含凹坑缺陷薄壁圆筒形压力容器的安全评定以及疲劳寿命的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
存在凹坑缺陷的压力容器,在凹坑处由于几何形状发生突变从而产生应力集中,对压力容器使用安全性和使用寿命都会产生一定的影响。基于以上考虑,本文对含凹坑缺陷薄壁圆筒形压力容器进行了以下几方面的研究。
     首先,选取不同情况下不同尺寸的凹坑,由于凹坑的存在,根据GB/T19624-2004《含缺陷压力容器安全评定》的要求,需要对所取的凹坑中满足G_0>0.1的凹坑进行了安全评定。评定结果表明:所存在于压力容器上的凹坑缺陷都在安全评定的允许范围之内。
     其次,由于疲劳分析是建立在有限元静力分析的基础之上的,因此利用MSC.Patran有限元分析软件对存在于容器上的不同种类的凹坑进行静力分析,得到应力云图,并且使用Excel对分析结果进行多元回归分析,得到多元回归方程。回归结果表明:最大主应力和应力集中系数都是随着Z/δ_n的增大呈幂函数增加的,而随着x/(?)的增加呈幂函数减小的。
     再次,根据静力分析结果,利用JB 4732中提供的疲劳设计曲线以及MSC.Fatigue疲劳分析软件对存在于容器上的不同种类的凹坑进行疲劳全寿命分析,并且使用Excel进行多元回归分析,得到回归方程。结果表明:利用疲劳分析曲线分析出来的疲劳寿命以及利用疲劳分析软件分析出来的MSC疲劳寿命都是随着Z/δ_n的增大成幂函数减小的,而随着X/(?)的增加成幂函数增加的。
The pressure vessel containing pit defects brings stress concentration at the place of pit because of break of geometrical figure, it makes a certain influence on the security and used life of vessel. According to above consideration, carrying out the following research about the pressure vessel containing pit defects.
     Firstly, choosing pits in the different situation and different dimension, owing to existing pits, according to request of GB/T19624-2004 Safety Assessment for Pressure Vessels Containing Defects, need carry through safety assessment for the pits which satisfy G_0>0.1.The results indicate that researchful pits are in the allowable range of safety assessment.
     Seccondly, fatigue analysis is based on the statics analysis, so, making use of finite element software MSC.Patran to carry through statics analysis for the vessels which contain different kind of pits, and making ues of Excel to carry through multianalysis, gainedingaregressive formulas. The results indicate that along with the increase of Z/δ_n, maximal principal stress and stress concentration factor are power increases and along with the increase of X/(?)_n , maximal principal stress and stress concentration factor are power decreases.
     Thirdly, according to the statics analysis, making use of fatigue design curve in JB 4732 and fatigue analysis software MSC.Fatigue to carry through fatigue life analysis for the vessels which contain different kind of pits, and making ues of Excel to carry through multianalysis, gaineding aregressive formulas. The results indicate that along with theincrease of Z/δ_n, design fatigue life and MSC fatigue life are power decreases and along with the increase of X/(?) , design fatigue life and MSC fatigue life are power increases.
引文
[1]季万勇.压力钢管凹坑缺陷探讨[J].水利电力机械,2005,27(6):36-37
    
    [2]李志安.压力容器断裂理论与缺陷评定[M].大连:大连理工大学出版社,1994:35-40
    
    [3] WilkowskiG M, Others.De graded Piping Program Phase I Summary of Teehnica I Results and Their Sinificance to Leak-Before-Break and in Service Flaw Acceptance Criteria[J]. NuclearRegulatoryCommlssion, Washington, D.C.1989,8:152-160
    
    [4] Wilkowski G M, Others. Short Cracks in Piping and Piping Welds[J]. U.S.Nuclear Regulatory Commission Washington.D. C.1994,4 (2): 3-10
    
    [5]库默(美).周洪范译.弹塑性断裂分析工程方法(EPRI报告NP-1931)[M].北京:国防工业出版社,1985:54-60
    
    [6] Bloom J M, Malik S N. Procedure forthe Asessment of the Integrity of Nuclear Pressure Vesselsand Piping Containing Defects. EPRI Report NP-2431 [In], 1982:15-20
    
    [7]R.W.尼柯尔斯[英].李建国译.压力容器技术进展-5规范和标准[M].北京:机械工业出版社,1992:198-201
    
    [8] ASME Nuclear Power Plants Componets CodeN c-3658, ASME Section Ⅲ.
    
