一维半导体纳米结构的第一原理研究:电子结构与器件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用基于密度泛函的第一原理方法,我们研究了几种一维半导体纳米结构的本征的和掺杂状态的电子性质,由此提出了若干器件设计的构想。
     首先,我们研究了单晶结构的硅纳米管的电子性质和量子尺寸效应。我们提出的这种sp~3杂化的单晶结构硅纳米管模型具有非常稳定的结构,它们的电子性质主要与管壁厚度有关系。尤其对于厚度不均匀的硅纳米管,其带隙主要由较厚管壁区域的尺寸决定,价带顶和导带底的波函数主要分布在较厚的管壁上:这提供了把导电通路和掺杂杂质在空间上分离的可能性。藉此我们提出了新的调制掺杂方法:在较薄的管壁上进行选择性的杂质(p型或者n型)掺杂,就可以在空间上把杂质和导电通道分开,从而降低杂质散射,组装出高载流子迁移率的纳米器件。
     第二,我们深入探讨了半导体表面上一维输运通道中杂质的局域结构和杂质散射的关系。和东京大学的Komori扫描隧道显微镜实验组合作,我们研究了在重构的Ge(001)-p(2×2)(或-c(4×2))表面上Sn和Si杂质对一维导电通道(π~*电子)的散射机制。处在π~*电子通路上的Si和Sn原子形成了符号相反的散射势场:Si形成了势阱,而Sn形成了势牟。我们提出了密度泛函计算和近自由电子模型相结合的理论方法来计算散射势场,很好的验证了实验的结果。进一步研究发现,这种散射势形成的原因与Si,Sn和Ge原子的p轨道能量的相对大小有关。
     第三,我们研究了硼氮纳米管的场发射性质,利用其近自由电子态作为电子输运通道来设计高性能的场发射器件。碱金属原子掺杂的硼氮纳米管在费米面附近具有一条金属性的能带(具有接近自由电子的色散关系并且远离散射中心)。我们使用基于第一原理的动态模拟方法,计算了外电场下碳纳米管和掺杂的BN纳米管的场发射性质,发现硼氮纳米管的场发射电流要比碳管高两个数量级。
     最后,我们还研究了SiC纳米线的力学和电子性质,以及外应力对电子性质的影响。我们的计算得到了和此前实验一致的结论。
The intrinsic(pure) and extrinsic(doped) electronic properties of several one-dimensional (1D) and quasi-1D semiconductor nanostructures have been studied using first-principles method based on density functional theory.Several device design proposals based on those nanostructures are presented from our theoretical calculations.
     Firstly,we studied the quantum confinement and electronic properties of singlecrystalline silicon nanotubes(sc-SiNTs) with both uniform(ideal) and nonuniform (more practical for experiments) thickness.(ⅰ) These pristine sc-SiNTs with sp~3 hybridization are found to be energetically stable.The electronic property is sensitive to the external diameter,tube-wall thickness,and tube-axis orientation due to quantum confinement effects.(ⅱ)For SiNTs with nonuniform thickness,the distributions of wavefunctions of the valence band maximum(VBM) and conduction band minimum (CBM) show that the carriers(electrons and holes) are mainly confined in the thicker sides,supplying an advantage to spatially separate the doping impurities from the conducting channel in doped SiNTs.And we proposed a new modulation doping method to reduce the impurity scattering through the nonuniformity of nanostructures instead of heterostructures.
     Secondly,we studied the impurity scattering for the quasi-1Dπ~* electrons at Si-Ge and Sn-Ge dimers on a Ge(001) surface by first-principles calculations,collaborated with STM experimental group.Phase-shift analysis of standing waves in dI/dV images reveals that Si and Sn atoms located in the conduction path ofπ~* electrons form potentials with the opposite sign to each other.Our density-functional calculations and model calculations based on the nearly-free-electron model explain the observed potential structures,well consistent with experiments.These results are qualitatively understood by relative p-orbital energy of the Si,Sn,and Ge atoms.
     Thirdly,we investigated electronic structures and electron field emission properties of Cs-doped boron-nitride nanotubes(BNNTs).We found that the nearly-free- electron(NFE) state of the BNNT couples with the alkali atom states,giving rise to a metallic band crossing the Fermi level.Our first-principles electron dynamic simulations under applied fields showed that the BNNT can generate an emission current two orders of magnitude larger than the carbon nanotube.We proposed that the alkali metal-doped BNNT should be an excellent electron emitter in terms of the large emission current as well as its chemical and mechanical stability.
