渭河流域全新世生态环境变化和野火活动记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全新世生态环境演变是一个复杂的过程,受多种因素制约,只有通过多种气候替代指标综合分析,才有助于科学地恢复全新世生态环境演变的过程。磁化率、TOC反映气候干冷、温湿的变化;木炭屑反映野火发生的强度、频率,进而反映全新世气候的干-湿、冷-暖变化。我们清楚认识到,作为生态环境干扰因素之一野火,在气候变化背景下,成为驱动渭河流域生态环境演化的一个直接因素,随着人类活动范围的扩大,人为火促成的野火活动已成为加速全新世生态环境演化的一个重要因素,因此,研究野火活动及人类活动与生态环境演化关系,对了解和认识全新世生态环境演化具有重要意义。
     渭河流域是华夏文明的发祥地之一,史前时期相继发展了大地湾文化、仰韶文化、龙山文化、夏商文化、先周文化、寺洼文化等,它是人类最早进行农牧业活动的一个重要区域。随着人口增长,人类长期砍伐、焚毁林木、开垦土地等活动的范围逐渐扩大,人们通过使用火促成的野火活动更加频繁,进而影响着全新世生态环境演化过程。本研究通过多种手段探讨全新世野火活动及人类活动与生态环境演变的关系。
     本研究通过大量野外考察选取了渭河流域北至南方向上三个全新世黄土-土壤剖面。三个剖面地层稳定,发育连续完整,保存良好,具有典型性,分别对三个剖面进行高密度采样,并对剖面样品分别进行磁化率、TOC、木炭屑室内分析和测定,其中通过对野火活动记录最理想的代用指标木炭屑统计和鉴定,结合生态环境的替代指标磁化率、TOC分析和测定来试图讨论野火活动的历史,对生态景观的影响,气候的变化以及人为火促成的野火活动对生态环境的干扰等,来进一步说明野火活动与生态环境演变的关系,对了解渭河流域全新世生态环境演变具有重要意义。同时,分析人类活动与生态环境相互作用及人地关系演变进程。其研究成果为:
     (1)通过木炭屑、TOC、磁化率、历史文献等多项指标结果分析渭河流域全新世环境变化:在马兰黄土堆积时期,在总体较冷、干的背景下(相对全新世而言),更多地显示了波动性,此时粉尘堆积过程显著,生物成壤作用微弱,呈现半荒漠草原环境;全新世早期(11,500~8,500 a B.P)处于从干冷向温湿转变的一个渐变过程,与马兰黄土堆积时期相似,气候干旱而不稳定;全新世中期(8,500~3,100
    
    a B.P)全新世以来最温湿的时期,植被茂盛,古土壤发育强烈,有机质积累丰富,
    但此时期并不是持续的温暖湿润期,存在着一个气候恶化阶段。全新世晚期(3,100
    a B.P~0)又一次相对干早的阶段,风尘堆积加速,生物化学成壤作用减弱,生物
    有机量大幅度降低。3,100 a B.P后在黄土层与、表土层(TS)木炭屑数量又大幅
    度上升,达到峰值,可能因历史时期人类活动的扩大产生大量的木炭屑,同时使
    得土壤环境进一步退化,加重气候干早程度。
     (2)通过木炭屑、Toc、磁化率、历史文献等多项指标结果分析木炭屑记录与
    总有机碳(Toc)的关系。作为生态环境变化的替代指标总有机碳(Toc)和木炭
    屑往往在土层中相伴而生,它们对生态环境指示作用范围既有联系,又有区别;
    总有机碳(Toc)实质上包含了生物成壤作用形成的腐殖质中有机碳的含量和野火
    形成的木炭屑有机碳的成分,它是无定形碳,它主要反映土坡有机质积累状况,
    TOC含量的高低与气候变化和植被覆盖度变化呈现正相关;而木炭屑具有形状的木
    质结构,外形边缘清楚可见,在显微镜下能够清楚辨认,,通过木炭屑浓度变化定
    量分析并可以恢复地质历史中野火发生的频率、强度及其动态演化过程。可见,
    总有机碳(Toc)并不能完全指示生态环境中野火活动;而木炭屑才是直接指示野
    火活动。
     (3)通过木炭屑、Toc、磁化率、历史文献等多项指标结果分析野火的发生与环境
    变化关系。末次冰期马兰黄土堆积时期(15,oooa B.P一11,500 a B.P)呈现半荒
    漠草原生态环境,气候寒冷干旱,区域性和当地性野火常有发生;全新世早期(11,
    50oa B.P~8,500a.B.P)本时期处于从干冷向温湿过渡阶段,此时与马兰黄土堆积
    时期相似,野火活动频繁发生;全新世中期(8,500一3,100 a B.P),全新世最为
    温湿的时期,植被茂盛,古土壤发育强烈,呈现森林和森林草原景观,此时本地
    似乎野火活动极少发生,但是,大量细粒木炭屑出现则指示源区远源成分较大,
    与区域范围的沙尘同源,不排除渭河流域个别地方可能有野火发生,与人类放火
    毁林,开垦土地,种植农作物的结果。标志着渭河流域的自然景观开始逐步被人
    工景观所替代:全新世晚期(3,100 a B.P~0),成为全新世又一个相对干早的阶
    段,生物化学成壤作用减弱,木炭屑浓度大幅度增加,野火活动频繁发生,特别
    是3,IOOaB.只随着人类活动范围扩大,放火毁林、开垦土地等活动频繁发生,导
    致木炭屑大量出现,渭河流域正在由自然景观向半自然、半人工景观过渡。1500aB.P
    以后,前半期木炭屑浓度大大减少,可能是荒地开垦殆尽,几乎呈现为农田人工
    景观,而后半期大颗粒木炭屑浓度增加了,可能由于近代人口增长,人们生活用
    火和垃圾增加的结果。
     本研究特色与创新点在于通过沉积物中木炭屑记录,来反映野火活动与全新世
    
    生态环境动态演?
