氮磷钾肥对亚麻纤维产量及品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚麻纤维的产量和品质既决定于其基因型,也受到环境和栽培措施的影响,其中养分的供应状况十分重要,养分调节也是人们调控亚麻生长的主要手段。纤维亚麻喜温和气候,生育期短,根系纤细,吸肥力弱而集中。氮、磷、钾作为亚麻生长所必须的大量元素,一直为国内外研究学者所关注。为了克服单一因素研究的不足,本试验采用三因素二次饱和D—最优设计,同时考虑到基因型间可能存在的差异,试验选用高纤中产的国外引进品种Argos和中纤高产的国内品种黑亚14号两个品种,并同时设置了盆栽试验和小区试验。旨在探讨肥料对亚麻纤维发育、纤维产量和品质形成的影响。试验结果表明:
     1.氮肥可使亚麻茎杆增粗,并显著增大纤维细胞数量、纤维细胞大小,促进纤维细胞壁加厚,但却使得纤维束数略有降低;磷肥同样使得亚麻茎杆增粗,而对于促进纤维细胞数量增多的效果比氮肥还要明显,且有利于纤维束数的形成,对于高纤品种高斯纤维细胞壁的加厚作用明显,而对中纤品种黑亚14号作用不大;钾肥不利于茎杆增粗,且对促进纤维细胞数量增多的作用效果也不如氮、磷肥明显,但对纤维细胞壁的加厚、纤维细胞的增大有良好的促进作用,特别是在生育后期。
     2.氮肥和磷肥均促进亚麻株高生长,钾肥则对株高的增长影响不大,如氮、磷、钾肥配合施用,则会得到更好的效果;氮肥能增加光合面积,显著提高亚麻的干物质积累,如配合磷、钾肥施用则效果更佳;磷肥有利于氮素的吸收,应配合氮肥施用,增加干物质积累;单施钾肥则不利于亚麻增加光合面积、并影响干物质的积累,从而降低原茎产量。
     3.亚麻地上部氮、磷、钾积累量呈“S”型曲线变化,可以用方程Y=K/(1+e~(a-bx))表示,最终积累量是全氮>全钾>全磷。亚麻对磷素的吸收前期缓慢,开花期后吸收速率加快,其积累量在整个生育期内要明显少于氮、钾肥;亚麻在整个生育期都需要钾,其积累钾素的量与氮素相当。
     4.在亚麻的不同生育时期,随着氮素水平的提高,氮、磷、钾的积累量均有所增加;随着磷素水平的提高,除在枞形期如施用过量会使氮素的积累降低外,在其它各生育时期对氮、磷、钾的积累均起到促进作用;钾素水平对氮、磷、钾的积累在枞形期、开花期作用较小,钾肥水平过量在工艺成熟期则起到抑制作用。
     5.氮肥对原茎产量的影响呈抛物线状;磷肥对原茎产量的影响呈近似线性增加;而钾肥对亚麻原茎产量的影响呈反抛物线状。当施用纯氮44.5kg、五氧化二磷135kg和氧化钾90kg时,高斯可以得到10123.33kg/hm~2的产量。
     6.磷肥、钾肥有利于纤维含量的提高,而单独施用氮肥则降低了纤维含量。
     7.氮肥对果胶含量的影响呈抛物线状,磷肥促进果胶含量,而钾肥则抑制果胶含量的增加;三种肥料对半纤维素含量均产生抑制作用;氮肥不利于纤维素的形成,而少量的磷肥有利于纤维素的形成,钾肥则促进纤维素的形成;氮、磷肥促进木质素含量的增加,而钾肥对木质素含量的影响是先降低后增加的。
     8.氮肥对亚麻纤维强度的影响呈反抛物线状,磷肥对亚麻纤维强度起到抑制作用,钾肥则起到良好的促进作用;而随着施用氮、磷水平的增加,亚麻纤维可挠度不断增加,而随着施用钾肥水平的不断提高,亚麻纤维可挠度不断减小。
The yield and quality of flax fibre are determined by genotypes, and also by environment andcultivated conditions. The status of providing nutrient is very important, and nutrient adjusting is animportant means to control flax growing. Fibre flax like mild climate, its growing period is short,and the ability of absorbing fertilizer is poor because its root is finespun. As integrant mass elementfor flax's growth, N P K attracts attention have been regarding by of researchers. Three factorquadratic saturation and D-excellent design were adopted in order to overcome the disadvantage ofsingle factor in the experiment. Two cultivar, AG(mid-yield and high fibre content) and Heiya14(high yield and mid-fibre content), were selected with a view to the possible difference betweengenotypes, and planted in potted experiment and plot experiment. This article aimed to find effectof fertilizer on fibre growth, N P K accumulation, formation of fibre yield and quality. The resultshowed:
     1. N-fertilizer can increase diameter of stem, and significantly increase the number of fibrecells, enhance the diameter of fibre cell and thickness of cell wall, but decrease the number of fibrebundle; P-fertilizer can also increase diameter of stem, and has more significantly effect to enhancethe number of fibre cells, at the same time, it has significantly effect to make cell wall thickness forAG, but it is not significantly for Heiyal4. K-fertilizer decrease diameter of stem, and has fewereffect to enhance number of fibre cells, but it has effect to make cell wall thickness and enhancediameter of fibre cell especially in the end of growing period.
