4H-SiC同质外延生长及器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC材料作为一种第三代半导体材料,因其具有禁带宽度大(3.2ev),耐击穿电场强(2.2×106V/cm),饱和电子迁移速度高(2.0×107cm/s),热导率高(4.9W/cmK)和化学稳定性好等优异的物理化学及电学性能,被认为是制作高功率、高频率电子器件的理想材料,可广泛用于高温强辐射等极限条件,在国民经济以及国防科技等领域有着十分广阔的应用前景。高质量的外延层是SiC器件广泛应用的基础,国内对于4H-SiC同质外延的研究起步较晚,对相关外延工艺以及器件制作并没有深入细致的系统研究,使得国内的整体水平与国际先进水平还存在很大差距。
     在此背景下,本文对4H-SiC同质外延薄膜进行了系统研究,获得了稳定的外延生长工艺,并使用所得外延晶片进行器件制备,所取得的研究成果如下:
     1.以EPIGRESS公司的VP508GFR设备、用CVD法进行4H-SiC同质外延生长。通过分析设备生长源耗尽方式,确定了外延过程中影响外延掺杂浓度及厚度均匀性的主氢流量和碳硅比等工艺参数,并从4H-SiC外延生长过程中所涉及的物化反应入手,确定了基本的工艺路线为使用H2作为稀释气体及载气,SiH4和C3H8作为生长源,氮气和TMAl分别作为N型和P型掺杂源,生长温度在1550℃-1600℃之间,生长压力在100mbar.
     2.本工作中,8°偏角衬底较4°偏角容易获得高质量的表面形貌,表明“台阶控制外延技术”在碳化硅外延中的重要作用;在恒定C/Si=1.5时,改变生长源流量,发现碳化硅外延生长速率随着硅烷流量的增加而增加,最高超过12μm/h,但是N型掺杂浓度不断降低。对比不同硅烷流量下的生长速率和掺杂浓度,发现了硅团簇的形成窗口:当SiHH4流量在10sccm-20sccm时硅团簇开始大量产生,且随着载气离开反应室,使得反应室内有效C/Si比增加,不利于N掺杂,同时生长速率降低。形成硅团簇的气相成核速率与硅烷的加入量成正比,当硅烷量很少时,硅团簇成核速率低,无法达到硅团簇的平衡值,随着硅烷流量加大,当达到30sccm时,硅团簇气相成核达到平衡点。
     3.借鉴传统的8°偏角衬底外延结果对3英寸4°偏角4H-SiC外延的在线刻蚀和生长温度等工艺进行优化,对外延过程中引入的缺陷所进行的详细分析表明所得4°偏角外延片表面质量高,消除了台阶聚束(step bunching)现象和三角形缺陷,200μm×20μm表面粗糙度仅为0.223nm,这与4H-SiC沿C轴方向原子层厚度接近。
     4.高分辨率X射线衍射、Raman散射确定所生长的4H-SiC外延层为均一的4H-SiC物相,不存在其他包裹物,XRD的摇摆谱半高宽为52arcsec,这表明外延层的结晶质量很高;傅里叶红外光谱仪(FTIR)测量外延层膜厚,片内厚度不均匀性达到0.09%,批次间厚度不均匀性为0.9%;汞探针CV (MCV)测量掺杂浓度分布,获得片内浓度不均匀性最好为4.37%,批次间浓度不均匀性为5.3%,二次离子质谱法(SIMS)对MCV测量的n型掺杂浓度进行了验证。方阻仪显示MESFET结构的4H-SiC材料方阻不均匀性为2%~5%达到国际同行产品水平。
     5.应用所生长的4H-SiC同质外延技术分别进行MESFET、SBD器件结构材料的生长制备。
     控制MESFET器件结构材料参数分别为P型缓冲层厚度为0.2μm,掺杂浓度为2×1015cm-3;n型有源层厚0.4μm,掺杂浓度为2x1017cm-3;欧姆接触n+层的厚度为0.2μm,浓度为2x1019cm-3。所得到的1mm总栅宽MESFET器件的主要性能参数为:当Vds=64V,得到的最大输出功率(Pout)为4.1W,此时增益(Gain)为9.30dB,功率附加效率(PAE)达到31.3%,漏极效率(η)为35.5%,并进一步制备了单胞总栅宽为3.6mm、9mm、20mm的芯片在S波段2GHz频率脉冲测试条件下输出功率分别为18.3W、38W、80W,功率密度都超过了4W/mm,同时功率增益都超过了8.5dB,器件的性能指标为国内领先、国际先进水平。
     控制SBD器件结构参数分别为n+buffer layer厚度为0.5μm,掺杂浓度为1×1018cm-3;有源层厚度12μm,掺杂浓度为5×1015cm-3。所制备的尺寸为1.5mm×1.5mm的SBD器件显示了优异的正、反向特性,正向开启电压为1.1V,当正向电压3.5V时,输出电流达到7.47A,电流密度达到330A/cm2,达到了国际先进水平SBD器件。
Silicon carbide (SiC), as one of the third-generation wide-band-gap semiconductors, has a great potential in the application of electronic devices for a long time. The excellent physical and electrical properties of SiC such as high breakdown electric field (2.2×106V/cm)[1], high saturation electron drift velocity (2.0×10'cm/s), high thermal conductivity (4.9W/cm K) and chemical stability allow its applications in high frequency, high power, high temperatures and other harsh conditions. This can be widely used in the national economy and national defense science and technology fields. However, it is necessary to grow high-quality SiC epitaxial layers before the SiC devices can be applied extensively. There is still a serious lack of domestic research in4H-SiC homoepitaxial technique and device febrication due to later start than Japan, USA and European countries.
     In this dissertation, the homoepitaxial growth of4H-SiC films have been systematically studied in order to obtain a stable epitaxial growth technology, and use the products of epitaxial wafers for devices fabrication. Our research results are as follows:
     1. Horizontal hot-wall CVD system-VP508GFR manufactured by EPIGRESS AB (Sweden) was used in the epitaxy of4H-SiC. Silane (SiH4) and propane (C3H8) were used as the precursor for silicon and carbon respectively. Hydrogen (H2) was used as dilution and carrier gas while high purity nitrogen (N2) and trimethylaluminum (TMA) was used for N-type and P-type doping respectively. The source exhausting has been analyzed to determine the process parameters which will impact in the doping and thickness uniformity. The technological process has been confirmed through the physical and chemical reactions involved in4H-SiC epitaxial growth.
     2. In our study, it was observed the4H-SiC epilayers grown on8°off-axis substrate has a better surface morphology than4°off-axis, indicating step control growth technique plays a significant role in the epitaxy of SiC. Furthermore, the growth rate of SiC epilayer increased with the increasing S1H4flow while reached a maximum of12μm/h, meanwhile N type doping keep lowering. According to these datas, the growth window of silicon clusters has been found: when S1H4flow rate was10sccm-20sccm, the silicon clusters began to form, and they bumped up with carrier gas, which results in an increase of C/Si ratio. This will low N-doping efficiency and growth rate. The rate of gas phase nucleation is directly proportional to the concentration of SiH4. A small of SiH4concentration will suppress gas phase nucleation. As a result, the mole fraction of silicon clusters cannot reach the equilibrium value under a small S1H4flow rate. When silane flow increased to30sccm, gas phase nucleation of silicon clusters would reach the equilibrium value.
     3. The epitaxial growth process was optimized in order to obtain good surface morphology of epilayer grown on4°off-axis substrates based on the traditional process technology of8°off-axis substrates. The results showed that the epitaxial layer of4°off-axis substrate has high quality and low defects density. The step bunching and triangular was eliminated, and the surface roughness is only0.223nm in20μm×20μm, which is close to the thickness of SiC bilayer.
     4. The epitaxial layer has only4H-SiC phase through the investigation of HRXRD and Raman. The FWHM of XRD rocking curve was52arcsec, indicating the high-crystalline-quality epitaxial layer has been synthesized. Fourier transform infrared spectroscopy (FTIR) was used to measure the thickness of epitaxial layer, the wafer to wafer thickness uniformity is<0.09%, the thickness variation is<0.9%in different runs. Mercury probe CV (MCV) and Secondary ion Mass Spectroscopy (SIMS) were used to measure the doping level of epitaxial layer. The wafer to wafer doping uniformity of4.37%and the run to run doping variation of5.3%were obtained. Resistance per square uniformity used tor MESFET structure was:2%-5%.
