棉花氮素响应特性及氮肥高效利用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“减投不减产”或“增产不增投”,提高物质、劳动、空间(农田)、时间(季节)“四位一体”利用效率,减轻环境负担,是我国农业高效、持续发展的必然要求。针对当前棉花生产中存在的氮(N)肥利用效率低下、生产成本上升而植棉效益下降、包括水体富营养化的农业面源污染加重等突出问题,本文重点探讨了长江流域棉区的湖北棉区N肥的合理施用量、N肥后移、以及减少肥料施用频率的可行性,旨在为探索提高N肥利用效率、降低棉花生产成本的新途径提供理论依据。以华杂棉H318为材料,于2008-2009年开展了4项研究:1.在不同土壤肥力(武汉、荆州)大田种植条件下,探讨施N量(0kg/ha-600kg/ha,5个处理)对棉花产量(生物学产量和经济产量,下同)、生理生化特性的影响;2.应用15N示踪技术,重点探讨盆栽棉花对不同时期(移栽前、初花期、盛花期)施入肥料N(施N量为0kg/ha-600kg/ha,5个处理)的吸收利用特点;3.油后直播并固定施N量(225kg/ha)和初花肥(FBA)40%的条件下,探讨底肥(PPA)与盛花肥(PBA)施N比例对大田种植高密度棉花产量的影响,对盆栽棉花吸收利用肥料N(15N标记)的影响;4.油后直播并施用750kg/ha复合肥(16:16:16)条件下,探讨施肥频率(1次FBA、2次PPA+FBA、3次PPA+FBA+PBA)对大田种植高密度棉花产量的影响。主要结果如下:
     1.施N量相同时,分次施用比例和施用频率对棉花生育期无影响,但随N肥后移(PPA中施N比例减少)苗期缩短、花铃期延长;一次施肥苗期较短,花铃期较长。盆栽棉花生育期比大田缩短15-20d。
     2.棉花经济产量和生物产量最高的施N量,肥力中等田块为中N(300kg/ha),肥力较低田块为富N(600kg/ha)。油后直播高密度时,适当减少施N量可以获得相当的棉花产量(1200kg/ha以上)。施N量相同时,棉花经济产量和生物产量均随PPA中施N比例减少而增加;经济产量与根系、叶片生物质量负相关,与其余器官生物质量盛花期及以前负相关,盛花期后正相关。施肥量相同时,一次施肥和常规三次施肥(生物、经济)产量相当,但显著高于两次施肥。处理间经济产量差异源于总成铃数,生物产量差异源于快速累积期(FAP)累积速度。
     3.棉株生物质(CPB)累积过程遵循logistic函数,但各试验不同处理函数的系数不同,表明不同处理CPB累积具有不同的特征值(FAP进入和终止时间、持续时问、累积速度等)。CPB的FAP累积速度随施N量增加而提高,施N量相同时,随PPA中施N比例降低而增加;一次施肥与三次施肥相当,但高于两次施肥。营养器官生物质(VOB)累积进入和终止FAP均早于生殖器官,但当施N量超过中N水平时,VOB累积终止FAP的时间晚于生殖器官。
     4.棉株N积累过程也遵循logistic函数,苗期缓慢,蕾期加快,开花期最快,吐絮后急剧下降。棉株对土壤N的吸收累积早于肥料N,N快速累积期(FAP)持续时间长于肥料N。棉株累积的肥料N大于土壤N,肥料N主要分配在生殖器官,但PPA的N则主要分配在营养器官。施N量相同时,开花结铃期棉株对N的吸收速度随PPA施N比例下降而增加,因而棉株积累的总N量也随PPA施N比例下降而增加。棉株进入N素FAP的时间早于生物质FAP。
     5.棉花吐絮以前,功能叶叶绿素含量随生育进程而上升;随施N量增加而上升,且土壤肥力较低时处理间差异更大。棉花叶片可溶性糖、可溶性蛋白质、叶柄硝态N含量均随施N量增加而增加,随生育进程先升后降,开花期最高。
     6.土壤碱解N含量随棉花生育进程而降低,随施N量增加而上升,随土壤深度增加而下降。盆栽条件下,随施N量增加棉花对肥料N的吸收率上升,土壤残留率下降,损失率以中N最高;施N量相同时,随PPA中施N比例降低,肥料N吸收利用率和土壤残留率上升,损失率下降。棉株对肥料N的吸收利用率,FBA最高,PPA最低。
     以上结果表明:
     1.棉花生育期可塑性较大,即使常规生育期的棉花品种,可以实现晚播不减产,提高时间利用效率。因而,也可确保冬季作物正常成熟、收获,提高土地利用效率
     2.晚播高密度,适当减少施N量,推迟N肥施用时间可获得棉花高产。因而可实现减肥(投)不减产,提高物质(N肥)利用效率;减少肥料流失,减轻环境负担。
     3.在棉株对养分吸收高峰时期(初花期)一次性施肥可以获得相当的产量,从而可简化棉花生产管理,减轻劳动强度,提高劳动效率。
     4.所以,推迟播种时间,增加棉花群体,减小棉株个体;降低施N数量,推迟施N时间,结合作物秸秆还田,可提高资源效用,减少管理工序,节约生产成本,实现以“减投不减产”、“四位一体”高效利用、减轻环境负担为特征的持续、高效农业生产。
It is the necessary requirement for agricultural sustainable and efficient development to increase output without an increase of input or to decrease input without a decrease of output, to enhance the efficiency of four items-material, human work, space (field) and time (season), and to alleviate the burden to the environment. Based on the pending issues in cotton production of low utilization rate in N (fertilizer), profit dropping accompanied with cost rising of production, and aggravating in agricultural surface pollution such as eutrophication, the paper stresses on optimizing N rate, the feasibility of N late application and minimum application frequencies in Hubei cotton production area, to provide principles for ways to increase N utilization rate and decrease production cost. By adopting Huazamian H318(Gossypium hirsutum L.), four experiments were carried out in2008-2009:1) N rate (0-600kg/ha) effect on field grown cotton features in biology (especially seed cotton yield) and physiology under different soil fertilities (sites)(Wuhan, Jingzhou);2) pot grown cotton absorption and distribution features for N (fertilizer) applied at different stages (preplant, first bloom, peak bloom) under different N rate (0-600kg/ha) by labeling15N;3) biological and N absorbing responses of direct sown cotton after rapeseed harvested to N late application (split ratio) by fixing N rate at225kg/ha and the ratio for first bloom application (FBA) at40%in field grown and pot grown (15N labeling) conditions, respectively;4) biological response of direct sown field grown cotton after rapeseed harvested to fertilization frequencies (once at FBA, twice at preplant application (PPA) and FBA50%each, thrice at PPA, FBA and peak bloom application (PBA) at30%,40%and30%, respectively) by fixing the fertilization rate at750kg/ha of compound fertilizer (16:16:16). The main results were:
     1. Cotton growing period was not affected by N application split ratio or fertilization frequencies if N rate was fixed, but the seedling period was shortened and the flowering and boll setting period was extended as N application was postponed (PPA ratio was decreased), or when fertilization was carried out once. Pot grown cotton had a (15-20d) shorter growing period than field grown cotton.