     Finally,we studied the mechanical properties,electronic structure,and uniaxialstress effects ofβ-SiC nanowires(NWs).It is found that the band gap of SiC NWs becomes larger as their diameter decreases because of the quantum confinement effect, but increases(decreases) slightly with increasing tensile(compressive) stress up to about 12 GPa.The calculated Young's modulus and tensile strength are consistent with the experimental data.
引文
[1]Guo L.Nanoimprint Lithography:Methods and Material Requirements.Adv.Mater,2007,19:495-513.
    [2]Austin M,et al.Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography.Applied Physics Letters,2004,84(26):5299.
    [3]Baek I,Yang J,Cho W,et al.Electron beam lithography patterning of sub-10 nm line using hydrogen silsesquioxane for nanoscale device applications.Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2005,23:3120.
    [4]Feynman R.There's plenty of room at the bottom:An invitation to enter a new field of physics.Engineering and Science,1960,23(5):22-36.
    [5]Binnig G,Rohrer H.Scanning tunneling microscopy.IBM Journal of Research and Development,1986,30(4):355-369.
    [6]Xia Y,Yang P,Sun Y,et al.One-dimensional nanostructures:Synthesis,characterization,and applications.Adv.Mater.,2003,15:353-389.
    [7]Nag B.Physics of Quantum Well Devices.Kluwer Academic Pub,2000.
    [8]Herman M,Sitter H.Molecular beam epitaxy:fundamentals and current status.Berlin,1989.
    [9]Alivisatos A.Semiconductor clusters,nanocrystals,and quantum dots.Science,1996,271(5251):933-937.
    [10]Law M,Goldberger J,Yang P.Semiconductor Nanowires And Nanotubes.Annual Review of Materials Research,2004,34(1):83-122.
    [11]Saito R,Dresselhaus G,MIT M.Physical properties of carbon nanotubes.London:Imperial College Press,1998.
    [12]Chen L.Silicon nanowires:the key building block for future electronic devices..
    [13]Radushkevich L,Lukyanovich V.O strukture ugleroda,obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte.Zurn Fisic Chim,1952,26:88-95.
    [14]Oberlin A,Endo M,Koyama T.Filamentous growth of carbon through benzene decomposition.J.Cryst.Growth,1976,32(3):335-349.
    [15]Hillert M,Lange N.The structure of graphite filaments.Keit Krist,1958,111:24-34.
    [16]Boehm H.Carbon From Carbon Monoxide Disproportionation on Nickel and Iron Catalysts:Morphological Studies and Possible Growth Mechanisms,1973.Carbon.583-590.
    [17]Iijima S,et al.Helical microtubules of graphitic carbon.Nature,1991,354(6348):56-58.
    [18]Monthioux M,Kuznetsov V.Who should be given the credit for the discovery of carbon nanotubes? Carbon,2006,44(9):1621-1623.
    [19]Dai H.Nanotube Growth and Characterization.Carbon Nanotubes:Synthesis,Structure,Properties,and Applications,2001..
    [20]See C,Harris A.A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition.Industrial & Engineering Chemistry Research,2007,46(4):997-1012.
    [21]Guo T,Nikolaev P,Thess A,et al.Catalytic growth of single-walled manotubes by laser vaporization.Chemical Physics Letters,1995,243(1-2):49-54.
    [22]Jos(?)-Yacam(?)n M,Miki-Yoshida M,Rend(?)n L,et al.Catalytic growth of carbon microtubules with fullerene structure.Applied Physics Letters,1993,62:202.
    [23]Choi W,et al.Fully sealed,high-brightness carbon-nanotube field-emission display.Applied Physics Letters,1999,75(20):3129.
    [24]McDonald T,Blackburn J,Metzger W,et al.Chiral-Selective Protection of Single-walled Carbon Nanotube Photoluminescence by Surfactant Selection..
    [25]Dresselhaus M S,Dresselhaus G,Avouris P.Carbon Nanotubes.In Topics in Applied Physics.Berlin:Springer,2001.