     2. N-fertilizer and P-fertilizer can enhance flax height, and K-fertilizer has fewer effect onheight, cooperating with P N K can reach better effect. N-fertilizer can increase leaf area,significantly enhance accumulation of dry material, enhance area of photosynthesis, it can reachbetter effect if cooperating with P K; P-fertilizer can help to absorb N, so it should be used with N-fertilizer to enhance accumulation of dry material; Only use K-fertilizer is bad to enhancing area ofphotosynthesis, and effect accumulation of dry material, accordingly deduce original stem yield.
     3. N P K accumulation of flax change as "S" curve, it can express by Y=K/(1+e~(a-bx)). theranking of finally accumulation is: N>K>P. The measure of absorbing P is slow in early period,and go quickly after anthesis. Flax need K in all period, the measure is corresponding to N.
     4. Following N level enhancing, N P K accumulation increase in different growing period.Enhancing P level can promote N P K accumulation except using superfluous P in slowly-growthand quick-growth stage; K has fewer promoting effect in slowly-growth and quick-growth stage and anthesis, superfluous K can restrain flax growing in mature period.
     5. Effect from N-fertilizer to yield can be described as a parabola; effect from P-fertilizer toyield is near linearity; effect from K-fertilizer to yield can be described as a converse parabola.using N P K together can get best effect; when use 44.5 kg N, 135 kg P_2O_5 and 90 kg K_2O, theyield of Argos can reach 10123.33 kg/hm~2.
     6. P-fertilizer and K-fertilizer are avail to promoting fibre content, but only using N-fertilizerwill reduce fibre content.
     7. The effect from N-fertilizer to pectin can described as a parabola, P-fertilizer can promotepectin content, and K-fertilizer can restrain pectin; N P K can restrain hemicellulose; N-fertilizer goagainst formation of cellulose, little P-fertilizer is avail to formation of cellulose, K-fertilizer canpromote formation of cellulose; N-fertilizer and P-fertilizer can promote lignin, and effect fromK-fertilizer to lignin will first fall and increase later.
     8. Effect from N-fertilizer to intension can be described as a converse parabola, P-fertilizer hasa restrain effect on intension, and K-fertilizer has a promoting effect on it. As the N P level increase,the flexibility of flax fibre increase, and the flexibility of flax fibre decreases as K-fertilizer levelincrease.
引文
杜刚,刘其宁,赵振玲,吴学英.2006.亚麻主要性状与原茎产量的灰色关联度分析[J].西南农业学报.(19) 4:568-572.
    范有君,杨骥,闫志山等.2003.东北高纬度地区亚麻高产栽培技术研究[J].中国麻业.(2):68-71.
    付园园,沙伟.2005.不同供氮水平对亚麻种子萌发及幼苗生长的影响[J].种子.24(9):1-3.
    高洪生,宋宪友,潘亚清.2006.叶面喷施富利硼对亚麻产质量的影响初报[J].中国麻业.28(3):133-136.
    关凤芝等.1993.亚麻纤维发育规律的研究[J].中国麻作.(1):14-17.