     2. N rate for the maximum biological and economic yield harvested was the medium rate of300kg/ha in normal soil fertility field, but the rich rate of600kg/ha in lower soil fertility field. More than1,200kg/ha of cotton lint was produced with a reduced N rate of225kg/ha and a higher density of45,000plant/ha for direct sown cotton after rapeseed was harvested. When fixing the N rate, cotton both biological and economic yield increased as PPA ratio decreased; economic yield was negatively correlated to root and leaf biomass, and correlated to the biomass of the rest organs negatively before peak bloom stage but positively after that. When fixing the fertilizer rate, fertilization once produced the same (biological and economic) yield as fertilization thrice did, but the higher yield than fertilization twice did significantly. Economic yield difference was derived from boll number per unit ground area, but biological yield difference was derived from the biomass accumulation speed during the fast accumulation period (FAP).
     3. Cotton plant biomass (CPB) accumulation process could be described by a logistic function, and the coefficients varied from treatments of each treatment implied that they had different accumulation characteristics such as initiating and terminating date and duration of FAP, the speed during the FAP. The accumulation speed of CPB during FAP increased as the N rate increased, and when N rate was fixed, it was increased as PPA ratio decreased, and application once had the same speed as application thrice did but higher than application twice did significantly. Vegetative organs biomass (VOB) accumulation initiated and terminated the FAP earlier than reproductive organs biomass (ROB), but terminated the FAP later than ROB when N rate was higher than medium level.
     4. Cotton plant accumulated N slowly in seedling, faster in squaring, the fastest in flowering and slowly again after boll open, which could be described by logistic function. Cotton plant accumulation for soil N initiated the fast accumulation period (FAP) earlier and lasted a longer FAP than fertilizer N. Cotton plant accumulated more fertilizer N than soil N, and fertilizer N was mainly distributed to reproductive organs, while the fertilizer N applied at PPA was to the vegetative organs. When N rate was fixed, the absorption speed during flowering and boll setting period and then the amount of N accumulated in cotton plant increased as PPA ratio decreased. Cotton plant initiated N FAP earlier than biomass FAP.
     5. Up to boll open stage, chlorophyll content in cotton functional leaf increased as the plant development, and as the N rate increased, and the difference in chlorophyll content among N rates was greater in low soil fertility field than medium field. The leaf content of soluble sugar, soluble protein and petiole content of nitrate N correlated positively to N rate, and rose first and then dropped as the development with the highest in flowering.
     6. Soil alkaline N content decreased steadily as plant grew, as deepening in the soil, but positively correlated to N rate. For pot grown cotton, fertilizer N utilization rate responded positively, but N soil residual responded negatively to N rate, while medium N rate had the highest N loss rate. When N rate was fixed, as PPA ratio decreased, fertilizer N utilization rate and soil residual increased but N loss rate increased. Fertilizer N applied at FBA had the highest utilization rate, but PPA had the least.
     The above results suggest that:
     1. Late planting could result no yield reduction even if a variety with normal growth period was adopted resulting from the flexibility in growing period. Therefore, winter crops could be harvested in a higher yield due to their possible full maturity. Land and growing season was utilized much better.
     2. Conventional cotton yield could be achieved by lower N rate, later application with later planting and higher density, to meet the requirement of reduction in input without any reduction in yield, and improvement in fertilizer utilization rate and in environmental friendship production.
