckminsterfullerene[J]. Science,1992,258(5087):1474-1476.
    [32] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhancedefficiencies via a network of internal donor-acceptor heterojunctions[J].Science-AAAS-Weekly Paper Edition,1995,270(5243):1789-1790.
    [33] Chidichimo G, Filippelli L. Organic solar cells: problems and perspectives[J].International Journal of Photoenergy,2010,123534.
    [34] Kippelen B, Brédas J L. Organic photovoltaics[J]. Energy&EnvironmentalScience,2009,2(3):251-261.
    [35] Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-filmphotodetectors and solar cells[J]. Journal of Applied Physics,2003,93(7):3693-3723.
    [1] Ishii H, Sugiyama K, Ito E, et al. Energy level alignment and interfacial electronicstructures at organic/metal and organic/organic interfaces[J]. Advanced Materials,1999,11(8):605-625.
    [2] Kao K C, Hwano W. Electrical Transport in Solids. With particular reference toorganic semiconductors[J].1981.
    [3] Gutmann F, Lyons L E. Organic semiconductors[M]. New York: Wiley,1967.
    [4] Duke C B, Schein L B. Organic solids: is energy‐band theory enough?[J]. PhysicsToday,1980,33:42-48..
    [5] Salaneck W R, Stafstrom S, Brédas J L. Conjugated polymer surfaces andinterfaces: electronic and chemical structure of interfaces for polymer light emittingdevices[M]. Cambridge University Press,2003.
    [6] Hüfner S. Photoelectron spectroscopy: principles and applications[M]. Springer,2003.
    [7] Damascelli A, Hussain Z, Shen Z X. Angle-resolved photoemission studies of thecuprate superconductors[J]. Reviews of Modern Physics,2003,75(2):473.
    [8] Hung L S, Chen C H. Recent progress of molecular organic electroluminescentmaterials and devices[J]. Materials Science and Engineering: R: Reports,2002,39(5):143-222.
    [9] Als-Nielsen J, McMorrow D. Elements of modern X-ray physics[M]. John Wiley&Sons,2011.
    [10]Woodruff D P, Delchar T A. Modern techniques of surface science[M]. CambridgeUniversity Press,1994.
    [11]Hoelzel J, Schulte F K, Wagner H. Solid State Surface Physics[J].1979.
    [12]McFee R, Rush S. Qualitative effects of thoracic resistivity variations on theinterpretation of electrocardiograms: The low resistance surface layer[J]. Americanheart journal,1968,76(1):48-61.
    [13]Sze S M, Ng K K. Physics of semiconductor devices[M]. John Wiley&Sons,2006.
    [14]Dimitrakopoulos C D, Malenfant P R L. Organic thin film transistors for large areaelectronics[J]. Advanced Materials,2002,14(2):99-117.
    [15]M. Schott, in Organic Conductors: Fundamentals and Applications (Ed:P. Farges),Marcel Dekker, New York1994, pp.539-646.
    [16]Park Y, Choong V, Ettedgui E, et al. Energy level bending and alignment at theinterface between Ca and a phenylene vinylene oligomer[J]. Applied physics letters,1996,69(8):1080-1082.
    [17]Friedrichs P, Burte E P, Sch rner R. Interface properties of metal‐oxide‐semiconductor structures on n‐type6H and4H‐SiC[J]. Journal of appliedphysics,1996,79(10):7814-7819.
    [18]M nch W. Metal-semiconductor contacts: electronic properties[J]. Surface science,1994,299:928-944.
    [19]Gao Y. Surface analytical studies of interfaces in organic semiconductor devices[J].Materials Science and Engineering: R: Reports,2010,68(3):39-87.
    [1] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied PhysicsLetters,1987,51(12):913-915.
    [2] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based onconjugated polymers[J]. nature,1990,347(6293):539-541.
    [3] Xiao Y, Yang J P, Cheng P P, et al. Surface plasmon-enhanced electroluminescencein organic light-emitting diodes incorporating Au nanoparticles[J]. Applied PhysicsLetters,2012,100(1):013308.
    [4] Liao L S, Slusarek W K, Hatwar T K, et al. Tandem Organic Light‐Emitting Diodeusing HexaazatriphenyleneHexacarbonitrile in the Intermediate Connector[J].Advanced Materials,2008,20(2):324-329.
    [5] Forrest S R. The road to high efficiency organic light emitting devices[J]. OrganicElectronics,2003,4(2):45-48.
    [6] Forrest S R. The path to ubiquitous and low-cost organic electronic appliances onplastic[J]. Nature,2004,428(6986):911-918.
    [7] Tang J X, Fung M K, Lee C S, et al. Interface studies of intermediate connectors andtheir roles in tandem OLEDs[J]. Journal of Materials Chemistry,2010,20(13):2539-2548.
    [8] Baldo M A, Thompson M E, Forrest S R. High-efficiency fluorescent organiclight-emitting devices using a phosphorescent sensitizer[J]. Nature,2000,403(6771):750-753.
    [9] Fung M K, Lau K M, Lai S L, et al. Charge generation layer in stacked organiclight-emitting devices[J]. Journal of Applied Physics,2008,104(3):034509-034509-5.
    [10] D'Andrade B W, Forrest S R. White organic light‐emitting devices forsolid‐state lighting[J]. Advanced Materials,2004,16(18):1585-1595.
    [11] Chen P, Xue Q, Xie W, et al. Color-stable and efficient stacked white organiclight-emitting devices comprising blue fluorescent and orange phosphorescentemissive units[J]. Applied Physics Letters,2008,93(15):153508.
    [12] Park Y S, Kang J W, Kang D M, et al. Efficient, Color Stable White OrganicLight‐Emitting Diode Based on High Energy Level Yellowish‐GreenDopants[J]. Advanced Materials,2008,20(10):1957-1961.
    [13] Wang Z B, Helander M G, Qiu J, et al. Unlocking the full potential of organiclight-emitting diodes on flexible plastic[J]. Nature Photonics,2011,5(12):753-757.
    [14] Helander M G, Wang Z B, Qiu J, et al. Chlorinated indium tin oxide electrodes withhigh work function for organic device compatibility[J]. Science,2011,332(6032):944-947.
    [15] Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes withfluorescent tube efficiency[J]. Nature,2009,459(7244):234-238.
    [16] Sasabe H, Kido J. Development of high performance OLEDs for generallighting[J]. Journal of Materials Chemistry C,2013,1(9):1699-1707.
    [17] Lee T W, Noh T, Choi B K, et al. High-efficiency stacked white organiclight-emitting diodes[J]. Applied Physics Letters,2008,92(4):043301-043301-3.