    关凤芝,王立群等.1999.亚麻微生物脱胶技术的研究[J].中国麻作.21(12):41-42.
    关凤芝,徐丽珍,王玉富,刘燕.1999.主要栽培因子对亚麻纤维发育规律的影响初探[J].黑龙江农业科学.(6):9-12.
    关凤芝等.2000.浅谈我国亚麻生产发展的一点建议[D].2000年中国麻纺织发展研讨会论文.p113-116.
    关凤芝,李江,吴广文.2007.浅谈中国纤维亚麻的现状与建议[J].中国麻业科学.29:95-103.
    桂明珠等.1995.亚麻站立脱胶技术初探[J].中国麻作.17(2):36-39.
    郭晓明,李淑华,张秀英等.1991.亚麻营养特点及需肥规律的研究[J].黑龙江农业科学.6:16-20.
    郭翔宇等.2002.黑龙江省亚麻原料生产的发展历史与现存问题[J].中国麻业.(6):38-42.
    郭翔宇等.2002.黑龙江省亚麻业的优势与面临的挑战[J].中国麻业.(2):43-45
    郭雅琳等.2001.亚麻纤维的结构性能对染色性能的影响[J].大连轻工业学院学报.20(1):67-69.
    郭雅琳等.2002.亚麻的化学组成和微观结构对染色性能的影响[J].化学通报.6:407-410.
    胡镇修,潘昌立,孙焕良等.1996.播种期对南方春季亚麻生长发育的影响[J].中国麻作.18(4):18-20.
    黄敬芳等.1994.主要麻类韧皮纤维发育规律研究[J].中国麻作.16(增刊):31-35
    黄小龙,孙焕良等.2004.南方亚麻微生物脱胶技术及其理论研究[J].湖南农业大学学报(自然科学版).30(1):14-16.
    贾宵云等.1999.亚麻韧皮纤维的形态结构及发育规律研究[J].华北农学报.14(增刊):64-69.
    贾霄云,武跃通,燕玲等.1999.不同生态因子对亚麻韧皮纤维发育及品质的影响[J].内蒙古农业科技.(4):16-18.
    贾霄云,张辉,丁维等.2002.生长调节剂对纤维亚麻产量与质量的影响[J].中国麻业.(24) 6:21:23.
    贾新禹.2006.原茎特性及脱胶过程对亚麻纤维产量品质的影响.硕士论文.东北农业大学图书馆
    江洁等.1997.化学助剂在亚麻脱胶工艺中的应用[J].齐齐哈尔工学院学报.(9):1-4.
    姜广虹,王克荣,马秀峰,郑天琪.1994.稀土对亚麻产质量效果的研究[J].东北农业大学学报.(25):15-19.
    姜宪凯,孙虹雁,林珑等.2005.尿素对亚麻纤维轧染染色性能的改进[J].黑龙江大学自然科学学报.22(1):74-77.
    金关荣,傅福道,韦茂兔.2007.不同耕作方式对冬播亚麻成苗及原茎产量的影响[J].中国麻业科学.(29)1:25-28.
    李彩凤,李明,刘锦红,姜军.1996.钾对亚麻纤维产质量的作用与效果[J].黑龙江纺织.(3):33-34.
    李彩凤等.1997.提高纤维亚麻产量和品质的途径[J].中国麻作.19(4):19-21.
    李彩凤,李明,王克荣等.1998.钾对亚麻纤维产量和品质影响机理初探[J].东北农业大学学报.29(1):21-26.
    李冬梅.2005.亚麻纤维产量品质形成规律研究.硕士论文.东北农业大学图书馆
    李桂琴等.1997.亚麻原茎结构与站立脱胶的解剖学效应观察[J].中国麻作.19(2):41—43.
    李豪喆等.1992.不同原茎产量亚麻植株生长动态规律的研究[J].中国麻作.(1):16-18.
    李明,李彩凤,刘月辉等.1996,4个新引进亚麻品种的农艺性状分析[J].种子.(6):46-47
    李明等.1996.关于亚麻韧皮纤维生长发育阶段划分的探讨[J].中国麻作.18(1):29.
    李明.1996.亚麻原茎及纤维产量与不同生育期氮、磷、钾吸收量的相关分析[J].中国麻作.18(2):37-39.