Ecological environment in Holoeene is so complicated a phase that it derived from a variety of factors. Only through various climatic proxy for synthetic analysis can we contribute to the recovery of Ecological environment variation in Holoeene .The magnetic susceptibility. Total organic carbon (TOC) indicate a drier and colder , warmer and wetter climate, while charcoal indicates intensity, frequency of Wildfire activity. Under the circumstances of climatic changes, Wildfire is not the only factor interfering the ecological environment, but a direct factor caused great changes of ecological environment in Weihe river drainage. With the enlargement of human scope of activities, Wildfire activity has already become and accelerated the transformation of the ecological environment. So, it is well worth studying the relationship between Wildfire activity, human activity and even the shift of ecological environment .It is significant for us to acknowledge those in ecological environment.
    It is one of the Chinese cultures which originated from Weihe river drainage, gradually with the development of Dadiwan culture, Yangshao culture, the Longshan culture, Xia and Sang dynasty culture, etc. It is an important area where the human beings first carried on the activity of farming and stockbreeding. With the rapid growth of population, innovation of tools, hunting and gathering, especially the enlargement of many years of farming, human became stronger by interfering and influencing ecological environment with the purpose of improving their own lives. The author attempts to focus on the relationship between Wildfire activity, human activity and the changes of ecological environment during Holoeene. . The main findings are:
    (1) Change of environment during Holoeene in Weihe river drainage were studied by proxy climate data of magnetic susceptibility, total organic carbon and charcoal: Piled up period in the Malian loess, it is the most typical deposit of Aeolian dust accumulated in the semi-desert environment. An early Holoeene (11, 500~8, 500 a B. P) was much similar to Malian loess, arid but unstable. During the Holoeene "climate optimum"(8,500~3,100 a B.P), it was wetter and warmer, and then was active bio-pedogenic processes during the
    
    
    
    time of soil formation, while it was not a continuous warm-humid period. During the late Holocene (3, 100 a B.P~0), it was weak bio-pedogenic processes during the time, which became another relatively arid stage during Holocene. From3, 100a.B.P on, with the increase of human activity, Bio-pedogenic processes during the time of soil formation subsided. In the past 1500 years, mankind has reduced the interference of the region soil -vegetation system for a period of time. This may have already totally cultivated the farmland, with the growth of population, employment of fire and production of trash, and further deterioration of farmland by human.