    [18] Chen Y, Ma D. Organic semiconductor heterojunctions as charge generation layersand their application in tandem organic light-emitting diodes for high powerefficiency[J]. Journal of Materials Chemistry,2012,22(36):18718-18734.
    [19] D'Andrade B W, Forrest S R. White organic light‐emitting devices forsolid‐state lighting[J]. Advanced Materials,2004,16(18):1585-1595.
    [20] Ide N, Komoda T, Kido J. Organic light-emitting diode (OLED) and its applicationto lighting devices[C]//SPIE Optics+Photonics. International Society for Opticsand Photonics,2006:63330M-63330M-10.
    [21] Sun J X, Zhu X L, Peng H J, et al. Bright and efficient white stacked organiclight-emitting diodes[J]. Organic electronics,2007,8(4):305-310.
    [22] Chang C C, Chen J F, Hwang S W, et al. Highly efficient white organicelectroluminescent devices based on tandem architecture[J]. Applied PhysicsLetters,2005,87(25):253501.
    [23] Yang J P, Xiao Y, Deng Y H, et al. Electric‐Field‐Assisted Charge Generationand Separation Process in Transition Metal Oxide‐Based Interconnectors forTandem Organic Light‐Emitting Diodes[J]. Advanced Functional Materials,2012,22(3):600-608.
    [24] Chang C C, Hwang S W, Chen C H, et al. High-efficiency organicelectroluminescent device with multiple emitting units[J]. Japanese journal ofapplied physics,2004,43(9R):6418.
    [25] Liao L S, Klubek K P, Comfort D L, et al. Cascaded organic electroluminescentdevices with improved voltage stability: U.S. Patent6,717,358[P].2004-4-6.
    [26] Liao L S, Klubek K P. Power efficiency improvement in a tandem organiclight-emitting diode[J]. Applied Physics Letters,2008,92(22):223311.
    [27] Lee S, Lee J H, Lee J H, et al. The Mechanism of Charge Generation inCharge‐Generation Units Composed of p‐Doped Hole‐TransportingLayer/HATCN/n‐Doped Electron‐Transporting Layers[J]. Advanced FunctionalMaterials,2012,22(4):855-860.
    [28] Adachi C, Tsutsui T, Saito S. Confinement of charge carriers and molecularexcitons within5-nmthick emitter layer in organic electroluminescent devices witha doubleheterostructure[J]. Applied physics letters,1990,57(6):531-533.
    [29] Reineke S, Walzer K, Leo K. Triplet-exciton quenching in organic phosphorescentlight-emitting diodes with Ir-based emitters[J]. Physical Review B,2007,75(12):125328.
    [30] O’brien D F, Baldo M A, Thompson M E, et al. Improved energy transfer inelectrophosphorescent devices[J]. Applied Physics Letters,1999,74(3):442-444.
    [31] He G, Pfeiffer M, Leo K, et al. High-efficiency and low-voltage p‐i‐nelectrophosphorescent organic light-emitting diodes with double-emission layers[J].Applied Physics Letters,2004,85(17):3911-3913.
    [32] Kim Y K, Kim J W, Park Y. Energy level alignment at a charge generation interfacebetween4,4′-bis (N-phenyl-1-naphthylamino) biphenyl and1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile[J]. Applied Physics Letters,2009,94(6):063305.
    [33] Park S M, Kim Y H, Yi Y, et al. Insertion of an organic interlayer for hole currentenhancement in inverted organic light emitting devices[J]. Applied Physics Letters,2010,97(6):063308.
    [34] Lee K H, Kang L K, Lee J Y, et al. Molecular Engineering of Blue FluorescentMolecules Based on Silicon End‐Capped Diphenylaminofluorene Derivatives forEfficient Organic Light‐Emitting Materials[J]. Advanced Functional Materials,2010,20(8):1345-1358.
    [35] Kido J, Kimura M, Nagai K. Multilayer white light-emitting organicelectroluminescent device[J]. Science,1995,267(5202):1332-1334.
    [36] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied PhysicsLetters,1987,51(12):913-915.
    [37] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugatedpolymers[J]. Nature,1999,397(6715):121-128.
    [38] D'Andrade B W, Forrest S R. White organic light‐emitting devices forsolid‐state lighting[J]. Advanced Materials,2004,16(18):1585-1595.
    [39] Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes withfluorescent tube efficiency[J]. Nature,2009,459(7244):234-238.
    [40] Liao L S, Slusarek W K, Hatwar T K, et al. Tandem Organic Light‐EmittingDiode using HexaazatriphenyleneHexacarbonitrile in the IntermediateConnector[J]. Advanced Materials,2008,20(2):324-329.
    [41] Sun Y, Giebink N C, Kanno H, et al. Management of singlet and triplet excitons forefficient white organic light-emitting devices[J]. Nature,2006,440(7086):908-912.
    [42] Tang J X, Fung M K, Lee C S, et al. Interface studies of intermediate connectorsand their roles in tandem OLEDs[J]. Journal of Materials Chemistry,2010,20(13):2539-2548.
    [43]Chiba T, Pu Y J, Miyazaki R, et al. Ultra-high efficiency by multiple emission fromstacked organic light-emitting devices[J]. Organic Electronics,2011,12(4):710-715.
    [44] Chen C W, Lu Y J, Wu C C, et al. Effective connecting architecture for tandemorganic light-emitting devices[J]. Applied Physics Letters,2005,87(24):241121-241121-3.
    [45] Fung M K, Lau K M, Lai S L, et al. Charge generation layer in stacked organiclight-emitting devices[J]. Journal of Applied Physics,2008,104(3):034509-034509-5.
    [46] Gao X D, Zhou J, Xie Z T, et al. Mechanism of charge generation in p-type dopedlayer in the connection unit of tandem-type organic light-emitting devices[J].Applied Physics Letters,2008,93(8):083304-083304-3.
    [47]Kanno H, Holmes R J, Sun Y, et al. White Stacked Electrophosphorescent OrganicLight‐Emitting Devices Employing MoO3as a Charge‐Generation Layer[J].Advanced Materials,2006,18(3):339-342.
    [48] Baldo M A, O'brien D F, You Y, et al. Highly efficient phosphorescent emissionfrom organic electroluminescent devices[J]. Nature,1998,395(6698):151-154.
    [49] Helander M G, Wang Z B, Qiu J, et al. Chlorinated indium tin oxide electrodes withhigh work function for organic device compatibility[J]. Science,2011,332(6032):944-947.
    [50] Wang Z B, Helander M G, Qiu J, et al. Unlocking the full potential of organiclight-emitting diodes on flexible plastic[J]. Nature Photonics,2011,5(12):753-757.