    李明,李彩凤,刘月辉等.1997.氮素水平对亚麻茎解剖构造及产量形成影响的研究[J].黑龙江农业科学.(4):19-22.
    李明,李彩凤,夏红梅,师凤华.1999.亚麻茎上纤维分布规律的研究[J].中国麻作.21(2):24-26.
    李明,陈克农.2000.高纤亚麻品种茎的解剖构造特点[J].中国麻作.22(1):17-19.
    李明,于琳,贾新禹等.2007.环境条件对亚麻纤维品质的影响[J].中国麻业科学.29(1):20-24.
    李意坚.2002.氮、磷、锌肥对纤维亚麻产量的效应[J].土壤.(5):286-288.
    李宗道.1980.麻作的理论与技术[M].第一版.上海科学技术出版社.
    黎宇,谢国炎,熊谷良等.2006.中国麻业科学世界麻类原料生产与贸易概况(Ⅱ)[J].28(6):327-332.
    刘君馨,黄文胜,崔金丽,胡万军.2001.限量供水对亚麻水分利用及产量的影响[J].张家口农专学报.(17) 3:9-11.
    刘其宁,符明联,吴学英等.2006.播种密度、N肥用量及NPK比例与亚麻产量的关系[J].中国麻业.(28) 1:29-32.
    刘晓兰等.1986.亚麻酶法脱胶工艺的研究[J].齐齐哈尔大学学报.(6):11-14.
    刘晓兰,江洁.1998.亚麻酶法脱胶工艺的研究[J].齐齐哈尔大学学报.14(2):11-14.
    刘晓兰,郑喜群,江洁等.2001.亚麻脱胶新工艺的初步研究[J].微生物学杂志.21(3):35-37.
    刘秀辉等.1997.高分子表面活化剂对亚麻化学脱胶的影响[J].西北师范大学学报.(4):108-109.
    刘燕,王玉富,关凤芝.2001.亚麻主要农艺性状与单株出麻率关系的分析[J].黑龙江农业科学.(5):25-26.
    龙德树,杨传强,曾宪庆等.1999.亚麻和胡麻性能的研究[J].纺织学报.(6):136-140.
    栾法智.1982.亚麻深施肥的研究[J].中国麻作.(2):42-45.
    吕江南等.2004.全国麻类生产调查报告[J].中国麻业.(6):296-301.
    倪禄.1981.亚麻适期播种可提高产量和品质[J].中国麻作.(3):47-48.
    倪禄,关凤芝,张福修等.1985.密度、灌水、施肥对亚麻原茎产量的影响及其效应分析[J].中国麻作.(4):41-43.
    倪禄,张福修,关凤芝等.1985.锌肥对亚麻产质量影响实验研究[J].黑龙江农业科学.(6):51-53.
    聂征,陈甫堂,林春腾.1986.亚麻十个农艺性状的相对遗传度、相关分析和通径分析[J].中国油料.(1).
    聂征等.1993.亚麻工艺长相关性状的通径分析[J].中国麻作.(3):12-15.
    聂征,施杏春,谭晶荣等.1994.亚麻主要农艺性状间的灰色关联度分析[J].宁夏农学院学报.15(1):1-6.
    倪禄.1987.亚麻适期播种可提高产量和品质[J].中国麻作.(4):47-48.
    潘庭慧,张振福,李殿一等.1996.亚麻干物质积累与氮磷钾吸收分配的研究[J].中国麻作.18(1):34-36.
    潘庭慧等.1996.亚麻纤维产量构成因素的分析[J].中国麻作.18(3):29-31.
    彭源德,刘正初等.2003.亚麻快速生物脱胶技术研究[J].中国麻业.25(3) 135-138.
    曲家祥,卢沛等.1985.氮磷钾化肥对亚麻生长发育、产量和纤维品质影响的研究[J].黑龙江省亚麻原料工业研究所.
    任喜英等.1997.亚麻站立脱胶区域适应性试验总结[J].中国麻作.19(4):36-38.
    任志华,于永玲.2002.影响亚麻纤维弹性的因素及其提高方法[J].大连轻工艺学院学报.21(3):228-231.