     5. Using the4H-SiC homoepitaxial wafer, the SiC MESFET and SBD devices have been manufactured, respectively.
     The structure of MESFET devices were P-type buffer layer with thickness of0.2μm, doping concentration of2×1015cm-3, N-type active layer with thickness of0.4μm, doping concentration of2×1017cm-3, N+-type ohmic contacts layer with thickness of0.2μm, doping concentration of2×1019cm-3.1mm gate width MESFETS, at fo=2GHz, Vds=64V, the output power was4.1W with the gain of9.3dB, PAE31.3%and the drain efficiency (η) was35.5%. Furthermore, at S band2GHz, the pulse output power is measured for packaged3.6mm,9mm,20mm SiC MESFETs and the results are18.3W,38W,80W respectively. At the same time, the power gain of all SiC MESFETs exceeded8.5dB.
     The structure of SBD devices were N+-type buffer layer with thickness of0.5μm, doping concentration of1×1018cm-3, N-type active layer with thickness of12μm, doping concentration of5×1015cm-3. The SBD devices with size of1.5mm×1.5mm have been measure forward and reverse characteristics. The forward turn-on voltage was1.1V, when the forward voltage reach to3.5V, the output current was7.47A, the current density can reached330A/cm2.
引文
[1]徐南屏,碳化硅——未来功率器件材料,中国电工技术学会电力电子学会第八届学术年会论文集,2002
    [2]S.M.Sze, Semiconductor Devices:Physics and Technology, John Wiley & Sons,30 (1985)
    [3]Bahl.I.J.,2-8GHz 8-W Power Amplifiers MMIC Developed Using MSAG MESFET Technology. IEEE Microwave and Wireless Components Letters.18(1)52(2008)
    [4]Deal.W.R, Mei, X.B, Radisic.V et al, Demonstration of a 270GHz MMIC Amplifier Using 35-nm InP HEMT Technology. IEEE Microwave and Wireless Components Letters.17(5):391(2007)
    [5]Mei. X. B, Yoshida.W, Deal. W. R et al.35-nm InP HEMT SMMIC Amplifier With 4.4 dB Gain at 308 GHz. IEEE Electron Device Letters,28(6):470-472 (2007)
    [6]张玉明,张义门,罗晋升,SiC、GaAs和Si的高温特性的比较,固体电子学研究与进展,1997,17(3):305-310.
    [7]张玉明,汤晓燕,张义门,SiC功率器件的研究和展望,电力电子技术学报,2008,42(12)60-62
    [8]H. Morkoc, S.Strite, G.B.Gao et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J.Appl. Phys.76(3):1363(1994).
    [9]J.Hornberger, A.B.Lostetter and K. J. Olejniczak, et al. Silicon-carbide(SiC) semiconductor power electronics for extreme high-temperature environments. Aerospace Conference, IEEE.4:2538 (2004).
    [10]Weitzel. C. E. Comparison of SiC, GaAs, and Si RF MESFET Power Densities. IEEE Electron Device Letters.16(10):1732
    [11]W. F. Knippenberg, Philips Research Reports,1963,18,161
    [12]周艳萍,SiC多型体的第一性原理计算研究,燕山大学硕上论文.2011
    [13]M.E.Levinshtein et al先进半导体材料性能与数据手册(M).杨树人,殷景志,译.北京:化学工业出版社(2003)
    [14]A.Faessler, Proc. Int. Conf. Semiconductor Phys. Praque, Academic Press Inc.1960,914.
    [15]张发生,4H-SiC同质外延薄膜及其高压肖特基二极管器件研究.湖南大学,2010
    [16]陈治明,李守智.宽禁带半导体电力电子器件及其应用, 北京:机械工业出版社,2009
    [17]Achtziger, N., and W. Witthuhn, Appl. Phys. Lett.71,1(1997),110-112
    [18]Anikin, M. M., M. E. Levinshtein, I. V. Popov, V. P. Rastegaev, A. M. Strel'chuk, and A. L. Syrkin, Soviet Phys. Semicond.22,9(1988),995-998.