    [26]Dekker C,et al.Carbon nanotubes as molecular quantum wires.Physics Today,1999,52(5):22-28.
    [27]McEuen P.Single-wall carbon nanotubes.Physics World,2000,13(6):31-36.
    [28]Liang W,Bockrath M,Bozovic D,et al.Fabry-Perot interference in a nanotube electron waveguide.Nature,2001,411(6838):665-669.
    [29]Kong J,Yenilmez E,Tombler T,et al.Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides.Physical Review Letters,2001,87(10):106801.
    [30]Dai H.Controlling nanotube growth.Physics World,2000,13(6):43-47.
    [31]Heer W,Chatelain A,Ugarte D.A Carbon Nanotube Field-Emission Electron Source.Science,1995,270(5239):1179.
    [32]Wang Q,et al.A nanotube-based field-emission flat panel display.Applied Physics Letters,1998,72(22):2912.
    [33]Wang Q,Yan M,Chang R.Flat panel display prototype using gated carbon nanotube field emitters.Applied Physics Letters,2001,78:1294.
    [34]Terrones M.Science And Technology Of The Twenty-First Century:Synthesis,Properties,and Applications of Carbon Nanotubes.Annual Review of Materials Research,2003,33(1):419-501.
    [35]Dean K,Chalamala B.The environmental stability of field emission from single-walled carbon nanotubes.Applied Physics Letters,1999,75:3017.
    [36]Dean K,et al.Current saturation mechanisms in carbon nanotube field emitters.Applied Physics Letters,2000,76(3):375.
    [37]Chalamala B,Wallace R,Gnade B.Effect of O on the electron emission characteristics of active molybdenum field emission cathode arrays.Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1998,16:2859.
    [38]Rubio A,Corkill J,Cohen M.Theory of graphitic boron nitride nanotubes.Physical Review B,1994,49(7):5081-5084.
    [39]Chopra N,Luyken R,Cherrey K,et al.Boron Nitride Nanotubes.Science,1995,269(5226):966-967.
    [40]Terrones M,Romo-Herrera J,Cruz-Silva E,et al.Pure and doped boron nitride nanotubes.Materials Today,2007,10(5):30-38.
    [41]X.B,A R,G L S.Stability and Band Gap Constancy of Boron Nitride Nanotubes.Euro-phys.Lett,1994,28(51):335-340.
    [42]Chen Y,Zou J,Campbell S J.Boron nitride nanotubes:Pronounced resistance to oxidation.Appl.Phys.Lett.,2004,84(13):2430-2432.
    [43]Sugino T,Tagawa S.Effect of oxygen plasma treatment on field emission characteristics of boron-nitride films.Applied Physics Letters,1999,74:889.
    [44]Okada S,Oshiyama A,Saito S.Nearly free electron states in carbon nanotube bundles.Physical Review B,2000,62(11):7634-7638.
    [45]Cumings J,Zettl A.Field emission and current-voltage properties of boron nitride nanotubes.Solid State Communications,2004,129(10):661-664.
    [46]WANGNER RS E.Vapor-liquid-solid mechanism of single crystal growth[J].Appl Phys Lett,1964,4(5):89-90.
    [47]Westwater J,Gosain D,Tomiya S,et al.Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction.Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1997,15:554.
    [48]Morales A,et al.A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires.Science,1998,279(5348):208-211.
    [49]Huang Y,Duan X,Cui Y,et al.Logic Gates and Computation from Assembled Nanowire Building Blocks.Science,2001,294(5545):1313-1317.
    [50]Whang D,Jin S,Wu Y,et al.Large-scale hierarchical organization of nanowire arrays for integrated nanosystems.Nano Lett,2003,3(9):1255-1259.
    [51]Lieber C,Wang Z.F unctional Nanowires.MRS BULLETIN,2007,32:99-104.
    [52]Lu W,Lieber C.TOPICAL REVIEW:Semiconductor nanowires.Journal of Physics D:Applied Physics,2006,39(21):R387-R406.
    [53]Liu J,Cai S,Jin G,et al.Growth of Si whiskers on Au/Si(111)substrate by gas source molecular beam epitaxy(MBE).Journal of Crystal Growth,1999,200(1):106-111.