    [9] Schulz H. The Evaluation of the Break Preclusion Concept for Nuclear Power Piantin Germany.Paper Specialist Meeting on Leak Before Break in Reactor Pipingand Vessels[J]. Lyon France, 1995:101-105
    
    [10]钟群鹏,李学仁.中国压力容器安全评定技术的研究应用和发展[J].中国锅炉压力容器安全,1997,13(2):4-9
    
    [11]钟群鹏,武淮田,田永江,等.我国压力容器安全评定技术的现状和发展[J].中国机械工程,1997,8(5):95-100
    
    [12]沈士明.在役压力管道安全评定研究的现状与发展[J].中国机械工程,1997,8(3):101-104.
    
    [13]漆小波.在役含缺陷压力管道剩余强度评价系统的研究[D].成都:四川大学,2000
    
    [14]刘曦.含焊接缺陷结构的疲劳可靠性评定及其专家系统[D].南京:南京化工学院,1993
    
    [15]韩玉林.人工神经网络方法在含缺陷结构的疲劳寿命和投资失效载荷计算中的应用研究[D].南京:南京化工大学,1995
    
    [16]中国机械工程学会压力容器学会编辑.1973-1980年压力容器国外技术进展(上册)[M].北京:北京出版社,1980:5-10
    
    [17]张建勋,包利群,裴怡.计算机辅助焊接结构弹塑性断裂分析系统.压力容器[J],1998,15(4):45-48
    
    [18]周则恭,雷云琴,曹天捷,等.概率断裂力学在压力容器中的应用[M].北京:中国石化出版社,1996:25-36
    
    [19]压力容器缺陷评定规范编制组.压力容器缺陷评定规范CVDA-1984.
    
    [20]中华人民共和国国家质量监督检验疫总局.中国国家标准化管理委员会GB/T19624-2004在用含缺陷压力容器安全评定[S].北京:中国标准化出版社,2004
    
    [21]李培宁,杨芳毓.国际压力容器缺陷工程评定技术进展[J].压力容器,1991,8(2):3-6.
    
    [22]陈爱闽,马华,李生录,等.试论防疲劳断裂设计技术[M].北京:水利电力机械2002,24(6):85-91
    
    [23] Zhou Y. Fatigue strength evaluation of riveted bridge-members[D], Thesis Lehigh Univ,1994
    
    [24] Abo-Qudais S, Shatnawi I. Prediction of bituminous mixture fatigue life based onaccumulated strain [J]. Construction and Building Materials, 2007,21(6): 1370-1376
    
    [25] Xin L, Sanjeev K, Lawrence F. Effect of fatigue loading and residual stress onmicroscopic deformation mechanisms in a spot welded joint [J]. Materials Science andEngineering, 2007,454-455(25): 398-406
    
    [26] Gareth Pierce S. Fatigue life prediction of sandwich composite materials under flexuraltests using a Bayesian trained artificial neural network[J]. International Journal ofFatigue, 2007,29(4): 738-747
    
    [27] Owen D J R. Hinton E. Finite Element in Plasticity: Theory and Practice Swansea[M],UK: Pineridge Press, 1986:215-268
    
    [28] Xin x J, Goldthorpe M R. Fatigue Fracture Engineering Master Struct[J], 1993, 16:1309-1327
    