    [19]Anikin, M. M., A. S. Zubrilov, A A Lebedev, A M. Strlchuk, and A E. Cherenkov, Soviet Phys. Semicond.25,3 (1991),289-293
    [20]S. H. Ryu, S. Krishnaswami and M. Das, et al.2KV4H-SiC DMOSFETS for low loss, high frequency switching applications. International Journal of High Speed Electronics and Systems.2004,14(3):879
    [21]张玉明,张义门,罗晋升,SiC肖特基势垒二极管的研制, 半导体学报,20(11):1040-1044(1999)
    [22]J. Yin, Z. X. Liang and W. Van. High temperature embedded SiC chip module (ECM) for power electronics applications. IEEE Transactions on Power Electronics.2007,22(2):392
    [23]D. Surls and M. Crawfors. Individual and parallel behavior of high current density, high-voltage 4H-silicon carbide p-i-n diodes. IEEE Transaction on Magnetics.2005,41(1):330
    [24]J. Hornberger, A B. Lostetter and K. J. Olejniczak, et al. Silicon-carbide(SiC) semiconductor power electronics for extreme high-temperature environments. Aerospace Conference IEEE.2004,4:2538
    [25]李晋闽, SiC材料及器件研究的进展,物理,29(8):481-487 (2000)
    [26]http://www.sic.saint-gobain.com/the-art-of-silicon-carbide.aspx
    [27]J. A Lely. Preparation of Single Crystals of Silicon Carbide and Control of the Nature and the Quantity of the Combined Impurities. Berichte der Deutechen Keramischen Gesellschaft.1995,32:229
    [28]Yu.M.Tairov and V.F.Tsvetkov:J. Cryst. Growth,1981,52,146
    [29]Nishino S et al. Appl. Phys. Lett.,1987.42(5):460
    [30]CREE rsearch nc.2810 Meridian Parkway, Durham, Nc27713
    [31]S J Przybylko. Developments in Silicon Carbide for Aircraft Propulsion System Applications. Anerican Institute of Aeronautics and Astronautics, Washington, DC, Report June 1993
    [32]W C Nieberding and J A Powell, High Temperature Electronic Requirements in Aeropropulsion Systems, IEEE Trans, on Industrial Electronics,1982, vol.29:103-106
    [33]Mrinal K. Das, Joseph J. Sμmakeris, Brett A. Hull, Jim Richmond, Sμmi Krishnaswami, Adrian R. Powell. Drift-Free 50A 10kV 4H-SiC PiN Diodes with Improved Device Yields. Materials Science Forμm Vols.483-485 (2005) pp.965-968
    [34]张昊翔,叶志镇,SiC材料及其在功率器件方面应用研究进展,1998
    [35]Nobuyuki Sugii,et al. Bole of Sil-xGex buffer layer on mobility enhancement in a strained-Si n-channel metal-oxide-semiconductor field-effect transistor. Appl.Phys.Lett.,1999,75:2948.
    [36]刘海涛 陈启秀,宽禁带半导体功率器件,半导体技术,1999
    [37]周慧,Rockwell Scientific推出SiCMESFET,半导体信息,2004年01期
    [38]M.V.Rao et al., J. Appl. Phys.,86,1999,752
    [39]V F Tsvetkov, et al., in Proc.6th Intern. Conf. on Silicon Carbide and relater Materials, Inst. of Physics Conference Series 142,1996,17
    [40]S. Nishino, Y. Okui, C. Jacob and S. Ohshima. Channel Epitaxy of 3C-SiC on Si Substrates by CVD. MRS Fall Meeting,2002
    [41]A. A Burk, Jr. and L. B. Rowland, Phys. Status Solidi B,202,1997,263
    [42]D. J. Larkin,et al., Appl. Phys. Lett.,65,1994,1659
    [43]Brander R W, Sutton RP. Brit, J. Appl. Phys.,1969,2:309
    [44]Suzuki A, Ikeda M, Nagao N et al. J. Appl. Phys.,1976,47:4546
    [45]E. Kalinina, et al., Mater. Sci. Eng., B80,2001,337
    [46]M. syvajarvi, et al., Material Science Forum,264-268,1998,143
    [47]M. syvajarvi, et al.,J. Appl. Phys,88,2000,1407
    [48]Davis R F, Tanaka S, Kern R S. J. Crystal Growth,1996,163:93
    [49]Yoshinobu T, Nakayama M, Fuyuki T, Appl. Phys,1992,60(7):824
    [50]杨树人,丁墨元,外延生长技术,国防工业出版社(北京),1992
    [51]贾仁需,4H-SiC同质外延的表征及深能级分析研究.西安:西安电子科技大学.2008
    [52]张发生,4H-SiC同质外延薄膜及其高压肖特基二极管器件研究.湖南大学博士论文.2010
    [53]高欣,孙国胜,李晋闽等,水平冷壁CVD生长4H-SiC同质外延膜,半导体学报,2005,增刊(1):70-73
    [54]高欣,孙国胜,李晋闽等, 化学气相沉积4H-SiC同质外延膜的生长及其特征,半导体学报,2005,32(2):203-206
    [55]O. Noblanc, C. Arnodo, C. Dua, E. Chartier, C. Brylinski, "Progress in the use of 4H-SiC semi-insulating wafers for microwave power MESFETs", Materials Science and Engineering.