    [54]Wu Y,Cui Y,Huynh L,et al.Controlled growth and structures of molecular-scale silicon nanowires.Nano Lett,2004,4(3):433-436.
    [55]Hochbaum A,Fan R,He R,et al.Controlled Growth of Si Nanowire Arrays for Device Integration.Nano Lett,2005,5(3):457-460.
    [56]Li Y,Qian F,Xiang J,et al.Nanowire electronic and optoelectronic devices.Materials Today,2006,9(10):18-27.
    [57]Ma D,Lee C,Au F,et al.Small-Diameter Silicon Nanowire Surfaces.Science,2003,299(5614):1874-1877.
    [58]Read A,Needs R,Nash K,et al.First-principles calculations of the electronic properties of silicon quantum wires.Physical Review Letters,1992,69(8):1232-1235.
    [59]Delley B,Steigmeier E.Size dependence of band gaps in silicon nanostructures.Applied Physics Letters,1995,67:2370.
    [60]Zhang Y,Tang Y,Peng H,et al.Diameter modification of silicon nanowires by ambient gas.Applied Physics Letters,1999,75:1842.
    [61]Holmes J,Johnston K,Doty R,et al.Control of Thickness and Orientation of Solution-Grown Silicon Nanowires.Science,2000,287(5457):1471.
    [62]Cui Y,Duan X,Hu J,et al.Doping and electrical transport in silicon nanowires.J.Phys.Chem.B,2000,104(22):5213-5216.
    [63]Ohno T,Shiraishi K,Ogawa T.Intrinsic origin of visible light emission from silicon quantum wires:Electronic structure and geometrically restricted exciton.Physical Review Letters,1992,69(16):2400-2403.
    [64]Rurali R,Lorente N.Metallic and Semimetallic Silicon!100?Nanowires.Physical Review Letters,2005,94(2):26805.
    [65]Zhang R,Lifshitz Y,Ma D,et al.Structures and energetics of hydrogen-terminated silicon nanowire surfaces.The Journal of Chemical Physics,2005,123:144703.
    [66]Landman U,Barnett R,Scherbakov A,et al.Metal-Semiconductor Nanocontacts:Silicon Nanowires.Physical Review Letters,2000,85(9):1958-1961.
    [67]Zhao X,Wei C,Yang L,et al.Quantum Confinement and Electronic Properties of Silicon Nanowires.Physical Review Letters,2004,92(23):236805.
    [68]Fernndez-Serra M V,Adessi C,Blas X.Conductance,Surface Traps,and Passivation in Doped Silicon Nanowires.Nano Lett,2006,6(12):2674-2678.
    [69]Wang S.Fundamentals of semiconductor theory and device physics.Prentice Hall Englewood Cliffs,NJ,1989.
    [70]Lu W,Lieber C.Nanoelectronics from the bottom up.Nat.Mater.,2007,11:841-850.
    [71]Jin S,Whang D,Mcalpine M,et al.Scalable interconnection and integration of nanowire devices without registration.Nano letters,2004,4(5):915-919.
    [72]Zheng G,Lu W,Jin S,et al.Synthesis and fabrication of high-performance n-type silicon nanowire transistors.Advanced materials(Weinheim),2004,16(21):1890-1893.
    [73]Cui Y,Wei Q,Park H,et al.Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species.Science,2001,293(5533):1289-1292.
    [74]Duan X,Huang Y,Agarwal R,et al.Single-nanowire electrically driven lasers.Nature,2003,421(6920):241-244.
    [75]Xiang J,Lu W,Hu Y,et al.Ge/Si nanowire heterostructures as high-performance field-effect transistors.Nature,2006,441(7092):489-493.
    [76]Chan C,Peng H,Liu G,et al.High-performance lithium battery anodes using silicon nanowires.Nature,2008,3:31-35.
    [77]Zhang R,Lee S,Law C,et al.Silicon nanotubes:Why not? Chemical Physics Letters,2002,364(3-4):251-258.
    [78]Bai J,Zeng X,Tanaka H,et al.Metallic single-walled silicon nanotubes.Proceedings of the National Academy of Sciences,2004,101(9):2664-2668.
    [79]Jeong S,Kim J,Yang H,et al.Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy.Advanced Materials(FRG),2003,15(14):1172-1176.