     3. Conventional cotton yield could also be achieved by fertilization once at first bloom stage during which the plant absorbed the most nutrients and absorbed them the fastest. Therefore, some management could be got rid of and less work for cotton production could be possible.
     4. Hence, later planting with a big density and a smaller individual, lower N rate with later and once application and plant residual application could result in a higher utilization rate of resources, a less labor consumption, and a lower production cost, and in the end could realize the target of sustainable and efficient development.
引文
1.曹阳,何建军,严玉萍,冯振秀,王清和,张燕.水分亏缺对棉花综合性状的影响.中国棉花.2003,30(10):29-30.
    2.陈清,温贤芳,郑兴耘.适宜的氮素投入与农业的持续发展.核农学通报,1996,17(4):193-197.
    3.单德鑫,杨书海,李淑芹,许景钢.15N示踪研究烤烟对氮的吸收及分配.中国土壤与肥料,2007,2:43-45.
    4.董合林,王润珍,李鹏程,刘爱忠.不同施氮水平及氮磷钾肥配施对棉花产量与氮肥利用率的影响.中国棉花学会2011年年会论文汇编,2011,285-287.
    5. 董合林.我国棉花施肥研究进展.棉花学报.2007,19(5):378-384.
    6.董合忠,唐薇,李振怀,张冬梅,李维江Morphological and physiological disorders of cotton resulting from potassium deficiency西北植物学报,2005,25(3):615-624.
    7.董志强.Bt棉氮素代谢特征与丰产性抗虫性协同表达的化学调控.[博士学位论文].北京.中国农业大学图书馆,2000.
    8.段亮,段增强,夏四清.农田氮、磷向水体迁移原因及对策.中国土壤与肥料,2007,4:6-11.
    9.樊小林,廖宗文.控释肥料与平衡施肥和提高肥料利用率.植物营养与肥料学报,1999,4(3):219-223.
    10.樊小林,刘芳.钙镁磷肥复式包膜尿素对冬小麦产量和氮肥效率的影响.磷肥与复肥,2004,19(4):66-69.
    11.房卫平,李伶俐,谢德意,马宗斌,张东林,杜远仿.杂交棉与常规棉干物质积累和氮、磷、钾吸收分配及产量比较.植物营养与肥料学报,2009,15(6):1401-1406.
    12.高凤菊,吕金岭.尿素深施对小麦产量及氮肥利用率的影响.山东农业科学,2006,3:48-49.
    13.郭金强,危常州,侯振安,李俊华.施氮量对膜下滴灌棉花氮素吸收、积累及其产量的影响.干旱区资源与环境,2008,22(9):39-142.
    14.郭仁松,刘盼,张巨松,饶翠婷,王宏伟,高云光,赵强.南疆超高产棉花光合 物质生产与分配关系的研究.棉花学报,2010,22(5):471-474.
    15.郭勇,马兴旺,杨涛,牛新湘,王斌,许咏梅,刘骅.氮肥追施策略对棉花蕾铃脱落的影响.新疆农业科学,2010,47(1):180-183.
    16.韩霞,陈建强.山东省农村劳动力转移路径分析.北方经贸,2011,3:38-39.
    17.侯秀玲,张炎,王晓静,李磐,盛建东.新疆超高密度棉田氮肥运筹对产量和氮肥利用的影响.棉花学报,2006,18(5):273-278.
    18.侯振安,李品芳,吕新,龚江,王艳娜.不同滴灌施肥方式下棉花根区的水、盐和氮素分布.中国农业科学,2007,40(3):549-557.
    19.胡国智,张炎,李青军,胡伟,孟凤轩,冯广平.氮肥运筹对棉花干物质积累、氮素吸收利用和产量的影响.植物营养与肥料学报,2011,2:397-403.
    20.胡明芳,田长彦,吕昭智,刘宏萍,陈涛.氮肥施用量对新疆棉花产量及植株和土壤中硝态氮含量的影响.西北农林科技大学学报(自然科学版),2006,34(4):63-68.
    21.胡明芳,田长彦,马英杰,王林霞,吕昭智,卞生珍.氮素营养对棉铃形成与脱落的影响.干旱地区农业研究,2005,23(1):95-98.
    22.胡明芳,田长彦,马英杰,赵振勇,王林霞,王平.土壤/植株硝态氮含量与棉花产量及其相关因素之间的关系.西北农业学报,2002,11(3):128-131.
    23.胡伟,张炎,胡国智,李青军,汤明尧.控释氮肥对棉花植株N素吸收土壤硝态氮累积及产量的影响.棉花学报,2011,23(3):253-258.
    24.扈立家,李天来.我国发展精准农业的问题及对策.沈阳农业大学学报(社会科学版),2005,7(4):400-402.
    25.黄庆裕,蒲才潮.碳酸氢铵全层深施对水稻的增产效果.土壤肥料,2006,1:60-61.
    26.贾仁清,叶德柱,石吟梅.高产棉花的干物质积累和氮磷钾养分的吸收分配规律探讨.中国棉花,1981,8(5):27-30.
    27.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000.
    28.林涛,郭仁松,田立文,徐海江,崔建平.南疆滴灌棉田施氮量对产量及纤维品质的影响研究.中国棉花学会2011年年会论文汇编.2011,322-326.