    (2) The relationship with charcoal records and total organ carbon by proxy climate data of magnetic susceptibility, total organic carbon and charcoal: As the climatic proxy of total organic carbon and charcoal often exist together in the soil layer, which are linked with the ecological environment, there is a complete difference. Total organic carbon (TOC) includes the organic carbon in bio-pedogenic processes during the time of soil formation and the organic carbon of charcoal in Wildfire .It has irregular form and reflects organic accumulation of soil, while the charcoal is a wooden structure, which can be seen and recognized clearly through microscope, and can reflect objectively that of the Wildfire. It is obvious that total organic carbon (TOC) cannot point out the Wildfire activity in the ecological environment completely and the charcoal point out the Wildfire activity directly.
    (3) The relationship with Wildfire activity and environmental changes by proxy climate data of magnetic susceptibility, total organic carbon and charcoal: Piled up period in the Ma-Ian loess (15,000a B. P~ 11, 500 a B. P), the climate is arid, on semi-desert grass
引文
[1] 周道玮,.火生态学研究评述,.世界林业研究,1993,6(6),38~44
    [2] Komarek E V, Fire and the ecology of man.Proc.6thAnnu.Tall Timbers, FireEcol.Conf, 1967,143~170
    [3] Tailor A R.,Ecological aspects of lightning in forests.Proc.Tall Timbers Fire,Ecol.Conf, 1974,13,455~482
    [4] Biswell H. H, Effects of fire on chaparral in fire and ecosystems, Academic press, NewYork, 1974,321~364
    [5] Vogl R J, Effects of fire on grassland in fire and ecosystem, Academic Pres,. New York, 1974
    [6] Gill A M, Fire and Australia flora, Are view. Aust. For 1975, 38, 4~25
    [7] Phillips J, Effects of fire infore stand savanna ecosystems of sub-Saharan-Africa.in:TTko-zlowski and CEAhlgreneds, Academic Press, NewYork,197
    [8] 周道玮,岳秀泉,论野火的三属性,草业科学,1998,15(6),65-66
    [9] Dieter Uhl, Hans Kerp, Wildfires in the late Palaeozoic of central Europe-The zechstein (Upper Permain) of NW-Hesse(Germany), Palaeogeography, Palaeoclimatology, Palaeoecology,2003,199,1-15
    [10] Johnson, B, The great Fire of Borneo, World Wild Life fund, Godalming, Surrey, 1984,24
    [11] Simon. G Haberle, Geoff S. Hope, Sander van der Kaars. Biomass burning in Indonesia and Papua New Guinea: natural and human induced fire events in the fossil record, Palaeogeography Palaeoclimatology Palaeoecology, 2001(171), 259-26
    [12] Komarek, E.V, The natural history of lighting Talt timbers Fire ,Ecol. Conf.Proc. ,1964,3,139-183.
    [13] Vankat, J. L, .The national vegetation of north America: An introduction. New York: John Viley & Sons, Inc, 1979
    [14] Kimmins, J.P., Forest Ecology ,.Macmillan Publishing Company a division.of.Macmillan, Inc, 1987
    [15] Chandler .C. at al, Fire in Forestry Volume 1-Foresty fine behaviorandeffects, New York: John Wiley. & Sons, Inc, 1979.