    [80]Teo B,Li C,Sun X,et al.Silicon-silica nanowires,nanotubes,and biaxial nanowires:inside,outside,and side-by-side growth of silicon versus silica on zeolite.Inorg Chem,2003,42(21):6723.
    [81]Tang Y,Pei L,Chen Y,et al.Self-Assembled Silicon Nanotubes under Supercritically Hydrothermal Conditions.Physical Review Letters,2005,95(11):116102.
    [82]Chen Y,Tang Y,Pei L,et al.Self-Assembled Silicon Nanotubes Grown for Silicon Monoxide.Advanced Materials(FRG),2005,17(5):564-567.
    [83]Dai H,Wong E,Lu Y,et al.Synthesis and characterization of carbide nanorods.Nature,1995,375(6534):769-772.
    [84]Li Z,Li H,Chen X,et al.Large-scale synthesis of crystalline B-SiC nanowires.Applied Physics A:Materials Science & Processing,2003,76(4):637-640.
    [85]Pan Z,Lai H,Au F,et al.Oriented Silicon Carbide Nanowires:Synthesis and Field Emission Properties*.Science,1997,276:926.
    [86]Liang C,Meng G,Zhang L,et al.Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles.Chemical Physics Letters,2000,329(3-4):323-328.
    [87]Seong H,Choi H,Lee S,et al.Optical and electrical transport properties in silicon carbide nanowires.Applied Physics Letters,2004,85:1256.
    [88]Reichert J,Ochs R,Beckmann D,et al.Driving Current through Single Organic Molecules.Physical Review Letters,2002,88(17):176804.
    [89]Venkataraman L,Klare J,Nuckolls C,et al.Dependence of Single Molecule Junction Conductance on Molecular Conformation.Nature,2006,442:904-907.
    [90]Tomatsu K,Nakatsuji K,Iimori T,et al.An Atomic Seesaw Switch Formed by Tilted Asymmetric Sn-Ge Dimers on a Ge(001)Surface.Science,2007,315(5819):1696.
    [91]Needels M,Payne M,Joannopoulos J.High-order reconstructions of the Ge(100)surface.Physical Review B,1988,38(8):5543-5546.
    [92]Nakatsuji K,Takagi Y,Komori F,et al.Electronic states of the clean Ge(001)surface near Fermi energy.Physical Review B,2005,72(24):241308.
    [93]Bechstedt F.Principles of Surface Physics.Berlin:Springer-Verlag,2003.
    [94]Kohn W.Nobel Lecture:Electronic structure of matter-wave functions and density functionals.Reviews of Modern Physics,1999,71(5):1253-1266.
    [95]Born M,Oppenheimer R.Quantum theory of the molecules.Ann.Phys.(Leipzig),1927,84:457-484.
    [96]Hohenberg P,Kohn W.Inhomogeneous Electron Gas.Phys.Rev,1927,136:B864-B871.
    [97]Kohn W,Sham L J.Self-Consistent Equations Including Exchange and Correlation Effects.Phys.Rev,1965,140(4A):A1133-A1138.
    [98]Zhou G,Duan W.Field Emission in Doped Nanotubes.Journal of Nanoscience and Nanotechnology,2005,5(9):1421-1434.
    [99]Fowler R,Nordheim L.Electron Emission in Intense Electric Fields.Proceedings of the Royal Society of London.Series A,Containing Papers of a Mathematical and Physical Character,1928,119(781):173-181.
    [100]Lorenzoni A,Roman H,Alasia F,et al.High-current field emission from an atomic quantum wire.Chemical Physics Letters,1997,276(3-4):237-241.
    [101]He J,Cutler P,Miskovsky N.Generalization of Fowler-Nordheim field emission theory for nonplanar metal emitters.Applied Physics Letters,1991,59:1644.
    [102]Gohda Y,Nakamura Y,Watanabe K,et al.Self-Consistent Density Functional Calculation of Field Emission Currents from Metals.Physical Review Letters,2000,85(8):1750-1753.
    [103]Lang N,Yacoby A,Imry Y Theory of a single-atom point source for electrons.Physical Review Letters,1989,63(14):1499-1502.
    [104]Han S,Lee M H,Dim J.Dynamical simulation of field emission in nanostructures.Phys.Rev.B,2002,65(8):085405.