    29.刘德林,聂军,肖剑.15N标记水稻控释氮肥对提高氮素利用效率的研究.激光生物学报,2002,11(2):87-92.
    30.刘宏平,田长彦,马英杰.棉花植株氮素营养诊断及氮肥推荐指标体系的建立.干旱区研究,2005,22(4):541-546.
    31.刘绍东,张思平,张立祯.不同基因型棉花地上部干物质积累对氮素的响应.棉花学报,2010,22(1):77-82.
    32.柳维扬,郑德明,姜益娟,范业宽.南疆高产杂交棉生长性状及氮磷钾吸收模拟.棉花学报,2009,21(5):431-433.
    33.娄善伟,张巨松,罗新宁,赵强.施氮水平对棉花农艺性状、倒四叶光合特性及产量的影响.新疆农业大学学报,2009,32(1):39-42.
    34.鲁彩艳,马建,陈欣,张旭东,史奕,赵牧秋,迟光宇.不同施肥处理对连续三季作物氮肥利用率及其分配与去向的影响.农业环境科学学报,2010,29(2):400-406.
    35.陆兴伦,伍勤忠.广西推广智能化精准施肥技术.中国农技推广,2004,1:6-7.
    36.罗新宁.基于SPAD的棉花氮素营养诊断及氮营养特性研究.[博士学位论文].乌鲁木齐:新疆农业大学图书馆,2010.
    37.马丽,张民,陈剑秋,孔凡美,杨越超.包膜控释氮肥对玉米增产效应的研究.磷肥与复肥,2006,21(4):12-14.
    38.马宗斌,房卫平,谢德意,李伶俐,朱伟.氮肥基追比对抗虫杂交棉叶片衰老和产量的影响.西北植物学报,2008,28(10):2062-2066.
    39.潘薇薇,危常州,丁琼,符静,张永帅.膜下滴灌棉花氮素推荐施肥模型的研究.植物营养与肥料学报,2009,15(1):204-210.
    40.潘薇薇.应用叶绿素仪进行棉花氮素营养诊断.[硕士学位论文].新疆石河子:石河子大学图书馆,2008.
    41.潘奕,王丰,涂建华.湖北省棉花生产变化影响因子研究.资源开发与市场,2008,24(2):110-111.
    42.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103.
    43.宋志伟,刘松涛,曹雯梅,王汉民,房卫平,李潮海.杂交棉氮磷钾吸收分配特点的研究.棉花学报,2006,18(2):89-93.
    44.苏阳,刘德林.提高氮肥利用率方法的研究进展.湖南农业科学,2005,(6):38-40.
    45.孙红春,冯丽肖,谢志霞,李存东,李金才.不同氮素水平对棉花不同部位铃叶系统生理特性及铃重空间分布的影响.中国农业科学,2007,40(8):1638-1645.
    46.孙红春,李存东,周彦珍.不同氮素水平对棉花功能叶生理特性、植株性状及产量构成的影响.河北农业大学学报,2005,28(6):9-14.
    47.唐湘玲,田长彦,吕昭智.不同氮肥水平与棉花生育期所需日度的关系.干旱区研究,2003,20(3):226-229.
    48.汪玲,朱靖蓉,杨涛,王斌,陈宝燕,刘骅,许咏梅,马兴旺,赵德臣.氮肥施用策略对棉花干物质积累及产量构成的影响.新疆农业科学,2010,47(10):1952-1957.
    49.王海江,崔静,侯振安,谢海霞,龚江,吕新.膜下滴灌棉花水氮耦合对其干物质和水分利用效率的影响.西北农业学报,2010,19(3):76-80.
    50.王娟,韩登武,任岗等.SPAD值与棉花叶绿素和含氮量关系的研究.新疆农业科学,2006,43(3):167-170.
    51.王克如,李少昆,曹连莆,宋光杰,陈刚,曹栓柱.新疆高产棉田氮、磷、钾吸收动态及模式初步研究.中国农业科学,2003,36(7):775-780.
    52.王林霞,丁志,热甫卡提.棉花专用长效复混肥对棉株生长及养分含量的影响.中国棉花,2001,28(5):7-9.
    53.王平,田长彦,陈新平,张福锁.南疆棉花施氮量及氮素平衡分析.干早地区农业研究,2006,26(1):77-83.
    54.王巧兰,吴礼树,赵竹青.”N示踪技术在植物N素营养研究中的应用及进展.华中农业大学学报,2007,26(1):127-132.
    55.邬飞波,成灿土,许馥华.氮素营养对短季棉生理代谢和产量的影响.浙江农业大学学报,1998,24(3):241-247.
    56.伍维模,郑德明,董合林,金伟.南疆棉花干物质和氮磷钾养分积累的模拟分析.西北农业学报,2002,11(1):92-96.
    57.徐海江,林涛,田立文,崔建平,郭仁松,尹亮.氮肥对南疆膜下滴灌陆地棉主茎叶片SPAD值的影响.中国棉花学会2011年年会论文汇编.2011,271-273.
    58.徐立华,王进友,王书红,陈源,陈德华.Bt移栽棉干物质积累与产量及器官建成关系的研究.棉花学报,2007,19(1):13-17.