    [51] Su S J, Gonmori E, Sasabe H, et al. Highly efficient organic blue‐andwhite‐light‐emitting devices having a carrier‐and exciton‐confining structurefor reduced efficiency roll‐off[J]. Advanced Materials,2008,20(21):4189-4194.
    [52]Wang R, Liu D, Ren H, et al. Highly Efficient Orange and White OrganicLight‐Emitting Diodes Based on New Orange Iridium Complexes[J]. AdvancedMaterials,2011,23(25):2823-2827.
    [53] Ye J, Zheng C J, Ou X M, et al. Management of Singlet and Triplet Excitons in aSingle Emission Layer: A Simple Approach for a High‐EfficiencyFluorescence/Phosphorescence Hybrid White Organic Light‐Emitting Device[J].Advanced Materials,2012,24(25):3410-3414.
    [54]M. E. Thompson, EL2006Technical Digest2006, p.5.
    [55] D’Andrade B W, Thompson M E, Forrest S R. Controlling exciton diffusion inmultilayer white phosphorescent organic light emitting devices[J]. AdvancedMaterials,2002,14(2):147-151.
    [56] Cheng G, Zhang Y, Zhao Y, et al. White organic light-emitting devices with aphosphorescent multiple emissive layer[J]. Applied physics letters,2006,89(4):043504.
    [57] Shao Y, Yang Y. White organic light-emitting diodes prepared by a fused organicsolid solution method[J]. Applied Physics Letters,2005,86(7):073510.
    [58] Jou J H, Chiu Y S, Wang C P, et al. Efficient, color-stable fluorescent white organiclight-emitting diodes with single emission layer by vapor deposition from solventpremixed deposition source[J]. Applied physics letters,2006,88(19):193501.
    [59] Ma B, Djurovich P I, Garon S, et al. Platinum Binuclear Complexes asPhosphorescent Dopants for Monochromatic and White Organic Light‐EmittingDiodes[J]. Advanced Functional Materials,2006,16(18):2438-2446.
    [60] Chang Y L, Song Y, Wang Z, et al. Highly Efficient Warm White OrganicLight‐Emitting Diodes by Triplet Exciton Conversion[J]. Advanced FunctionalMaterials,2013,23(6):705-712.
    [61] Schwartz G, Fehse K, Pfeiffer M, et al. Highly efficient white organic light emittingdiodes comprising an interlayer to separate fluorescent and phosphorescentregions[J]. Applied physics letters,2006,89(8):083509.
    [62] Ho C L, Wong W Y, Wang Q, et al. A Multifunctional Iridium‐Carbazolyl OrangePhosphor for High-Performance Two-Element WOLED ExploitingExciton-Managed Fluorescence/Phosphorescence[J]. Advanced FunctionalMaterials,2008,18(6):928-937.
    [63] Van Slyke S A, Chen C H, Tang C W. Organic electroluminescent devices withimproved stability[J]. Applied Physics Letters,1996,69(15):2160-2162.
    [64] Matsumoto T, Nakada T, Endo J, et al.27.5L: Late‐News Paper: MultiphotonOrganic EL device having Charge Generation Layer[C]//SID Symposium Digest ofTechnical Papers. Blackwell Publishing Ltd,2003,34(1):979-981.
    [65] Chang C C, Hwang S W, Chen C H, et al. High-efficiency organicelectroluminescent device with multiple emitting units[J]. Japanese journal ofapplied physics,2004,43(9R):6418.
    [66] Burrows P E, Forrest S R, Sibley S P, et al. Color‐tunable organic light‐emittingdevices[J]. Applied physics letters,1996,69(20):2959-2961.
    [67] Kanno H, Giebink N C, Sun Y, et al. Stacked white organic light-emitting devicesbased on a combination of fluorescent and phosphorescent emitters[J]. Appliedphysics letters,2006,89(2):023503.
    [68] Liao L S, Klubek K P, Tang C W. High-efficiency tandem organic light-emittingdiodes[J]. Applied physics letters,2004,84(2):167-169.
    [69] Cho T Y, Lin C L, Wu C C. Microcavity two-unit tandem organic light-emittingdevices having a high efficiency[J]. Applied physics letters,2006,88(11):111106.
    [70] Lee S, Lee J H, Lee J H, et al. The Mechanism of Charge Generation inCharge‐Generation Units Composed of p‐Doped Hole‐TransportingLayer/HATCN/n‐Doped Electron‐Transporting Layers[J]. Advanced FunctionalMaterials,2012,22(4):855-860.
    [71] Yang J P, Xiao Y, Deng Y H, et al. Electric‐Field‐Assisted Charge Generationand Separation Process in Transition Metal Oxide‐Based Interconnectors forTandem Organic Light‐Emitting Diodes[J]. Advanced Functional Materials,2012,22(3):600-608.
    [72] Bao Q Y, Yang J P, Xiao Y, et al. Correlation between the electronic structures oftransition metal oxide-based intermediate connectors and the device performanceof tandem organic light-emitting devices[J]. Journal of Materials Chemistry,2011,21(43):17476-17482.
    [73] Amsalem P, Wilke A, Frisch J, et al. Interlayer molecular diffusion andthermodynamic equilibrium in organic heterostructures on a metal electrode[J].Journal of Applied Physics,2011,110(11):113709.
    [74] Niederhausen J, Amsalem P, Frisch J, et al. Tuning hole-injection barriers atorganic/metal interfaces exploiting the orientation of a molecular acceptorinterlayer[J]. Physical Review B,2011,84(16):165302.
    [75] Li Y Q, Fung M K, Xie Z, et al. An Efficient Pure Blue Organic Light‐EmittingDevice with Low Driving Voltages[J]. Advanced Materials,2002,14(18):1317-1321.
    [76] Parker I D, Cao Y, Yang C Y. Lifetime and degradation effects in polymerlight-emitting diodes[J]. Journal of applied physics,1999,85(4):2441-2447.
    [77] Cacialli F, Friend R H, Moratti S C, et al. Characterization of properties ofpolymeric light-emitting diodes over extended periods[J]. Synthetic Metals,1994,67(1):157-160.
    [78] DAndrade B W, Forrest S R, Chwang A B. Operational stability ofelectrophosphorescent devices containing p and n doped transport layers[J].Applied physics letters,2003,83(19):3858-3860.
    [79] Yang F, Shtein M, Forrest S R. Controlled growth of a molecular bulkheterojunction photovoltaic cell[J]. Nature Materials,2005,4(1):37-41.
    [80] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricatedby all-solution processing[J]. Science,2007,317(5835):222-225.