    史加强.1999.亚麻纤维理化性能对染色机理的影响[J].纺织学报.(2):16-19.
    宋宪友.2000.提高雨露沤麻品质技术的研究[J].中国麻作.22(2):41-43.
    孙焕良,胡镇修,潘昌立等.1998.湖南春季亚麻纤维形态、结构与理化特性研究[J].中国麻作.20(1):13-15.
    孙玉亭等.1986.黑龙江省农业气候资源及其利用[J].气象出版社.243-255.
    王立群,关凤芝,张福修等.1994.亚麻微生物脱胶技术的研究[J].东北农业大学学报.25(2):182-185.
    王立群,宣世纬等.1995.亚麻微生物脱胶技术的研究[J].中国麻作.17(1):34-36.
    王立群,关凤芝等.1998.亚麻微生物脱胶技术的研究[J].东北农业大学学报.29(2):183-188.
    王少怀,杨学芬,李成惠等.2003.亚麻原茎高产栽培综合农艺措施数学模型的研究[J].中国麻业.25(1):14-21.
    王学东等.1998.不同品种亚麻纤维发育特点的研究[J].东北农业大学学报.29(3):311-313.
    王晓凯等.1998.亚麻站立脱胶的喷施技术探讨[J].中国麻作.20(2):30-32.
    王玉富等.1999.中国亚麻育种工作的现状及发展方向[J].黑龙江农业科学.(5):44-46.
    王玉富等.2001.亚麻种植业与WTO[J].中国麻作.23(1):29-32.
    王玉富.2005.我国亚麻生物技术的研究现状及发展[J].中国麻业.27(2):60-65.
    王振华.1993.纤用亚麻种植密度研究简报[J].中国麻作.15(4):41-42.
    吴广文.2002.亚麻鲜茎雨露沤制技术的初步研究[J].中国麻业.24(2):18-21.
    武跃通,贾宵云等.1999.亚麻韧皮纤维的形成与相关因子研究[J].内蒙古农业科技.(10):5-6.
    徐丽珍,周以贤.1990.亚麻植株生长动态规律的研究[J].中国麻业.(2):.
    徐丽珍等.1992.气象因素对亚麻产量的影响[J].中国麻作.(4):22-25.
    徐丽珍,周以贤,张福修等.1993.纤维亚麻亩产350公斤原茎产量结构于生理参数出探[J].中国麻作.15(2):27-29,34.
    徐丽珍.1993.浅谈纤维亚麻的种植密度与原茎产质量的关系[J].中国麻业.(1):42-44.
    徐丽珍.1998.高产纤维用亚麻生育规律的研究[J].中国麻作.20(3):22-24.
    徐丽珍,关凤芝.2000.氮磷钾肥对亚麻纤维细胞发育的影响[J].中国麻作.22(4):12-14.
    徐丽珍,关凤芝.2000.密度对亚麻纤维细胞发育的影响[J].中国麻作.22(1):20-22.
    徐文平,戴建军,李彩凤,李菊艳.2003.磷复肥对亚麻养分积累和产量影响的研究[J].现代化农业.(10) 291:16-17.
    杨龙,陈发宏,王斌等.2005.密度和播期对六安地区亚麻生育期和产量的影响[J].中国麻业.(27) 6:308-311.
    姚晓敏等.1998.站立脱胶对亚麻种子的影响[J].中国麻作.20(1):39-41.
    于先宝.1981.亚麻产量构成因素的相关性分析[J].中国麻作.4:37-39.
    张福修,关凤芝,王玉富等.1996.密度、肥料对亚麻纤维产质量的影响[J].中国麻作.18(4):21-23.
    张福修,关凤芝,王玉富等.1997.改进栽培技术提高亚麻纤维品质[J].黑龙江农业科学.(1):43-44.
    张丽珠,王奉喜.1988.亚麻脱胶新工艺的研究[J].中国麻业.(2) 34-36.
    赵德宝,张福修,关凤芝等.1991.钾对亚麻纤维产量和品质影响的研究[J].中国麻业.(2).
    赵东升,李彩凤,洛育等.2004.施高宝对纤维亚麻产质量影响及其机理的研究[J].中国麻业.(26) 6:277-280.