    59.薛晓萍,郭文琦,王以琳,张丽娟,周治国.不同施氮水平下棉花生物量动态增长特征研究.棉花学报,2006a,18(6):323-326.
    60.薛晓萍,王建国,郭文琦,陈兵林,尤军,周治国.氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响.生态学报,2006b,26(11):3631-3640.
    61.闫湘,金继运,何萍.提高肥料利用率技术研究进展.中国农业科学,2008,41(2):450-459.
    62.杨涛,陈宝燕,姚青青,薛向荣,马兴旺,王斌,牛新湘.精细化水氮调控对膜下滴灌棉花冠层特性动态变化影响.新疆农业科学,2011,48(5):909-917.
    63.杨志彬,陈兵林,周治国.花铃期棉田速效养分时空变异特征及对棉花产量品质的影响.作物学报,2008,34(8):1393-1402.
    64.张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45(5):915-923.
    65.张国梁,章申.农田氮素淋失研究进展.土壤,1998,30(6):291-297.
    66.张美良,彭齐东.不同肥料结构氮在棉田生态系统中的吸收利用和去向研究.江西农业学报,2009,21(1):6-9.
    67.张美良,吴建富,刘经荣,郭成志,邱才飞,占子勇.应用"N对棉田生态系统中氮素的吸收利用和去向的研究.江西农业大学学报,2001,23(1):57-61.
    68.张培通,徐立华,杨长琴,杨德银.施氮量对科棉3号干物质积累及分配、产量和纤维品质的效应.棉花学报,2009,20(4):295-299.
    69.张旺锋,李蒙春,勾玲.北疆高产棉花养分吸收特性的研究.棉花学报,1998,10(2):88-95.
    70.张旺锋,李蒙春.北疆高产棉花干物质积累和分配规律研究.新疆农垦科技,1997,12(6):1-2.
    71.张旺锋,王振林,余松烈,李少昆,曹连莆,王登伟.氮肥对新疆高产棉花群体光合性能和产量形成的影响,2002,28(6):789-796.
    72.张炎,侯秀玲,王晓静.优化氮肥管理对膜下滴灌海岛棉产量和品质的影响.西北农业学报,2006,15(4):122-125.
    73.赵玲,候振安,危常州,冶军.膜下滴灌棉花氮磷肥施用效果研究.土壤通报,2004, 35(3):307-310.
    74.赵双印,林忠东,李小斌,徐文修,李银平,侯松山,杨涛.不同施氮水平棉花氮磷钾养分吸收规律研究.新疆农业科学,2010,47(1):141-145.
    75.朱兆良,文启孝.中国土壤氮素.南京:江苏科技出版社,1992,228-231.
    76. Allen SC, Jose S, Nair PKR, Brecke BJ, Ramsey CL. Competition for 15N-labeled fertilizer in a pecan (Carya illinoensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Plant and Soil,2004, 263:151-164.
    77. Bange MP, Milroy SP. Growth and dry matter partitioning of diverse cotton genotypes. Field Crops Res.,2004,87:73-87.
    78. Barber LD, Joern BC, Volenec JJ, Cunningham SM. Supplemental nitrogen effects on alfalfa regrowth and nitrogen mobilization from roots. Crop Science,1996, 36:1217-1223.
    79. Bi JL, Ballmer G, Hendrix DL, Henneberry TJ, Toscano NC. Effect of cotton nitrogen fertilization on Bemisia argentifolii populations and honeydew production. Entomol. Exp. Appl.,2001,99:25-36.
    80. Bondada BR, Oosterhuis DM, Norman RJ, Baker WH. Canopy photosynthesis, growth, yield and boll 15N accumulation under nitrogen stress in cotton. Crop Sci., 1996,36:127-133.
    81. Bondada BR, Oosterhuis DM. Canopy photosynthesis, specific leaf weight, and yield components of cotton under varying nitrogen supply. J. Plant Nutr.,2001, 24:469-477.
    82. Bonilla CA, Munoz JF, Vauclin M. Opus simulation of water dynamics and nitrate transport in a field plot. Ecological Modelling,1999,122:69-80.
    83. Bonner CM.'Cotton production recommendations'. University of Arkansas Cooperative Extension Service, Little Rock, AR, AG422-4-95,1995.
    84. Boquet DJ. Cotton in ultra-narrow rows pacing:plant density and nitrogen fertilizer rates. Agron. J.,2005,97:279-287.
    85. Boquet DJ, Breitenbeck GA. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton. Crop Sci.,2000,40:1685-1693.
    86. Boquet DJ, Moser EB, Breitenbeck GA. Boll weight and within plant yield distribution in field-grown cotton given different levels of nitrogen. Agronomy Journal,1994,86:20-26.
    87. Bothe H, Ferguson SJ, Newton WE. Biology of the nitrogen cycle. Elsevier,2007,283. ISBN 0444528571. http://books.google.com/?id=qmZDpnV-sYYC&pg=PA283.
    88. Cassman KG, Peng S, Olk DC, et al. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. Field Crops Research,1998,56:7-38.
    89. Chaudhry AU, Sarwar M. Optimization of nitrogen fertilization in cotton (Gossypium hirsutum L.). Pakistan Journal of Biology Science,1999,2:242-243.