    [81] Li G, Zhu R, Yang Y. Polymer solar cells[J]. Nature Photonics,2012,6(3):153-161.
    [82] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhancedefficiencies via a network of internal donor-acceptor heterojunctions[J].Science-AAAS-Weekly Paper Edition,1995,270(5243):1789-1790.
    [83] Chen L M, Xu Z, Hong Z, et al. Interface investigation and engineering–achievinghigh performance polymer photovoltaic devices[J]. Journal of Materials Chemistry,2010,20(13):2575-2598.
    [84] Rand B P, Peumans P, Forrest S R. Long-range absorption enhancement in organictandem thin-film solar cells containing silver nanoclusters[J]. Journal of AppliedPhysics,2004,96(12):7519-7526.
    [85] Dou L, You J, Yang J, et al. Tandem polymer solar cells featuring a spectrallymatched low-bandgap polymer[J]. Nature Photonics,2012,6(3):180-185.
    [86] He Z, Zhong C, Huang X, et al. Simultaneous enhancement of open‐circuitvoltage, short‐circuit current density, and fill factor in polymer solar cells[J].Advanced Materials,2011,23(40):4636-4643.
    [87] Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells withnanoscale control of the interpenetrating network morphology[J]. AdvancedFunctional Materials,2005,15(10):1617-1622.
    [88] Rand B P, Genoe J, Heremans P, et al. Solar cells utilizing small molecular weightorganic semiconductors[J]. Progress in Photovoltaics: Research and Applications,2007,15(8):659-676.
    [89] Hains A W, Liang Z, Woodhouse M A, et al. Molecular semiconductors in organicphotovoltaic cells[J]. Chemical reviews,2010,110(11):6689-6735.
    [90] Hadipour A, de Boer B, Blom P W M. Organic tandem and multi‐junction solarcells[J]. Advanced functional materials,2008,18(2):169-181.
    [91] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells[J]. AdvancedFunctional Materials,2001,11(1):15-26.
    [92] Dennler G, Scharber M C, Ameri T, et al. Design Rules for Donors inBulk‐Heterojunction Tandem Solar Cells Towards15%Energy‐ConversionEfficiency[J]. Advanced Materials,2008,20(3):579-583.
    [93] Sista S, Park M H, Hong Z, et al. Highly efficient tandem polymer photovoltaiccells[J]. Advanced materials,2010,22(3):380-383.
    [94] Riede M, Uhrich C, Widmer J, et al. Efficient organic tandem solar cells based onsmall molecules[J]. Advanced Functional Materials,2011,21(16):3019-3028.
    [95] Ameri T, Dennler G, Lungenschmied C, et al. Organic tandem solar cells: areview[J]. Energy&Environmental Science,2009,2(4):347-363.
    [96] Timmreck R, Olthof S, Leo K, et al. Highly doped layers as efficient electron–holerecombination contacts for tandem organic solar cells[J]. Journal of AppliedPhysics,2010,108(3):033108.
    [97] Dennler G, Prall H J, Koeppe R, et al. Enhanced spectral coverage in tandemorganic solar cells[J]. Applied Physics Letters,2006,89(7):073502-073502-3.
    [98] Sista S, Park M H, Hong Z, et al. Highly efficient tandem polymer photovoltaiccells[J]. Advanced materials,2010,22(3):380-383.
    [99] Sun X W, Zhao D W, Ke L, et al. Inverted tandem organic solar cells with aMoO3/Ag/Al/Ca intermediate layer[J]. Applied Physics Letters,2010,97(5):053303.
    [100] Riede M, Uhrich C, Widmer J, et al. Efficient organic tandem solar cells based onsmall molecules[J]. Advanced Functional Materials,2011,21(16):3019-3028.
    [101] Timmreck R, Olthof S, Leo K, et al. Highly doped layers as efficientelectron–hole recombination contacts for tandem organic solar cells[J]. Journal ofApplied Physics,2010,108(3):033108.
    [102] Janssen A G F, Riedl T, Hamwi S, et al. Highly efficient organic tandem solarcells using an improved connecting architecture[J]. Applied Physics Letters,2007,91(7):073519-073519-3.
    [103] Zhao D, Tang W, Ke L, et al. Efficient bulk heterojunction solar cells with poly [2,7-(9,9-dihexylfluorene)-alt-bithiophene] and6,6-phenyl C61butyric acid methylester blends and their application in tandem cells[J]. ACS applied materials&interfaces,2010,2(3):829-837.
    [104] Sun X W, Zhao D W, Ke L, et al. Inverted tandem organic solar cells with aMoO3/Ag/Al/Ca intermediate layer[J]. Applied Physics Letters,2010,97(5):053303.
    [105] Janssen A G F, Riedl T, Hamwi S, et al. Highly efficient organic tandem solarcells using an improved connecting architecture[J]. Applied Physics Letters,2007,91(7):073519-073519-3.
    [106] Amsalem P, Wilke A, Frisch J, et al. Interlayer molecular diffusion andthermodynamic equilibrium in organic heterostructures on a metal electrode[J].Journal of Applied Physics,2011,110(11):113709.
    [107] Niederhausen J, Amsalem P, Frisch J, et al. Tuning hole-injection barriers atorganic/metal interfaces exploiting the orientation of a molecular acceptorinterlayer[J]. Physical Review B,2011,84(16):165302.
    [108] Liao L S, Slusarek W K, Hatwar T K, et al. Tandem Organic Light‐EmittingDiode using HexaazatriphenyleneHexacarbonitrile in the IntermediateConnector[J]. Advanced Materials,2008,20(2):324-329.
    [109] Bao Q Y, Yang J P, Li Y Q, et al. Electronic structures of MoO3-based chargegeneration layer for tandem organic light-emitting diodes[J]. Applied PhysicsLetters,2010,97(6):063303-063303-3.
    [110] Yang J P, Xiao Y, Deng Y H, et al. Electric‐Field‐Assisted Charge Generationand Separation Process in Transition Metal Oxide‐Based Interconnectors forTandem Organic Light‐Emitting Diodes[J]. Advanced Functional Materials,2012,22(3):600-608.
    [111] Li J, Bao Q Y, Wei H X, et al. Role of transition metal oxides in the chargerecombination layer used in tandem organic photovoltaic cells[J]. Journal ofMaterials Chemistry,2012,22(13):6285-6290.
    [112] Meyer J, Hamwi S, Kr ger M, et al. Transition metal oxides for organicelectronics: energetics, device physics and applications[J]. Advanced Materials,2012,24(40):5408-5427.