    [29] Choudhury I A, Elbaradia M A. Surface Roughness Prediction in Turning ofHigh-strength Steelby Factorial Design of Experimen[J]. Journal of Material ProcessingTechnology, 1997,67(3): 55-61
    
    [30] Damir A N, Elkhatib A, Nassef G. Prediction of fatigue life using modal analysis forgrey and ductile cast iron[J]. International Journal of Fatigue, 2007,29 (3): 499-507
    
    [31] Cavatorta M P, Paolino D L, Peroni, Rodino M. Finite element simulation andexperimental validation of a composite bolted joint loaded in bending and torsion.Composites Part A[J]. Applied Science and Manufacturing, 2007, 38(4): 1251-1261
    
    [32] Ke-Shen Cheong, Matthew J, Smillie, et al. Predicting fatigue crack initiation throughimage-based micromechanical modeling[J]. Acta Materialia, 2007, 55(5): 1757-1768
    
    [33] Zapatero J, Moreno B, Gonzalez-Herrera A. Fatigue crack closure determination bymeans of Finite Element Analysis[J]. Engineering Fracture Mechanics, In Press, AcceptedManuscript, Available online 2007.
    
    [34] Eberl C, Spolenak R, Kraft 0, W et al. Fatigue damage in thin film Al interconnects at ultra high frequency: A finite element analysis approach[J]. Thin Solid Films, 2007, 515( 6): 3291-3297
    
    [35]张洪才,黄克正,陈举华,等.基于断裂力学理论的表明淬火齿轮疲劳寿命的数值计算[J].应用力学学报,2004,21(1):17-21,1998,(1):3-6.
    
    [36]高镇同,熊俊江.疲劳学研究的进展[J].北京航天航空大学学报,1996,(3):5-7
    
    [37]杨庆生,杨卫.断裂过程的有限模拟[J].计算力学学报,1997,14(4):407-412
    
    [38]钟勇,肖福仁,单以银,等.管线钢疲劳裂纹扩展速率与疲劳寿命关系的研究[J].金属学报,2005,41(5):523-528
    
    [39]高慧,冯森林,吴长春.含缺口试件疲劳全寿命预测一种建议的方法[J].力学季刊,2006,27(3):421-426
    
    [40]张洪才,黄克正,陈举华,等.基于断裂力学理论的表明淬火齿轮疲劳寿命的数值计算[J].应用力学学报,2004,21(1):17-21
    
    [41]陈旭,高庆,何国求.非比例载荷多轴低周疲劳研究最新进展[J].力学进展,1997,27:313-325
    
    [42]工英玉,姚卫星.材料多轴疲劳破坏准01IJ同顾[J].机械强度,2003,25:246-251
    
    [43]杜洪增,田秀云,梁春光.紧固件边距尺寸对结构件疲劳品质的影响[J].中国民用航空学院,2005,(1):30-35
    
    [44]中华人民共和国国家质量监督检验疫总局,中国国家标准化管理委员会.GB/T19624-2004在用含缺陷压力容器安全评定[S].北京:中国标准化出版社,2004:153-160
    
    [45]周传月,郑红霞,罗慧强,等.MSC.Fatigue疲劳分析应用与实例[M].北京:科学出版社,2005:10-50
    
    [46]广西大学过程装备教研室.《含缺陷压力容器安全评定》[M].南宁:广西大学出版社,2006:50-51
    
    [47]张石铭.钢制压力容器-设计理论基础及安全监察要求[M].湖北:湖北科学技术出版社,1993:240-246
    
    [48]郑津洋,东其伍,桑芝富.过程设备设计[M].北京:化学工业出版社,2001:127-132
    
    [49]刘兵山,黄聪,等.Patran从入门到精通[M].北京:中国水利水电出版,2003:32-300
    
    [50][美]R.E彼德森,杨乐民,叶道益.应力集中系数[M].北京:国防工业出版社,1988:3-10
    
    [51]张永昌.MSC.Nastran有限元分析理论基础与应用[M].北京:科学出版社,2004:103-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700