    [105]HAN W,BANDO Y,KURASHIMA K,et al.Formation of Boron Nitride(BN)FullereneLike Nanoparticles and(BN) x C y Nanotubes Using Carbon Nanotubes as Templates.Japanese Journal of Applied Physics,1999,38(7A):L755-L757.
    [106]Lee S.Theoretical Study on Electronic Structure and Field Emission Properties of Carbon Nanostructures[博士学位论文].Seoul,Korea:Seoul National University,2007.
    [107]Soler J,Artacho E,Gale J,et al.The SIESTA method for ab initio order-N materials simulation.Journal of Physics:Condensed Matter,2002,14(11):2745-2779.
    [108]Ordej(?)n P,Artacho E,Soler J.Self-consistent order-N density-functional calculations for very large systems.Physical Review B,1996,53(16):10441-10444.
    [109]Cui Y,Zhong Z,Wang D,et al.High performance silicon nanowire field effect transistors.Nano Lett,2003,3(2):149-152.
    [110]Gudiksen M,Lauhon L,Wang J,et al.Growth of nanowire superlattice structures for nanoscale photonics and electronics.Nature,2002,415(6872):617-620.
    [111]Fiory A,Ravindra N Light emission from silicon:Some perspectives and applications.Journal of Electronic Materials,2003,32(10):1043-1051.
    [112]Menon M,Richter E.Are Quasi-One Dimensional Structures of Si Stable? Physical Review Letters,1999,83(4):792-795.
    [113]Hu J,Bando Y,Liu Z,et al.The First Template-Free Growth of Crystalline Silicon Microtubes.Advanced Functional Materials,2004,14(6):610-614.
    [114]Troullier N,Martins J.Efficient pseudopotentials for plane-wave calculations.Physical Review B,1991,43(3):1993-2006.
    [115]Perdew J,Zunger A.Self-interaction correction to density-functional approximations for many-electron systems.Physical Review B,1981,23(10):5048-5079.
    [116]Perdew J,Wang Y Accurate and simple analytic representation of the electron-gas correlation energy.Physical Review B,1992,45(23):13244-13249.
    [117]Hybertsen M,Louie S.First-Principles Theory of Quasiparticles:Calculation of Band Gaps in Semiconductors and Insulators.Physical Review Letters,1985,55(13):1418-1421.
    [118]Buda F,Kohanoff J,Parrinello M.Optical properties of porous silicon:A first-principles study.Physical Review Letters,1992,69(8):1272-1275.
    [119]Yeh C,Zhang S,Zunger A.Confinement,surface,and chemisorption effects on the optical properties of Si quantum wires.Physical Review B,1994,50(19):14405-14415.
    [120]Delerue C,Allan G,Lannoo M.Theoretical aspects of the luminescence of porous silicon.Physical Review B,1993,48(15):11024-11036.
    [121]Fagan S,Baierle R,Mota R,et al.Ab initio calculations for a hypothetical material:Silicon nanotubes.Physical Review B,2000,61(15):9994-9996.
    [122]Cullis A,Canham L,Calcott P.The structural and luminescence properties of porous silicon.Journal of Applied Physics,1997,82:909.
    [123]Peelaers H,Partoens B,Peeters F Formation and Segregation Energies of B and P Doped and BP Codoped Silicon Nanowires.Nano Lett,2006,2006:2781-2784.
    [124]Yang C,Zhong Z,Lieber C.Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires.Science,2005,310(5752):1304-1307.
    [125]Lauhon L,Gudiksen M,Wang D,et al.Epitaxial core-shell and core-multishell nanowire heterostructures.Nature,2002,420(6911):57-61.
    [126]Lu W,Xiang J,Timko B,et al.One-dimensional hole gas in germanium/silicon nanowire heterostructures.Proc Natl Acad Sci US A,2005,102(29):10046-10051.
    [127]Musin R,Wang X.Structural and electronic properties of epitaxial core-shell nanowire heterostructures.Physical Review B,2005,71(15):155318.
    [128]Musin R,Wang X.Quantum size effect in core-shell structured silicon-germanium nanowires.Physical Review B,2006,74(16):165308.
    [129]Flood A,Stoddart J,Steuerman D,et al.Whence Molecular Electronics? Science,2004,306(5704):2055-2056.