    90. Cisneros JJ, Godfrey LD. Midseason pest status of cotton aphid (Homoptera: Aphididae) in California cotton:Is nitrogen a key factor? Environ. Entomol.,2001, 30:501-510.
    91. Clawson EL, Cothren JT, Blouin DC. Nitrogen fertilization and yuield of cotton in ultra-narrow and conventional row spacings. Agron. J.,2006,98:72-79.
    92. Clawson EL, Cothren JT, Blouin DC, Satterwhite JL. Timing of maturity in ultra-narrow and conventional row cotton as affected by nitrogen fertilizer rate. Agron. J.,2008,100:421-431.
    93. Constable GA, Rochester IJ. Nitrogen application to cotton on clay soil:timing and soil testing. Agronomy Journal,1988,80:498-502.
    94. Constable GA, Rochester IJ, Daniells I. Cotton yield and nitrogen requirement is modified by crop rotation and tillage method. Soil and Tillage Research,1992, 23:41-59.
    95. Croswell Ken. Alchemy of the Heavens. Anchor. ISBN 0-385-47214-5. (February 1996) http://kencroswell.com/alchemy.html.
    96. De Mattos D. Citrus response curves to N, P, and K fertilization and N uptake dynamics. (Ph D dissertation). Gainesville, FL. USA:University of Florida,2000.
    97. Dong H, Kong X, Li W, Tang W, Zhang D. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res.,2010,119:106-113.
    98. Dorahy C, Rochester IJ, Blair GJ. Response of field grown cotton (Gossypium hirsutum L.) to phosphorus fertilization on alkaline soils in eastern Australia. Australian Journal of Soil Research,2004,42:913-920.
    99. Felix BF, Bruce AR, Robert LTD, William R, Robert BH. Response of irrigated acala and pima cotton to nitrogen fertilization:growth, dry matter partitioning, and yield. Agron. J.,2003,95:133-146.
    100.Fernandez CJ, McInnes KJ, Cothren JT. Water status and leaf area production in water-and nitrogen-stressed cotton. Crop Science,1996,36:1224-1233.
    101.Gaylor MJ, Buchanan GA, Gilliland FR, Davis RL. Interactions among a herbicide program, nitrogen fertilization, tarnished plant bugs, and planting dates for yield and maturity of cotton. Agron. J.,1983,903-907.
    102.Gerik TJ, Jackson BS, Stockle CO, Rosenthal WD. Plant nitrogen status and boll load of cotton. Agron. J.,1994,86:514-518.
    103.Gerik TT, Oosterhuis DM, Tolbert HA. Managing cotton nitrogen supply. Advance in Agronomy,1998,64,115-147.
    104.Gilliam JW, Boswell F. Management of nitrogen in the south Atlantic states. In 'Nitrogen in crop production'(Ed. RD Hauck). ASA and SSSA:Madison, WI:1984, 691-705.
    105.Hirose T, Bazzaz FA. Trade-off between light-and nitrogen-use efficiency in canopy photosynthesis. Annals of Botany,1998,82:195-202.
    106.Hou Z, Li P, Li B, Gong J, Wang Y. Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil,2007,290:115-126.
    107.IAEA.'Manual, use of isotope and radiation methods in soil and water management and crop nutrition.'(International Atomic Energy Agency:Vienna),2001.
    108.Janat M. Assessment of nitrogen content, uptake, partitioning and recovery by cotton crop grown under surface irrigation and drip fertigation by using isotopic technique. Communications of Soil Science and Plant Analysis,2004,35(17-18):2515-2535.
    109.Jaynes DB, Colvin TS, Karlen DL, Cambardella CA, Meek DW. Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. Journal of Environmental Quality,2001,30:1305-1314.
    110.Johnson JT, Pettigrew WT. Effects of mepiquat pentaborate on cotton cultivars with different maturities. J. Cotton Sci.,2006,10:128-135.
    111.Karlen DL, Hunt PG, Matheny TA. Fertilizer nitrogen recovery by corn, wheat and cotton grown with and without preplant tillage on Norfolk loamy sand. Crop Sci. 1996,36:975-988.
    112.Kienzler KM. Improving the nitrogen use efficiency and crop quality in the Khorezm region, Uzbekistan. (Ph D dissertation). Zu Bonn, Uzbekistan:University of Rheinischen Friedrich-Wilhelms,2010.
    113.Knight J, Deng Q, Li S. The puzzle of migrant labour shortage and rural labour surplus in China. China Economic Review, doi:10.1016/j.chieco.2011.01.006.
    114.Knowles TC, Hipp BW, Langston WC. Nitrogen and potassium nutrition of cotton grown in the Texas black land. In'Proceedings of the Beltwide Cotton Conference'. (Eds R Dugger, DA Richter) pp.1552-1554. (National Cotton Council and Cotton Foundation:Memphis, TN) 1994
    115.Koch B, Khosla R, Frasier WM, Westfall DG, Inman D. Site-specific management: economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron. J.,2004,96:1572-1580.
    116.Kumbhar AM, Buriro UA, Junejo S, Oad FC, Jamro GH, Kumbhar BA, Kumbhar SA. Impact of different nitrogen levels on cotton growth, yield and N-uptake planted in legume rotation. Pak. J. Bot.,2008,40:767-778.