    [56]H.Matsunami, T.Kimoto, Surface polarity dependence in step-controlled epitaxy:Progress in SiC epitaxy Diamond and Related Materials 6(1997)pp.1276-1281.
    [57]J.A.Powell, D.J.Larkin and A.J.trunek, Use of Gaseous Etching for the Characterization of Structural Defects in Silicon Carbide Single Crystals Materials Science Forum Vol.264-268 (1998) pp.421-424.
    [58]H.Tsuchida, I.Kamata, T.Jikimoto, T.Miyanagi and K.Izumi,4H-SiC Epitaxial Growth for High-Power Devices Materials Science Forum Vol.433-436(2003)pp.131-136.
    [59]李赞,李哲洋,董逊,陈辰, 生长源流量对SiC外延生长的影响,半导体技术,2008
    [60]Li ZheYang, Li Yun, Chen Chen and Han pin, Influence of precursor flow rate on epitaxial growth of Silicon carbide in horizontal hot-wall CVD system modify. Science China Physics, Mechanics and Astronomy,2011
    [61]Mark D. Allendorf. Equilibrium predictions of the Role of organosilicon compounds in the chemical vapor deposition of silicon carbide [J] J.Electrochem.Soc.140 (1993) 747-753.
    [62]P. M. Lofgren, W. Ji, C. Hallin, and C.-Y. Gu. Modeling of silicon carbide epitaxial growth in Hot-Wall chemical vapor deposition processes, [J] J.Electronchem.Soc.147 (2000) 164-175.
    [63]U. Forsberga, O. Danielsson, A. Henry, M.K. Linnarsson, E. Janzen. Nitrogen doping of epitaxial silicon carbide, [J] Journal of Crystal Growth 236 (2002) 101-112
    [64]H.Saitoh, T.Kimoto and HMatsunami, Uniformity Improvement in SiC Epitaxial Growth by Horizontal Hot-Wall CVD, [J] Materials Science Forum,2003,Vols.433-436:185-188.
    [65]J.Zhang, U.Forsberg, M.Isacson, A.Ellison, A.Henry, O.Kordina and E.Janzen, Growth Characteristics of SiC in a Hot-Wall CVD Reactor with Rotation, [J] Materials Science Forum, 2002,Vols.389-393:185-188.
    [66]S.Harada, K.Nakayama, M.Sasaki and H.Shiomi, Uniformity Improvement in SiC Epitaxial Growth by using Si-Condensation, [J] Materials Science Forum,2004,Vol457-460:225-228.
    [67]李哲洋,李赞,董逊等, 水平热壁式CVD SiC外延均匀性研究,第十五届全国化合物半导体材料,微波器件和光电器件学术会议,2008
    [68]张发生,4H-SiC同质外延薄膜及其高压肖特基二极管器件研究,湖南大学博士论文,2010:26
    [69]李哲洋,刘六亭,董逊,张岚,许晓军,柏松,4H-SiC同质外延中的缺陷, 电子工业专用设备,2005,Page 62
    [70]P. J. Welhnann, D. Queren, U. Kunecke. Defects in highly p-type doped SiC:Al. German-Vietnamese Seminar,2005:1-5
    [71]盖庆丰,4H-SiC外延材料缺陷的检测与分析, 西安:西安电子科技大学,2010:18-19
    [72]D. Sic he, D.Klimn, T. Holzel et al., Reproducible defect etching of SiC single crystals, Journal of Crystal Growth, Vol.270, Issues 1-2,15,2004:1-6
    [73]李哲洋,刘六亭,董逊,张岚,许晓军,柏松,4H-SiC同质外延中的缺陷,电子工业专用设备,2005,Page 63-64,74
    [74]N.Schulze, D.L.Barrett, G.PENSL, S.Rohmfeld, M.Hundhausen:Mat.Science and engineering.1999:B.61-62,44
    [75]R.Yakimova, E.Janzen, Diamond and Related Materials,2000:432(9)
    [76]F. C. Frank, Acta Cryst,1951:494(4)
    [77]J. W. Yang, Journal of Materials Research.19932902(8)
    [78]P. G. Neudeck, J. A. Powell, G.M.Beheim et al.:J. Appl. Phys.2002:92 (5),2391,
    [79]盖庆丰,4H-SiC外延材料缺陷的检测与分析, 西安:西安电子科技大学.2010:13
    [80]T. Ohno, H. Yamaguchi, S. Kuroda. Direct observation of dislocations propagated from 4H-SiC substrate to epitaxial layer by X-ray topography. Journal of Crystal Growth.2004:209-216.