    
    
    [16]. Oliver .C .D. and B. C. Larson, Forest stand dynamics Mc Gaw-Hill. Inc, 1990
    [17]. Glenn-Levin. D. c. and E. Van der Maarel Patterns and processes of vegetation dynamics, In:( Glenn-Levin. et. al ends)Plant succession: Theory and prediction, Champan & Hall, 1992,11-14
    [18]. Johnson. E..A. and J. S. Rowe, Fire in the sub-arctic wintering ground of the Beverly Caribou Herd, Amer. Middle. Nat., 1995,94,1-14
    [19]. Turner M. G. and S. P. Brat-ton, Fire, grazing, and the landscape heterogeneity of. a Georgia. Barrier island, In: (M. G. turner ed. ). Landscape heterogeneity. And. Disturbance. New York: Springer Verlag., 1987,85-101.
    [20] Uemura. S. et al, .Effects of. fire. on. the. Vegetation. Of. Siberian. Taiga. Predominated. by. Larix. Dahurica., Can.J. For. Res.,1990,20,547-553.
    [21]. Copper. C. F, The ecology.Of.Fire, Sci. Amer.1961,204(4),150-160.
    [22]. Komarek., E. V, The meteorological basis for fire ecology. Tall. Timber. Fire. Ecol. Conf. Proc.,1966.5, 85-125
    [23] Wright. H. A. and. Bailey, Fire. ecology.-United. States. and Southern. Canada, New.york: John Wiley &Sons., Inc, 1982
    [24].舒立福,田晓瑞,.马林涛,.林火生态的研究与应用,林业科学研究,1999,12(4),422~427
    [25] 卢振兰,刘常梅,韩国辉,火生态学研究方法综述,2001,30(6),4-7
    [26] Jenny Moore , Forest fire and human interaction in the early Holocenewoodlands of Britain, Palaeogeography, Palaeoclimatology, Palaeoecology, 164(2000), 125-137
    [27] AndrewC. Scott&Jenny Moore, Barbara Brayshay, Introducation to fire and the palaeoenviroment, Palaeogenography, PalaeoclimatologyPalaeoecology164 (2000) ⅶ—ⅹⅰ
    [28] 陈利顶,傅伯杰,干扰的类型、特征及其生态学意义,生态学报,2000,20(4),383-384
    [29]. Cousins W. J, Optical microscopy.of charcoal J. Microscopy,1975.105,15-18
    [30]. Me Ginnis E, A Use of scanning electron microscopy in studies of wood charcoal formation. ,Scanning Electron. Microsc, 1974,2:,469-476
    [31] Guo Y, Bustin R M ,Fire spectrospy and reflectance of Modern charcoal and fungal decayed woods implication for studies of inertinete in coals, Int .J.
    
    Coal Geo., 1998,37,29-53
    [32]. Taylor G H, Teichmuller M Eds.,Organic Petrology, Berlin: Gebruder Borntraeger, 1998
    [33]. Chaloner W G, Fossil charcoal as an indicator of palaeoatmospheric oxygen level, J Geol Soc London, 1989,146,171-174
    [34]. Jones T P Utratructural and chemical studies on Oligocene fossil wood from Bovey Tracey, Devon, UK,Review of Palaeobotany and palynology, 1994, 81,279-288
    [35] 陈因硕,澳大利亚白令湖早全新世森林演替中的森林火,植物学报,1990,32(1),69-75
    [36] Green D Time series and post -glacial forest ecology.. Quart. Res, 1981, 15, 265-277
    [37]. Whitehouse N J Forest fires and insects: Palaeoentomological research from a subfossil burn forest, Polaeogeography, Polaeoclimatology, Polaeoecology, 2000, 164:231-246
    [38] 徐海,中国全新世气候变化研究进展,地质地学,2001,29(2),9-10
    [39] Huang C C, Pang J L, et al, A regional aridity phase and its possible cultural impact during the Holocene Megathermal in the Guanzhong Basin . The Holocene, 2000, 10(1 ), 135-143.