    117.Leffler HR. Development of cotton fruit accumulation and distribution of dry matter. Agron J.,1976,68:855-857.
    118.Liu XQ, Chen HY, Ni QX, Lee KS. Evaluation of the role of mixed amino acids in nitrate uptake and assimilation in leafy radish by using 15N-labeled nitrate. Agricultural Sciences in China,2008,7(10):1196-1202.
    119.Manuel S, Wood CW, Guertal EA. Tomato leaf chlorophyll meter readings as affected by variety, nitrogen form, and nighttime nutrient solution strength. J. Plant Nutri., 2002,25(10):2129-2142.
    120.Maples RL. Nitrogen can increase cotton yield and soil organic matter. Better Crops Winter,1989-90,16-17.
    121.Maples RL, Miley WN, Keisling TC. Nitrogen recommendations for cotton and how they were developed in Arkansas. In'Nitrogen nutrition in cotton:Practical issues'. (Eds WN Miley, DM Oosterhuis),1990:33-39. (American Society of Agronomy: Madison, WI).
    122.Mascagni H J, Keissling TC, Maples RL. Response of fast fruiting cotton cultivars to N on a clay soil. J Prod Agr,1993,6:104-111.
    123.Marschner H. Mineral Nutrition of Higher Plants. London:Academic Press,1986.
    124.Marshall MG, Bennett CF (Eds)'Outcomes of nitrogen fertilizer management programs'. Vol.3. National Extension Targeted Water Quality Program, 1998:1992-1995. Texas A & M University, State College, TX, Cooperating with Cooperative State Research, Education, and Extension Service (CSREES), USDA.
    125.McConnell JS, Mozaffari M. Yield, petiole nitrate, and node development responses of cotton to early season nitrogen fertilization. J. Plant Nutr.,2005,27(7):1183-1197.
    126.McConnell JS, Baker WH, Miller DM, Frizzell BS, Varval JJ. Nitrogen fertilization of cotton cultivars of differing maturity. Agron. J.,1993,85:1151-1156.
    127.Monteith JL. Climate and the efficiency of crop production in Britain. Philosophical Transactions of Royal Society of London. Series B,1977,281:277-294.
    128.Mullins GL, Burmester CH. Dry matter, nitrogen, phosphorus, and potassium accumulation by four cotton varieties. Agronomy Journal,1990,82:729-736.
    129.Mullins GL, Monks CD, Delaney D. Cotton response to source and timing of nitrogen fertilization on a sandy coastal plain soil. J. Plant Nutr.,2003,26:1345-1353.
    130.Navarro-Ainza JAC. Fertilizer nitrogen recovery and 15N and bromide distribution in the soil profile as affected by the time of application on an irrigated upland cotton (Gossypium hirsutum L.). (Ph D dissertation), University of Arizona, Tucson, Arizona, USA,2007.
    131.Ng HYF, Drury CF, Serem VK, Tan CS, Gaynor JD. Modeling and testing of the effect of tillage, cropping and water management practices on nitrate leaching in clayloam soil. Agricultural Water Management,2000,43:11-131.
    132.Novoa R, Loomis R S. Nitrogen and plant production. Plant and soil,1981, 58:177-204.
    133.Owens LB. Effects of nitrapyrin on nitrate movement in soil columns. Journal of Environment Quality,1981,10:308-310
    134.Peng SB, Garcia FV, Laza RC, Sanico AL, Visperas RM, Cassman KG. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crops Research,1996,47:243-252.
    135.Petti grew WT, Adamczyk JJ Jr. Nitrogen fertility and planting date effects on lint yield and CrylAc(Bt) endotoxin production. Agron. J.,2006,98:691-697.
    136.Radin JW, Parker LL. Water relations of cotton plants under nitrogen deficiency. I. Dependence upon leaf structure. Plant physiol.,1979,64:495-498.
    137.Radin JW, Mauney JR. The nitrogen stress syndrome. In'Cotton physiology'. (Eds JR Mauney, JM Stewart),1984,91-105. (The Cotton Foundation:Memphis, TN).
    138.Rakov VA, Uman MA. Lightning:Physics and Effects. Cambridge University Press. 2007,508. ISBN 9780521035415. http://books.google.com/?id=TuMa51Aa3RA C&pg=PA508.
    139.Read JJ, Raja R, Johnie N J. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition. Eur. J. Agron.,2006,24:282-292.
    140.Reeves DW. Determination of wheat nitrogen status with a hand-held chlorophyll meter:Influence of management practices. J. Plant Nutri.1993,16(5):781-796
    141.Roberts BA, Curley RG, Kerby TA, Wright SD, Mayfield WD. Defoliation, harvest and ginning. p.305-323. In S.J. Hake, T.A. Kerby, and K.D. Hake (ed.) Cotton production manual. Publ.3352. Univ. of California Div. of Agric. and Nat. Resour., Oakland.1996.
    142.Rochester IJ. Nutrient uptake and export from an Australian cotton field. Nutrition Cycling in Agroecosystem,2007,77:213-223.
    143.Roland KR, Michael M K, James MT, Donald DH. Economic evaluation of soil and foliar applied nitrogen fertilization programs for cotton production. J. Cotton Sci., 2006,10:193-200.