    [113] Pandey R, Gunawan A A, Mkhoyan K A, et al. Efficient organic photovoltaic cellsbased on nanocrystalline mixtures of boron subphthalocyanine chloride andC60[J]. Advanced Functional Materials,2012,22(3):617-624.
    [1] L. T. Dou, J. B. You, J. Yang, C. C. Chen, Y. J. He, S. Murase, T. Moriarty, K. Emery,G. Li, and Y. Yang, Nat. Photonics6(2012)180.
    [2] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo,Nature459(2009)234.
    [3] Y. Q. Li, M. K. Fung, Z. Y. Xie, S. T. Lee, L. S. Hung, and J. M. Shi, Adv. Mater.14(2002)1317.
    [4] J. P. Yang, Y. Xiao, Y. H. Deng, S. Duhm, N. Ueno, S. T. Lee, Y. Q. Li, and J. X.Tang, Adv. Funct. Mater.22(2012)600.
    [5] M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, and Z. H.Lu, Science332(2011)944.
    [6] F. Yang and S. R. Forrest, Adv. Mater.18(2006)2018.
    [7] Z. Xu, L M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu, and Y.Yang, Adv. Funct. Mater.19(2009)1227.
    [8] Z. Q. Xu, J. Li, J. P. Yang, P. P. Cheng, J. Zhao, S. T. Lee, Y. Q. Li, and J. X. Tang,Appl. Phys. Lett.98(2011)253303.
    [9] J. X. Tang, Y. Q. Li, L. R. Zheng, and L. S. Hung, J. Appl. Phys.95(2004)4397.
    [10] A. Werner, K. Harada, M. Pfeiffer, L. Fritz, K. Leo, and S. Machill, Adv. Funct.Mater.14(2004)255.
    [11] H. W. Choi, S. Y. Kim, W. K. Kim, K. Hong, and J. L. Lee, J. Appl. Phys.100(2006)064106.
    [12] J. Lee, Y. Park, D. Y. Kim, H. Y. Chu, H. Lee, and L.-M. Do, Appl. Phys. Lett.82(2003)173.
    [13] C. K. Chan, W. Zhao, S. Barlow, S. Marder, A. Kahn, Org. Electron.9(2008)575.
    [14] K. R. Choudhury, J. H. Yoon, and F. So, Adv. Mater.20(2008)1456.
    [15] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, S. Liu, and K. Leo, Appl. Phys. Lett.80,139(2002).
    [16] M. T. Hsieh, C. C. Chang, J. F. Chen, and C. H. Chen, Appl. Phys. Lett.89(2006)103510.
    [17] K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev.107(2007)1233.
    [18] J. Kido and T. Matsumoto, Appl. Phys. Lett.73(1998)2866.
    [19] T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda,Appl.Phys. Lett.86(2005)033503.
    [20]H. J. Ding, and Y. L. Gao, Appl. Phys. Lett.86(2005)213508.
    [21] X. Zhou, J. Blochwitz, M. Pfeiffer, A. Nollau, T. Fritz, K. Leo, Adv. Funct. Mater.11(2001)310.
    [22] J. Zhao, Y. Cai, J. P. Yang, H. X. Wei, Y. H. Deng, Y. Q. Li, S. T. Lee, and J. X.Tang, Appl. Phys. Lett.101(2012)193303.
    [23] Y. Cai, H. X. Wei, J. Li, Q. Y. Bao, X. Zhao, S. T. Lee, Y. Q. Li, and J. X. Tang,Appl. Phys. Lett.98(2011)113304.
    [24] Y. Li, D. Q. Zhang, L. Duan, R. Zhang, L. D. Wang, and Y. Qiu, Appl. Phys. Lett.90(2007)012119.
    [25] C. I. Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu, and C. C. Wu, Appl. Phys.Lett.88(2006)152104.
    [26] Z. Q. Xu, J. P. Yang, F. Z. Sun, S. T. Lee, Y. Q. Li, and J. X. Tang, Org. Electron.13(2012)697.
    [27] F. X. Wang, T. Xiong, X. F. Qiao, and D. G. Ma, Org. Electron.10(2009)266.
    [28] K. S. Yook, S. O. Jeon, S. Y. Min, J. Y. Lee, H. J. Yang, T. Noh, S. K. Kang, T. W.Lee, Adv. Funct. Mater.20(2010)1797.
    [29] J. Huang, Z. Xu, and Y. Yang, Adv. Funct. Mater.17(2007)1966.
    [30] S. Y. Chen, T. Y. Chu, J. F. Chen, C. Y. Su, and C. H. Chen, Appl. Phys. Lett.89(2006)053518.
    [31] H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, Appl. Phys. Lett.92(2008)173303.
    [32] M. T. Hsieh, M. H. Ho, K. H. Lin, J. F. Chen, T. M. Chen, and C. H. Chen, Appl.Phys. Lett.96(2010)133310.
    [33] V.-E. Choong, M.G. Mason, C.W. Tang, Y. Gao, Appl. Phys. Lett.72(1998)2689.
    [34] J.X. Tang, S.W. Tong, C.S. Lee, S.T. Lee, P.M. He, Chem. Phys. Lett.380(2003)63.
    [35] M. G. Mason, C.W. Tang, L. S. Hung, P.Raychaudhuri, J. Madathil, D. J. Giesen, L.Yan, T. Le, Y. Gao, S. T. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D.A. dosSantos, J.-L. Bredas, J. Appl. Phys.89(2001)2756.
    [36] A. Kahn, N. Koch, W. Gao, J. Polym. Sci., Part B: Polym. Phys.41(2003)2529.
    [37] J. X. Tang, K. M. Lau, C. S. Lee, and S. T. Lee, Appl. Phys. Lett.88(2006)232103.
    [38] J. X. Tang, C. S. Lee, and S. T. Lee, J. Appl. Phys.101(2007)064504.
    [39]C. W. Tang, Appl. Phys. Lett.48,183(1986).
    [40]C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett.51,913(1987).
    [41]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science258,1474(1992).
    [42]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.Friend, P. L. Burns, A. B. Holmes, Nature347,539(1990).
    [43]S. R. Forrest, Nature428,911(2004).
    [44]L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R.H. Friend, Nature434,194(2005).
    [45]H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater.11,605(1999).
    [46]J. X. Tang, C. S. Lee, Y. B. Xu, Chem. Phys. Lett.396,92(2004).
    [47]X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W. R. Salaneck, and J. L.Bredas, J. Am. Chem. Soc.124,8131(2002).
    [48]W. Chen, D. C. Qi, H. Huang, X. Gao and A. T. S. Wee, Adv. Funct. Mater.21(3),410-424(2011).