    [81]Z.Zhang, S.I.Maximenko, A.Shrivastava, et al. Propagation of stacking faults from surface damage in SiC PIN diodes. Appl. Phys. Lett.2006:88
    [82]Li ZheYang, Han Ping, Li Yun, Ni WeiJiang, Bao HuiQiang and Li YuZhu. Epitaxial growth of4H-SiC on 4°off-axis substrate for power device.201128(9):098-101
    [83]Rupp R, Wiedenhofer A, Friedrichs P, Peters D, Schorner R and Stephani D Mat. Sci. Forum. 1998:264-268
    [84]Powell J A, Petit J B, Edgar J H, Jenkins I G, Matus LG, Yang J W, Pirouz P, Choyke W J, Clemen L and Yoganathan MAppl. Phys. Lett.1991:59
    [85]Matsunami Hand Kimoto TMater. Sci&Eng.1997:125-166
    [86]Matsunami Hand Kimoto T.Diamond and Related Materials.1997:1276-1281
    [87]Christian H, Bernd T, and Wolfgang B. Mat. Sci. Forum.2006:527-529
    [88]许振嘉, 半导体的检测与分析,2007:128
    [89]Chu ryang wie. High resolution X-Ray diffraction characterization of miconductor structure materials Science and Engineering.1994, R13:16.
    [90]Z. C. Feng, A. Rohatgi and C. C. Tin,et al. Structural,optical, and surface science studies of 4H-SiC epilayers grown by low pressure chemical vapor depositon. J. E. M.1996:917(25)
    [91]J. S. Pan, T. S.Wee and H. A.Huan, et al. Argon incorporation and silicon carbide formation during low energy argon-ion bombardment of Si(100). J. Appl. Phys.1996,79(6):2934
    [92]H. F.Li, S. Dimitrijev and D. Sweatman, et al. Investigation of nitric oxide an Ar annealed SiO2/SiC interfaces by X-ray photoelectron spectroscopy. J. Appl. Phys.1999,86(8):4316.
    [93]S. Nakashima and H. Harima. Raman investigation of SiC polytypes. Phys. Status Solidi A.1997, 162(1):39
    [94]K. Fujihira, T. Kimoto, H. Matusnami, "High purity and high quality 4H-SiC grown at high speed by chimney type vertical hot wall chemical vapor deposition," Appl. Phys. Lett.80,1586 (2002).
    [95]Kimoto. T, Miyamoto. N and Matsunami. H. Performance limiting surface defects in SiC epitaxial PN junctiondiodes. IEEE. Trans. Electron Devices.1999,46:471.
    [96]Chen. L, Guy. O. J, Jennings, et al. Study of a novel Si/SiC hetero-junction MOSFET Solid-State Electron.2007,51:662.