    [130]Hasegawa Y,Avouris P.Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy.Physical Review Letters,1993,71(7):1071-1074.
    [131]Crommie M,Lutz C,Eigler D.Imaging standing waves in a two-dimensional electron gas.Nature,1993,363:524-527.
    [132]Yokoyama T,Okamoto M,Takayanagi K.Electron Waves in the π~* Surface Band of the Si(001)Surface.Physical Review Letters,1998,81(16):3423-3426.
    [133]Matsuda I,Ueno M,Hirahara T,et al.Electrical Resistance of a Monatomic Step on a Crystal Surface.Physical Review Letters,2004,93(23):236801.
    [134]Li J,Schneider W D,Berndt R.Local density of states from spectroscopic scanningtunneling-microscope images:Ag(111).Phys.Rev.B,1997,56(12):7656-7659.
    [135]Kresse G,Hafner J.Ab initio molecular dynamics for liquid metals.Physical Review B,1993,47(1):558-561.
    [136]Kresse G,Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Physical Review B,1996,54(16):11169-11186.
    [137]Kresse G,Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method.Physical Review B,1999,59(3):1758-1775.
    [138]Monkhorst H,Pack J.Special points for Brillouin-zone integrations.Physical Review B,1976,13(12):5188-5192.
    [139]Tersoff J,Hamann D R.Theory of the scanning tunneling microscope.Phys.Rev.B,1985,31(2):805-813.
    [140]Ibach H,Lüth H.Solid-State Physics:An Introduction to Principles of Materials Science.Springer-Verlag,1995.
    [141]McEllistrem M,Haase G,Chen D,et al.Electrostatic sample-tip interactions in the scanning tunneling microscope.Phys.Rev.Lett.,1993,70(16):2471-2474.
    [142]Gay S C A,Srivastava G P.Dimer length variation for different reconstructions of Si,Ge,and mixed Si-Ge dimers on Si(001)and Ge(001)substrates.Phys.Rev.B,1999,60(3):1488-1491.
    [143]Otsuka E,Nagata S,Murase K.Cyclotrion Resonance Studies of Ge-Si And Ge-Sn Systems.Journal of the Physical Society of Japan,1965,20(5):727-735.
    [144]S.Kotochigova E S t.National Institute of Standards and Technology,Atomic Reference Data for Electronic Structure Calculations.v2000.
    [145]Takagi Y,Nakatsuji K,Yoshimoto Y,et al.Superstructure manipulation on a clean Ge(001)surface by carrier injection using an STM.Physical Review B,2007,75(11):115304.
    [146]Arenal R,Ferrari A,Reich S,et al.Raman Spectroscopy of Single-Wall Boron Nitride Nanotubes.Nano Lett,2006,6(8):1812-1816.
    [147]Guo G Y,Ishibashi S,Tamura T,et al.Static dielectric response and Born effective charge of BN nanotubes from ab initio finite electric field calculations.Phys.Rev.B,2007,75:245403-245409.
    [148]Miyoshi K,Buckley D H,Pouch J J,et al.Mechanical strength and tribological behavior of ion-beam-deposited boron nitride films on non-metallic substrates.Surface and Coatings Technology,1987,33:221-223.
    [149]Wang Q,Corrigan T,Dai J,et al.Field emission from nanotube bundle emitters at low fields.Applied Physics Letters,1997,70:3308.
    [150]Zhu W,et al.Large current density from carbon nanotube field emitters.Applied Physics Letters,1999,75(6):873.
    [151]Bonard J,Maier F,Stockli T,et al.Field emission properties of multiwalled carbon nanotubes.Ultramicroscopy,1998,73(7):7-5.
    [152]Ceperley D M,Alder B J.Ground State of the Electron Gas by a Stochastic Method.Phys.Rev.Lett.,1980,45(7):566-569.
    [153]Baroni S,Gironcoli S,Corso A D,et al.http://www.pwscf.org..
    [154]Ihm J,Zunger A,Cohen M.Momentum-space formalism for the total energy of solids.Journal of Physics C Solid State Physics,1980,13(16):3095-3095.
    [155]Lee S,Kim S,Ihm J.First-principles dynamic simulations of field emission from carbon nanotubes on gold substrate.Physical Review B,2007,75(7):75408.