    [49]H. Ma, H.-L. Yip, F. Huang and A. K. Y. Jen, Adv. Funct. Mater.20(9),1371-1388(2010).
    [50]S. Braun, W. R. Salaneck and M. Fahlman, Adv. Mater.21(14-15),1450-1472(2009).
    [51]M. F. Lo, T. W. Ng, M. K. Fung, S. L. Lai, M. Y. Chan, C. S. Lee and S. T. Lee,edited by V. W. W. Yam (Springer Berlin Heidelberg,2010), pp.169-197.
    [52]W. Chen, X. Y. Gao, D. C. Qi, S. Chen, Z. K. Chen and A. T. S. Wee, Adv. Funct.Mater.17(8),1339-1344(2007).
    [53]S. F. J. Appleyard, S. R. Day, R. D. Pickford and M. R. Willis, J. Mater. Chem.10,169(2000).
    [54]S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murataand T. S. Jones, Adv. Funct. Mater.14,1205(2004).
    [55]J. Kruger, U. Bach, M. Gr tzel, Adv. Mater.12,447(2000).
    [56]S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma and A. K. Y. Jen, J. Mater.Chem.18,5113(2008).
    [57]A. Sharma, A. Haldi, W. J. Potscavage, P. J. Hotchkiss, S. R. Marder and B.Kippelen, J. Mater. Chem.19,5298(2009).
    [58]S. Khodabakhsh, B. M. Sanderson, J. Nelson and T. S. Jones, Adv. Funct. Mater.16,95(2006).
    [59]J. X. Tang, K. M. Lau, C. S. Lee and S. T. Lee, Appl. Phys. Lett.88(23),232103(2006).
    [60]W. Gao and A. Kahn, Appl. Phys. Lett.82(26),4815-4817(2003).
    [61]W. Zhao, E. Salomon, Q. Zhang, S. Barlow, S. R. Marder and A. Kahn, Phys. Rev.B77(16),165336(2008).
    [62]H. Y. Mao, F. Bussolotti, D. C. Qi, R. Wang, S. Kera, N. Ueno, A. T. S. Wee andW. Chen, Organic Electronics12(3),534-540(2011).
    [63]K. M. Lau, J. X. Tang, H. Y. Sun, C. S. Lee, S. T. Lee and D. H. Yan, Appl. Phys.Lett.88,173513(2006).
    [1] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficienciesvia a network of internal donor-acceptor heterojunctions[J].Science-AAAS-Weekly Paper Edition,1995,270(5243):1789-1790.
    [2] Shaheen S E, Brabec C J, Sariciftci N S, et al.2.5%efficient organic plastic solarcells[J]. Applied Physics Letters,2001,78(6):841-843.
    [3] Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-filmphotodetectors and solar cells[J]. Journal of Applied Physics,2003,93(7):3693-3723.
    [4] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells[J]. AdvancedFunctional Materials,2001,11(1):15-26.
    [5] Günes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solarcells[J]. Chemical reviews,2007,107(4):1324-1338.
    [6] Thompson B C, Fréchet J M J. Polymer–fullerene composite solar cells[J].Angewandte Chemie International Edition,2008,47(1):58-77.
    [7] Bundgaard E, Krebs F C. Low band gap polymers for organic photovoltaics[J]. SolarEnergy Materials and Solar Cells,2007,91(11):954-985.
    [8] Dennler G, Scharber M C, Brabec C J. Polymer‐Fullerene Bulk‐HeterojunctionSolar Cells[J]. Advanced Materials,2009,21(13):1323-1338.
    [9] Chen L M, Hong Z, Li G, et al. Recent progress in polymer solar cells: manipulationof polymer: fullerene morphology and the formation of efficient inverted polymersolar cells[J]. Advanced Materials,2009,21(14-15):1434-1449.
    [10] Li G, Shrotriya V, Yao Y, et al. Manipulating regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester blends-routetowards high efficiency polymer solar cells[J]. Journal of Materials Chemistry,2007,17(30):3126-3140.
    [11] Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells[J].Chemistry of Materials,2004,16(23):4533-4542.
    [12] Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymerphotovoltaic cells by self-organization of polymer blends[J]. Nature materials,2005,4(11):864-868.
    [13] Li C Y, Wen T C, Lee T H, et al. An inverted polymer photovoltaic cell withincreased air stability obtained by employing novel hole/electron collectinglayers[J]. Journal of Materials Chemistry,2009,19(11):1643-1647.
    [14] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricatedby all-solution processing[J]. Science,2007,317(5835):222-225.
    [15] Chen L M, Hong Z, Li G, et al. Recent progress in polymer solar cells:manipulation of polymer: fullerene morphology and the formation of efficientinverted polymer solar cells[J]. Advanced Materials,2009,21(14-15):1434-1449.
    [16] Yip H L, Jen A K Y. Recent advances in solution-processed interfacial materials forefficient and stable polymer solar cells[J]. Energy&Environmental Science,2012,5(3):5994-6011.
    [17] White M S, Olson D C, Shaheen S E, et al. Inverted bulk-heterojunction organicphotovoltaic device using a solution-derived ZnO underlayer[J]. Applied PhysicsLetters,2006,89(14):143517.
    [18] Gilot J, Barbu I, Wienk M M, et al. The use of ZnO as optical spacer in polymersolar cells: theoretical and experimental study[J]. Applied physics letters,2007,91(11):113520-113520-3.
    [19] Kyaw A K K, Sun X W, Jiang C Y, et al. An inverted organic solar cell employing asol-gel derived ZnO electron selective layer and thermal evaporated MoO3holeselective layer[J]. Applied Physics Letters,2008,93(22):221107-221107-3.
    [20] Cheun H, Fuentes-Hernandez C, Zhou Y, et al. Electrical and Optical Properties ofZnO Processed by Atomic Layer Deposition in Inverted Polymer Solar Cells [J].The Journal of Physical Chemistry C,2010,114(48):20713-20718.
    [21] Krebs F C, Tromholt T, J rgensen M. Upscaling of polymer solar cell fabricationusing full roll-to-roll processing[J]. Nanoscale,2010,2(6):873-886.
    [22] Waldauf C, Morana M, Denk P, et al. Highly efficient inverted organicphotovoltaics using solution based titanium oxide as electron selective contact[J].Applied Physics Letters,2006,89(23):233517.
    [23] Mor G K, Shankar K, Paulose M, et al. High efficiency double heterojunctionpolymer photovoltaic cells using highly ordered TiO2nanotube arrays[J]. AppliedPhysics Letters,2007,91(15):152111-152111-3.