    144.Rodrigues MA. Establishment of continuous critical levels for Indices of plant and preside dress soil nitrogen status in the potato crop[J]. Commun. Soil Sci. Plant Anal., 2004,35(13-14):2067-2085.
    145.Saleem MF, Bilal MF, Awais M, et al. Effect of nitrogen on seed cotton yield and fiber quality of cotton cultivars [J]. Journal of animal and plant sciences,2010, 20(1):23.
    146.Scheer C, Wassmann R, Kienzler K, Ibragimov N, Lamers JPA, Martius C. Methane and nitrous oxide fluxes in annual and perennial land use systems of the irrigated areas in the Aral Sea Basin. Global Change Biology,2008,14(10):2454-2468.
    147.Sinclair TR, Horie T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency:a review. Crop Science,1989,29:90-98.
    148.Singh B, SinghY, Ladha JK et al. Chlorophyllmeter-and leaf color cart-based nitrogen management for rice and wheat in Northwestern India. Agron. J.,2002, 94(4):821-829.
    149.Singh E M. Advance in the use and application of analysis. Communications in soil science and plant analysis.1990,21,1409-1430.
    150.SinghY, Rao SS, Regar PL. Deficit irrigation and nitrogen effects on seed cotton yield, water productivity and yield response factor in shallow soils of semi-arid environment. Agric. Water Manage.,2010,97:965-970.
    151.Soomro AR, AW Soomro, WA Siddiqui, Khan RU, Arain AS. Nitrogen requirement of cotton in Sindh. The Pakistan cottons,1997,41:6-10.
    152.Torbett JC, Roberts RK, Larson JA, English BC. Perceived improvements in nitrogen fertilizer efficiency from cotton precision farming. Computers and electronics in agriculture,2008,64:140-148.
    153.Tucker BB, Murdock LW. Nitrogen use in the south central states. In'Nitrogen in crop production'. (Eds RD Hauck),1984,735-749. (ASA and SSSA:Madison, WI).
    154.Wang X, Herzfeld T, Glauben T. Labor allocation in transition:evidence from Chinese rural households. China Econ. Rev.,2007,18:287-308.
    155.Weir BL, Kerby TA, Hake KD, Roberts BA, Zelinski LJ. Cotton fertility.1996, 210-227. In S.J. Hake, T.A. Kerby, and K.D. Hake (ed.) Cotton production manual. Publ.3352. Univ. of California Div. of Agric. and Nat. Resour., Oakland.
    156.disorder caused by art imbalance of source and sink. Plant Soil,1999,211 (2):231-239.
    157.Wienhold BJ, Trooien TP, Reichman GA. Yield and nitrogen use efficiency of irrigated corn in the northern Great Plains. Agronomy Journal,1995,87:842-846.
    158.Wood CW, Reeves DW, Duffield RR, Edmisten KL. Field chlorophyll measurement for evaluation of corn nitrogen status. J. Plant Nutri.,1992a,15(4):487-500.
    159.Wood CW, Tracy PW, Reeves DW, Edinisten KL. Determination of cotton nitrogen status with a hand-held chlorophyll meter. J. Plant Nutri.1992b,15(9):1435-1448.
    160. Wright PR. Premature senescence of cotton (Gossypium hirsutum L.)-Predominantly a potassium Wu FB, Wu LH, Xu FH. Chlorophyll meter to predict nitrogen side dress requirement for short-season cotton(Gossypium hirsutum L.). Field Crops Research, 1998,56:309-314.
    161.Xu DW, Zhou QQ, Tang, YW. Studies on the optimal application of nitrogen fertilizer and its physiological index in cotton plants.Scientia-Agricultura-Sinica.1991, 24(1):42-46.
    162.Xue X, Sha Y, Guo W, Zhou Z. Accumulation characteristics of biomass and nitrogen and critical nitrogen concentration dilution model of cotton reproductive organ. Acta Ecologica Sinica,2008,28:6204-6211.
    163.Yan X, Jin JY, He P, Liang MZ. Recent Advances on the Technologies to Increase Fertilizer Use Efficiency. Agricultural Sciences in China,2008,7(4):469-479
    164. Yang G, Tang H, Nie Y, Zhang X. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur. J. Agron.,2011a,35:164-170.
    165.Yang G, Tang H, Tang J, Nie Y, Zhang X. Effect of fertilization frequency on cotton yield and biomass accumulation. Field Crops Res.,10.1016/j.fcr.2011b.08.008.
    166. Yang G, Zhou M. Multi-location investigation of optimum planting density and boll distribution of high-yielding cotton (G. hirsutum L.) in Hubei province, China. Agric. Sci. China,2010,9(12):1749-1757.
    167.Yeates SJ, Constable GA, McCumstie T. Irrigated cotton in the tropical dry season. Ⅱ: Biomass accumulation, partitioning and RUE. Field Crops Res.,2010,116:290-299.
    168.http://en.wikipedia.org/wiki/Nitrogen.2011-09-11
    169.http://faostat.fao.org/site/575/default.aspx#ancor,2011-09-02
    170.http://www.hudong.com/versionview/nf,EACAwQFWkEACA,F9RgoGBQ, 2011-09-12
    171.http://www.fert.cn/news/2010/12/10/2010121016575860249.shtml,2011-09-12
    172.http://msucares.com/crops/cotton/nitrogen.html,2011-9-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700