    [156]Margine E,Crespi V.Universal Behavior of Nearly Free Electron States in Carbon Nanotubes.Physical Review Letters,2006,96(19):196803.
    [157]Miyamoto Y,Rubio A,Blase X,et al.Ionic Cohesion and Electron Doping of Thin Carbon Tubules with Alkali Atoms.Phys.Rev.Lett.,1995,74(15):2993-2996.
    [158]Rubio A,Miyamoto Y,Blase X,et al.Theoretical study of one-dimensional chains of metal atoms in nanotubes.Phys.Rev.B,1996,53(7):4023-4026.
    [159]Miyake T,Saito S.Electronic structure of potassium-doped carbon nanotubes.Phys.Rev.B,2002,65(16):165419.
    [160]Jeong G H,Farajian A A,Hatakeyama R,et al.Cesium encapsulation in single-walled carbon nanotubes via plasma ion irradiation:Application to junction formation and ab initio investigation.Phys.Rev.B,2003,68(7):075410.
    [161]Shan B,Cho K.First Principles Study of Work Functions of Single Wall Carbon Nanotubes.Phys.Rev.Lett.,2005,94:236602.
    [162]Wong E,et al.Nanobeam Mechanics:Elasticity,Strength,and Toughness of Nanorods and Nanotubes.Science,1997,277(5334):1971-1975.
    [163]Yang W,Araki H,Tang C,et al.Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites.Adv.Mater,2005,17:1519-1523.
    [164]Casady J B,Johnson R W Status of silicon carbide(SiC)as a wide-bandgap semiconductor for high-temperature applications:A review.Solid-State Electronics,1996,39(10):1409-1422.
    [165]Zhao G,Bagayoko D.Electronic structure and charge transfer in 3C-and 4H-SiC.New Journal of Physics,2000,2(1):16.
    [166]Zhao M,Xia Y,Li F,et al.Strain energy and electronic structures of silicon carbide nanotubes:Density functional calculations.Physical Review B,2005,71(8):85312.
    [167]Zhou G,Duan W,Gu B.First-principles study on morphology and mechanical properties of single-walled carbon nanotube.Chemical Physics Letters,2001,333(5):344-349.
    [168]Lambrecht W R L,Segall B,Methfessel M,et al.Calculated elastic constants and deformation potentials of cubic SiC.Phys.Rev.B,1991,44(8):3685-3694.
    [169]Madelung O.Landolt-Bornstein:Numerical Data and Functional Relationships in Science and Technology,New Series,Group Ⅲ,Vol.17.Berlin:Springer,1982.
    [170]Tang J,Qin L C,Sasaki T,et al.Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure.Phys.Rev.Lett.,2000,85(9):1887-1889.
    [171]Zang J,Treibergs A,Han Y,et al.Geometric Constant Defining Shape Transitions of Carbon Nanotubes under Pressure.Phys.Rev.Lett.,2004,92(10):105501.
    [172]Wu J,Zang J,Larade B,et al.Computational design of carbon nanotube electromechanical pressure sensors.Phys.Rev.B,2004,69(15):153406.
    [173]Buchner W,Schliebs R,Winter G,et al.Industrial Inorganic Chemistry.Weinham,Germany:Wiley-VCH,1989.
    [174]Wang H,Kang B,Ren F,et al.Hydrogen-selective sensing at room temperature with ZnO nanorods.Applied Physics Letters,2005,86:243503.
    [175]Li Q,Liang Y,Wan Q,et al.Oxygen sensing characteristics of individual ZnO nanowire transistors.Applied Physics Letters,2004,85:6389.
    [176]Fan Z,Lu J.Gate-refreshable nanowire chemical sensors.Applied Physics Letters,2005,86:123510.
    [177]Wang Y,Meyer B,Yin X,et al.Hydrogen Induced Metallicity on the ZnO(101[over]0)Surface.Physical Review Letters,2005,95(26):266104.
    [178]Jia J,Shi D,Zhao J,et al.Metallization of ZnO nanowires from partial hydrogen adsorption.Nanotechnology,2007,18(455708):455708.
    [179]Xu H,Rosa A,Frauenheim T,et al.Density-functional theory calculations of bare and passivated triangular-shaped ZnO nanowires.Applied Physics Letters,2007,91:031914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700