    [24] Park M H, Li J H, Kumar A, et al. Doping of the metal oxide nanostructure and itsinfluence in organic electronics[J]. Advanced FunctionalMaterials,2009,19(8):1241-1246.
    [25] Kuwabara T, Iwata C, Yamaguchi T, et al. Mechanistic insights into UV-inducedelectron transfer from PCBM to titanium oxide in inverted-type organic thin filmsolar cells using AC impedance spectroscopy[J]. ACS applied materials&interfaces,2010,2(8):2254-2260.
    [26] Zhou Y, Cheun H, Potscavage Jr W J, et al. Inverted organic solar cells with ITOelectrodes modified with an ultrathin Al2O3buffer layer deposited by atomic layerdeposition[J]. Journal of Materials Chemistry,2010,20(29):6189-6194.
    [27] Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on theperformance of plastic solar cells[J]. AppliedPhysics Letters,2002,80(7):1288-1290.
    [28] Li G, Chu C W, Shrotriya V, et al. Efficient inverted polymer solar cells[J]. AppliedPhysics Letters,2006,88(25):253503-253503-3.
    [29] Liao H H, Chen L M, Xu Z, et al. Highly efficient inverted polymer solar cell bylow temperature annealing of Cs2CO3interlayer[J]. Applied Physics Letters,2008,92(17):173303-173303-3.
    [30] Kim C S, Lee S, Tinker L L, et al. Cobaltocene-doped viologen as functionalcomponents in organic electronics[J]. Chemistry of Materials,2009,21(19):4583-4588.
    [31] Ma B, Woo C H, Miyamoto Y, et al. Solution processing of a small molecule,subnaphthalocyanine, for efficient organic photovoltaic cells[J]. Chemistry ofMaterials,2009,21(8):1413-1417.
    [32] Mishra A, B uerle P. Small molecule organic semiconductors on the move:promises for future solar energy technology[J]. Angewandte Chemie InternationalEdition,2012,51(9):2020-2067.
    [33] Morse G E, Helander M G, Stanwick J, et al. Experimentally Validated Model forthe Prediction of the HOMO and LUMO Energy Levels ofBoronsubphthalocyanines[J]. The Journal of Physical Chemistry C,2011,115(23):11709-11718.
    [34] Rand B P, Burk D P, Forrest S R. Offset energies at organic semiconductorheterojunctions and their influence on the open-circuit voltage of thin-film solarcells[J]. Physical Review B,2007,75(11):115327.
    [35] Mihailetchi V D, Blom P W M, Hummelen J C, et al. Cathode dependence of theopen-circuit voltage of polymer: fullerene bulk heterojunction solar cells[J].Journal of Applied Physics,2003,94(10):6849-6854.
    [36] Gong X, Tong M, Brunetti F G, et al. Bulk Heterojunction Solar Cells with LargeOpen‐Circuit Voltage: Electron Transfer with Small Donor‐Acceptor EnergyOffset[J]. Advanced Materials,2011,23(20):2272-2277.
    [37] Hancox I, Chauhan K V, Sullivan P, et al. Increased efficiency of small moleculephotovoltaic cells by insertion of a MoO3hole-extracting layer[J]. Energy&Environmental Science,2010,3(1):107-110.
    [38] Kyaw A K K, Sun X W, Jiang C Y, et al. An inverted organic solar cell employing asol-gel derived ZnO electron selective layer and thermal evaporated MoO3holeselective layer[J]. Applied Physics Letters,2008,93(22):221107-221107-3.
    [39] Lo M F, Ng T W, Liu T Z, et al. Limits of open circuit voltage in organicphotovoltaic devices[J]. Applied physics letters,2010,96(11):113303-113303-3.
    [40] Kato S, Ishikawa R, Kubo Y, et al. Efficient Organic Photovoltaic Cells UsingHole-Transporting MoO3Buffer Layers Converted from Solution-Processed MoS2Films[J]. Japanese Journal of Applied Physics,2011,50(7):1604.
    [41] Cai Y, Wei H X, Li J, et al. Mechanism of Cs2CO3as an n-type dopant in organicelectron-transport film[J]. Applied Physics Letters,2011,98(11):113304-3.
    [42] Hohm D P, Ropp M E. Comparative study of maximum power point trackingalgorithms[J]. progress in photovoltaics: research and applications,2003,11(1):47-62.
    [43] Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors inbulk‐heterojunction solar cells—Towards10%energy‐conversion efficiency[J].Advanced Materials,2006,18(6):789-794.
    [44] Rand B P, Burk D P, Forrest S R. Offset energies at organic semiconductorheterojunctions and their influence on the open-circuit voltage of thin-film solarcells[J]. Physical Review B,2007,75(11):115327.
    [45] Mihailetchi V D, Blom P W M, Hummelen J C, et al. Cathode dependence of theopen-circuit voltage of polymer: fullerene bulk heterojunction solar cells[J].Journal of Applied Physics,2003,94(10):6849-6854.
    [46] Dennler G, Scharber M C, Ameri T, et al. Design Rules for Donors inBulk‐Heterojunction Tandem Solar Cells Towards15%Energy‐ConversionEfficiency[J]. Advanced Materials,2008,20(3):579-583.
    [47] Gadisa A, Svensson M, Andersson M R, et al. Correlation between oxidationpotential and open-circuit voltage of composite solar cells based on blends ofpolythiophenes/fullerene derivative[J]. AppliedPhysics Letters,2004,84(9):1609-1611.
    [48] Cheng Y J, Hsieh C H, He Y, et al. Combination of indene-C60bis-adduct andcross-linked fullerene interlayer leading to highly efficient inverted polymer solarcells[J]. Journal of the American Chemical Society,2010,132(49):17381-17383.
    [49] Cheng Y J, Hsieh C H, He Y, et al. Combination of indene-C60bis-adduct andcross-linked fullerene interlayer leading to highly efficient inverted polymer solarcells[J]. Journal of the American Chemical Society,2010,132(49):17381-17383.
    [50] Zhang Y, Hau S K, Yip H L, et al. Efficient polymer solar cells based on thecopolymers of benzodithiophene and thienopyrroledione[J]. Chemistry ofMaterials,2010,22(9):2696-2698.
    [51] Cai W, Gong X, Cao Y. Polymer solar cells: recent development and possibleroutes for improvement in the performance[J]. Solar Energy Materials and Solar
    Cells,2010,94(2):114-127.
    [1] Xue J, Rand B P, Uchida S, et al. A hybrid planar–mixed molecular heterojunctionphotovoltaic cell[J]. Advanced Materials,2005,17(1):66-71.
    [2] Yang F, Shtein M, Forrest S R. Controlled growth of a molecular bulk heterojunctionphotovoltaic cell[J]. Nature Materials,2005,4(1):37-41.