    赵兴全,吴春洪.2005.土壤水分条件对亚麻生长发育的影响[J].黑龙江气象.16-19
    赵作民等.1985.不同耕法对亚麻产量的影响[J].中国麻作.(4):33-36.
    周以贤,赵作民,张福修.1982.测定亚麻叶面积的初步探讨[J].中国麻业.(1).
    周以贤等.1984.纤维亚麻生长发育与干物质积累规律研究初报[J].中国麻作.(2):35-36.
    周以贤,宋余民等.1986.纤维亚麻农艺性状与产量关系的分析[J]..中国麻作.(4):39-43.
    周以贤等.1986.不同农艺措施对亚麻产质量影响的研究[J].中国麻业.(6):43-45,22.
    周以贤,徐丽珍,郭永利.1989.纤维亚麻干物质生产与分配规律的探讨[J].中国农业科学.22(5):42-46.
    邹长明,徐正和,王平根.2003.密度和播种方式对亚麻生长和产量的影响[J].安徽农业科学.31(5):720-721.
    柳迟辛男.1975.亚麻植株生长期中不同日长处理对生育的影响[J].第二报从短日照移到自然长日照的影响.日本作物学会纪事.44(4).
    A.P.罗卡士.1975.亚麻栽培学[M].第一版.卫德林译.
    K.Easu.1973.植物解剖学[M].:李正理等合译.第一版.上海人民出版社.
    Vavilov.1980.亚麻栽培学[M].
    A.Day, B. Dehorter, G. Neutelings, X. Czeszak, B. Chabbert, L. Belingheri, H. David. 2001. Caffeoyl-coenzyme A 3-O-methyltransferase enzyme activity, protein and transcript accumulation in flax [Linum usitatissimum] stem during development[J]. Physiol. Plant. 113 275-284.
    Akin D E, Morrison W H, Gamble G R, et al. 1997. Effect of retting enzymes on the structure and composition of flax cell wall[J]. Textile Res J. 67:279-287.
    Akin D E, Foulk J A, Dodd R B, McAlister D D Ⅲ. 2001. Enzyme-retting of flax and characterization of processed fibers[J]. Journal of Biotechnology. 89(2): 193-203.
    Akin D E, Morrison W H Ⅲ, Rigsby L L, Evans J D, Foulk J A. 2003. Influence of water presoak on enzyme-retting of flax[J]. Industrial Crops and Products. 17(3): 149-159.
    A.Jauneau, A. Cabin-Flaman, C. Morvan, C. Pariot, C. Ripoll, M. Thellier. 1994. Polysaccharide distribution in the cellular junctions of immature fibre cells of flax seedlings[J]. Histochem. J. 26: 226- 232.
    C. Andeme-Onzighi, R. Girault, I. His, C. Morvan, A. Driouich. 2000. Immuno-cytochemical characterisation of early-developing flax fiber cells[J]. Protoplasma. 213 :235-245.
    Derebon-Yu-G. 1975. Effect of different forms of nitrogen on changes in chemical composition of fibre of fibre flax[J]. Nauchney-Trudy-Ukrainskaya- Sel'skokhozyaistvennaya- Akademiya. 12: 21-22.
    D.E. Akin, G.R. Gamble, W.H. Morrison III, L.L. 1996. Rigsby, Chemical and structural analysis of fiber and core tissues from flax[J]. J.,Sci. Food Agric. 72 : 155-165.
    Easson-DL; Long-FNJ. 1992. The effect of time of sowing, seed rate and nitrogen level on the fibre yield and quality of flax (Linum usitatissimum L). Irish-Journal-of-Agricultural-and-Food-Research. 31 (2) : 163-172
    Easson.D.L and Molloy.R. 1995. A review of developments in the storage and retting of fiax[J]. Agricultural Research Institute of Northern Ireland 68th Annual Report. 42-49.
    Easson.D.L and Molloy.R. 1996. Retting-a Key Process in the Production of High Value Fibre from Flax[J]. Agricultural. 25(4):235-242.
    Evans J D, Akin D E, Foulk J A. 2002. Flax-retting by polygalacturonase -containing enzyme mixtures and effects on fibre properties[J]. Journal of Biotechnology. 97(3): 223-231.