    [97]Skowronski. M, Ha. S.Degradation of hexagonal silicon-carbide-based bipolar devices J. Appl. Phys.2006,99:101
    [98]P. F. Kane and G. B. Larrabee. Characterization of semiconductor Materials. McGraw-Hill Book Company. U. S. A.1970:226
    [99]O. S. Heavens. Optical Properties of Thin Solid Films. Butterworths. London.1955,112
    [100]贾仁需,4H-SiC同质外延的表征及深能级分析研究,西安:西安电子科技大学,2008:33
    [101]许振嘉,半导体的检测与分析,2007:16-17
    [102]Bai Song, Chen Gang, Zhang Tao, Li Zheyang, Wang Hao, Jiang Youquan, Han Chunlin, and Chen Chen. Fabrication of SiC MESFETs for Microwave Power Applications. CHINESE JOURNAL OF SEMICONDUCTORS. Vol.28, No.1, Jan.,2007, pp.10-13
    [103]Kristoffer Andersson, Mattias Sudow, Per-Ake Nilsson, Einar Sveinbjornsson, Hans Hjelmgren, Joakim Nilsson, Johan Stahl, Herbert Zirath, and Niklas Rorsman. Fabrication and Characterization of Field-Plated Buried-Gate SiC MESFETs. IEEE ELECTRON DEVICE LETTERS, VOL.27, NO.7, JULY 2006, pp.573-575
    [104]Frederic Villard, J.-P. Prigent, E. Morvan, C. Dua, C. Brylinski, F. Temcamani, and P. Pouvil. Trap-Free Process and Thermal Limitations on Large-Periphery SiC MESFET for RF and Microwave Power. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.51, NO. 4, APRIL 2003, pp.1129-1134
    [105]Song Bai, Peng Wu, Gang Chen,Zhong Feng, Zheyang Li, Chuan Lin, Youquan Jiang, Chen Chen, Kai Shao. Development of High-Power SiC MESFETs for Microwave Applications. ICMMT2008 Proceedings, pp.2032-2035
    [106]O. Noblanc, C. Arnodo, C. Dua, E. Chartier, C. Brylinski, "Progress in the use of 4H-SiC semi-insulating wafers for microwave power MESFETs", Materials Science and Engineering B61-62, pp.339-344,1999
    [107]Joakim Eriksson, Niklas Rorsman, and Herbert Zirath, "Performance of silicon carbide microwave MESFETs using a thin p-doped buffer layer", Materials Science Forum Vols.433-436, pp. 741-744,2003.
    [108]Weitzel C.E., Palmour J.W., et al.4H-SiC MESFET with 2.8 W/mm Power Density at 1.8 GHz. IEEEEDL, Vol.15, No.10,1994:406-408
    [109]Allen S.T., Palmour J.W., Nordquist K.J., et al. Silicon Carbide MESFET's With 2W/mm and 50% PAE at 1.8GHz. IEEE MTT-S Digest,1996:681-684
    [110]S. Sriram, G. Augustine, A. A Burk, et al.,4H-SiC MESFET's with 42GHz fmax, IEEE ELECTRON DEVICE LETTERS, VOL.17, NO.7, JULY 1996:369-371
    [111]Haoyue, Pengjun, Yang Yintang. Silicon carbide wide bandgap semiconductor technology[M]. Pekin:the Science Press,2000,217-228[郝跃,彭军,杨银堂,“碳化硅宽带隙半导体技术”,北京:科学出版社,2000,217-228]
    [112]Li X-B. GaAs microwave power field effect transistor and integrated circuit [M]. Beijing: Science Press,1998[李效白, 砷化镓微波功率场效应晶体管及其集成电路[M].北京:科学出版社,1998].
    [113]陈刚,柏松,李哲洋,韩平,4H-SiC欧姆接触与测试方法研究,固体电子学研究与进展,2008
    [114]N. Rorsman, P.A. Nilsson, J. Eriksson, K. Andersson, and H. Zirath. Investigation of the scalability of 4H-SiC MESFETs for high frequency applications. Materials Science Forμm Vols. 457-460 (2004) pp.1229-1232
    [115]W. Liu, C.-M. Zetterling, M. Ostling, J.Eriksson, N. Rorsman, H. Zirath. High Frequency Measurements and Simulations of SiC MESFETs up to 250℃. Materials Science Foru.m Vols. 457-460 (2004) pp.1209-1212
    [116]Zhao J,.Alexandrov P and Li X, Demonstration of the First 10kV 4H-SiC Schottky Barrier Diodes[J].IEEE Electron Device Lett.,2003,24:402-404
    [117]A. Itoh, T. Kimoto, H. Matsunami, Efficient power Schottky rectifiers of 4H-SiC, in Proc. Int. Symp. Power Semicond. Devices.,1995, p.101.
    [118]SUN Guo-sheng, NING Jin, GAO Xin, et al, Homoepitaxial Growth of 4H-SiC and Ti/4H-SiC SBDs, Journal of Synthetic Crystals,2005,34(6):1006-1010
    [119]T. Kimoto; T. Urushidani and S. Kobayashi, High-voltage (> 1 Kv) SiC Sckottky Barrier Diodes with Low On-resistances, IEEE Electron Device Lett.,1993,14:548

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700