    [3] Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells withnanoscale control of the interpenetrating network morphology[J]. AdvancedFunctional Materials,2005,15(10):1617-1622.
    [4] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated byall-solution processing[J]. Science,2007,317(5835):222-225.
    [5] Xu Z, Chen L M, Yang G, et al. Vertical Phase Separation in Poly (3-hexylthiophene):Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells[J].Advanced Functional Materials,2009,19(8):1227-1234.
    [6] Chen L M, Xu Z, Hong Z, et al. Interface investigation and engineering–achievinghigh performance polymer photovoltaic devices[J]. Journal of Materials Chemistry,2010,20(13):2575-2598.
    [7] Rand B P, Genoe J, Heremans P, et al. Solar cells utilizing small molecular weightorganic semiconductors[J]. Progress in Photovoltaics: Research and Applications,2007,15(8):659-676.
    [8] Hadipour A, de Boer B, Blom P W M. Organic tandem and multi-junction solarcells[J]. Advanced functional materials,2008,18(2):169-181.
    [9] Dennler G, Scharber M C, Brabec C J. Polymer-Fullerene Bulk-Heterojunction SolarCells[J]. Advanced Materials,2009,21(13):1323-1338.
    [10] Kim Y, Choulis S A, Nelson J, et al. Device annealing effect in organic solar cellswith blends of regioregular poly (3-hexylthiophene) and soluble fullerene[J].Applied Physics Letters,2005,86(6):063502-3.
    [11] Osasa T, Yamamoto S, Matsumura M. Organic solar cells by annealing stackedamorphous and microcrystalline layers[J]. Advanced Functional Materials,2007,17(15):2937-2942.
    [12] Opitz A, Wagner J, Brütting W, et al. Molecular semiconductor blends:microstructure, charge carrier transport, and application in photovoltaic cells[J].physica status solidi (a),2009,206(12):2683-2694.
    [13] Goffri S, Müller C, Stingelin-Stutzmann N, et al. Multicomponent semiconductingpolymer systems with low crystallization-induced percolation threshold[J]. Naturematerials,2006,5(12):950-956.
    [14] Bj rstr m C M, Bernasik A, Rysz J, et al. Multilayer formation in spin-coated thinfilms of low-bandgap polyfluorene: PCBM blends[J]. Journal of Physics:Condensed Matter,2005,17(50): L529.
    [15] Higgins A M, Martin S J, Thompson R L, et al. Surface segregation andself-stratification in blends of spin-cast polyfluorene derivatives[J]. Journal ofPhysics: Condensed Matter,2005,17(8):1319.
    [16] Waldauf C, Morana M, Denk P, et al. Highly efficient inverted organicphotovoltaics using solution based titanium oxide as electron selective contact[J].Applied Physics Letters,2006,89(23):233517.
    [17] Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Morphology evolution viaself-organization and lateral and vertical diffusion in polymer: fullerene solar cellblends[J]. Nature materials,2008,7(2):158-164.
    [18] Ng T W, Lo M F, Fung M K, et al. Electronic properties and open-circuit voltageenhancement in mixed copper phthalocyanine: fullerene bulk heterojunctionphotovoltaic devices[J]. Applied Physics Letters,2009,95(20):203303.
    [19] Ohno T R, Chen Y, Harvey S E, et al. C60bonding and energy-level alignment onmetal and semiconductor surfaces[J]. Physical Review B,1991,44(24):13747.
    [20] Tang J X, Lee C S, Lee S T. Chemical bonding and electronic structures atmagnesium/copper phthalocyanine interfaces[J]. Applied surface science,2006,252(11):3948-3952.
    [21] Hsiao Y S, Whang W T, Suen S C, et al. Morphological control of CuPc and itsapplication in organic solar cells[J]. Nanotechnology,2008,19(41):415603.
    [22] Kim J S, Ho P K H, Murphy C E, et al. Phase separation in polyfluorene-basedconjugated polymer blends: lateral and vertical analysis of blend spin-cast thinfilms[J]. Macromolecules,2004,37(8):2861-2871.
    [23] Goffri S, Müller C, Stingelin-Stutzmann N, et al. Multicomponent semiconductingpolymer systems with low crystallization-induced percolation threshold[J]. Naturematerials,2006,5(12):950-956.
    [24] Wei H X, Li J, Xu Z Q, et al. Thermal annealing-induced vertical phase separationof copper phthalocyanine: Fullerene bulk heterojunction in organic photovoltaiccells[J]. Applied Physics Letters,2010,97(8):083302-083302-3.
    [25] Wei H X, Li J, Cai Y, et al. Electronic structures of planar and mixed C70/CuPcheterojunctions in organic photovoltaic devices[J]. Organic Electronics,2011,12(8):1422-1428.
    [26] J. S. Kim, P. K. H. Ho, C. E. Murphy, and R. H. Friend, Macromolecules.37(2004)2861.
    [27] Heriot S Y, Jones R A L. An interfacial instability in a transient wetting layer leadsto lateral phase separation in thin spin-cast polymer-blend films[J]. NatureMaterials,2005,4(10):782-786.
    [28] Gao J, Asadi K, Xu J B, et al. Controlling of the surface energy of the gatedielectric in organic field-effect transistors by polymer blend[J]. AppliedPhysicsLetters,2009,94(9):093302.
    [29] Tajima Y, Matsuura T, Numata Y, et al. Surface free energy and wettabilitydetermination of various fullerene derivative films on amorphous carbon wafer[J].Japanese Journal of Applied Physics,2008,47(7R):5730.
    [30] Beaujuge P M, Fréchet J M J. Molecular design and ordering effects inπ-functional materials for transistor and solar cell applications[J]. Journal of theAmerican Chemical Society,2011,133(50):20009-20029.
    [31] Heutz S, Cloots R, Jones T S. Structural templating effects in molecularheterostructures grown by organic molecular-beam deposition[J]. Applied PhysicsLetters,2000,77(24):3938-3940.
    [32] Bao Z, Lovinger A J, Dodabalapur A. Organic field‐effect transistors with highmobility based on copper phthalocyanine[J]. Applied Physics Letters,1996,69(20):3066-3068.
    [33] Zeis R, Siegrist T, Kloc C. Single-crystal field-effect transistors based on copperphthalocyanine[J]. Applied Physics Letters,2005,86(2):022103.
    [34] Mizuguchi J, Rihs G, Karfunkel H R. Solid-state spectra of titanylphthalocyanineas viewed from molecular distortion[J]. The Journal of Physical Chemistry,1995,99(44):16217-16227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700