    F.L. Milthorpe. 1945. Fibre development of flax in relation to water supply and light intensity[J]. Ann. Bot. 9 :31-53.
    Foulk J A, Akin D E, Dodd R B. 2001. Processing techniques for improving enzyme-retting of flax[J]. Industrial Crops and Products. 13(3):239-248.
    Haylock R W, Donaghy J A. 1990. Anaerobic macerations for the production of textile fibres[J]. Biodeterioration Abstracts. 4(2): 97-107.
    Harvey B.M.R.Spence, L.CROTHERS, S.D.Oct. 1985, Pre-harvest of flax with glyphosate: Effect of growth stage at application on uptake, translocation and efficacy of glyphosate[J]. Annals of Applied Biology. [London: Association of Applied Biologists]. 107(2):263-270.
    Henriksson G, Akin D E, Rigsby L L, et al. 1997. Influence of chelating agents and mechanical pretreatment on enzymatic retting of flax[J]. Textile Res J. 67:829-836.
    Henriksson G, Akin, D E, Slomczynski D, et al. 1999. Poduction of highly efficient enzymes for flax retting by Rhizomucar pusillus[J]. J Biotechnol. 68:115-123.
    I. His, C. Andeme-Onzighi, C. Morvan, A. Driouich. 2001. Microscopical analysis of mature flax fibers embedded in London Resin White: immunogold localisation of cell wall matrix polysaccharides[J] . J. Histochem. Cytochem.. 49:1525-1535.
    J-Am-Soc-Agron. Madison, Wis. 1933. Some physiological factors influencing the production of flax fiber cellsfJ]. American Society of Agronomy. 25 (5):312-328.
    J, Jacquemart. 1961. Origine et croissance des fibres du lin[J]. Fibra 6 : 32-38.
    J.-C. Roland, M. Mosiniak, D. Roland. 1995. Dynamique du positionnement de la cellulose dans les parois des fibres textiles du lin [Linum usitatissimum] [J]. Acta Bot. Gallica. 142: 463-484.
    Karpova-ES etc. Role of boron in formation of yield of fibre flax[J]. Len-i-Konoplya. 12: 21-22.
    K. Esau, 1943. Vascular differentiation in the vegetative shoot of Linum. III. The origin of the bast fibers[J]. Am. J. Bot. 30 :579-586.
    K. Keegstra, K.W. Talmadge,W.D. Bauer, P. Albersheim. 1973. Structure of plant cell wall. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components[J]. Plant Physiol. 51:188-197.
    Kondratowicz-J. 1977. The influence of some agrotechnical factors on the yield and crop quality of fibre flax[J]. Zeszyty-Naukowe-Akademii-Rolniczo-Technicznej-w-Olsztynie- Rolnictwo. 20:21-70.
    M. Heude, V. Bossuyt. 1959. Composition qualitative des hemicelluloses incrustantes de la fibre de lin[J]. Bull. I.T.F. 85:101-119.
    Powers,-W.L.1928. Fertilizers for fiber flax[J]. American Society of Agronomy. 20 (7) : 755-763.
    Robinson,-B.B.,Cook,-R.L. 1931. The effect of soil types and fertilizers on yield and quality of fiber flax[J]. American Society of Agronomy. 23 (7) : 497-510.
    T.A. Gorshkova, S.E. Wyatt, S.B. Chemikosova, V.V. Salnikov,D.M. Gibeaut, M.R. Ibragimov, V.V. Lozovaya, N.C. Carpita. 1996. Cellwallpolysaccharides of developing flax plants[J]. Plant Physiol. 110:721-729.
    T.A. Gorshkova, V.V. Salnikov, N.M. Pogodina, S.B. Chemikosova, E.V. Yablokova, A.V. Ulanov, M.V. Agreeva, J.E.G. Van Dam, V.V. Lozovaya. 2000. Composition and distribution of cell wall phenolic compounds in flax [Linum usitatissimum L.] stem tissues[J]. Ann. Bot. 85:477-486.
    Yagodin-BA etc. 1991. Utilization of nitrogen by fibre flax plants and yield of straw with different rates of nitrogen fertilizer[J]. Izvestiya-Timiryazevskoi-Sel'skokhozyaistvennoi- Akademii. 1:89-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700