    [40]. Clark, J. S, Fire and climate change during the last 750yr in northwestern Minnesota Ecol. Monogr, 1990(60), 135-159
    [41]. Green, D.G, Fire and stability the Postglacial forests of southwest .Nova. Scotia, J, Biogeogr,1982(9),29-40
    [42]. Myers, R.L, Peroni, P.A.,. Approaches to determining aboriginal. Fire .. use and its impact on vegetation, Bull. Ecol. Soc. Am, 64, 217-218
    [43] Patterson, W.A, Backman, A.E, Fire and disease history, In: Huntley, B, WebbⅢ, T.(Eds.), Vegetation. History, Hand book of vegetation Science, Kluwer, Dordrecht, 1988(6),603-632
    [44]. Patterson, W.A, Edwards, K, J., Maguire, D.J, Microscopic charcoal as a fossil indicator of fire, Quart. Sci. Rev, 1987(6),3-23
    [45] 吕静,王宇飞,李承森,古炭屑与古森林火,古地理学报,2002,4(2),72-76
    [46] 周明富,周卫建,HEADJ.最近三万年北庄村剖面地层学与~(14)C测年,刘
    
    东生主编,黄土 第四纪地质 全球变化(第1集),北京:科学出版社,1990,12-19
    [47] An Z S,Kukla G, Poter S C et al.,Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000years, Quaternary Research, 1991, 36(1),29-36
    [48] Hung C C,Pang J L, Li P H, Abruptly increased climatic aridity and its social impact at 3100aB.P on the Loess Plateau of China, Journal of Arid Environments 2002,(3), 1-13
    [49] Huang C C,Pang J L,. et al, High-resolution studies of the oldest cultivated soils in the southern Loess Plateau of China, Catena, 2002,47(1),29-42
    [50] Han J M, LüH Y, Wu N Q et al. Magnetic susceptibility of modern soils in China and climate condition. Studia Geophysica et Geodetica. 1996, 40:262-275
    [51] Maher B A. Magnetic properties of modern soil and Quaternary loessic palaeosols palaeosols : Palaeoclimatic implications. Palaeogeography, Palaeoecology, 1998, 137:25-54
    [52] Huang C C, Pang J L, Zhao J B. Chinese loess and the evolution of the East Asia monsoon. Progress in Physical Geography. 2000, 24:75-96
    [53] 黄春长.晚冰期Yonger Dryas环境灾变.地球科学进展,1998,13(4):356-363
    [54] 黄春长,延军平,关中盆地全新世大暖期当中区域性干旱气候研究,《资源产业化开发与生态环境建设》,中国环境科学出版社,1999,11-19.
    [55] 王红亚,汪美华等,泥河湾盆地东部中全新世晚期的干冷干事件与中全新世湿润状况的结束,地理科学,2002,22(5):557-558
    [56] 傅泽强,杨友孝,戴尔阜,内蒙古干草原火动态及火险气候区划研究,中国农业资源与区划,2001,22(6):18-22
    [57] 李文漪,中国第四纪植被与环境,231-232
    [58] 杨晓燕,袁仁茂,全新世时期古水土流失与古人类活动相互影响分析,水土保持通报,2001,21(1):12-13
    [59] 王绍武等,中国西部环境演变评估(Vol 1),2001,136-137
    [60] 黄春长,渭河流域3100年前资源退化与人地关系演化[J].地理科学,
    
    2001,8(1):20-31
    [61] 谢志成,王志远,王红梅等.末次间冰期以来黄土高原的草原植被景观-来自分子化石的证据,中国科学(D),2002,32(1):28-35.
    [62] 陈发虎,马玉贞,李吉均.陕西黄土高原马兰黄土划分与末次冰期气候快速变化研究,冰川冻土,1996,18(2):111-11
    [63] 陈云,李铮华,等.全新世高温期气候不稳定性记录,海洋与第四纪地质,1999,19(3):97-103.
    [64] 施雅风,孔昭宸,中国全新世大暖期的气候波动与重要事件,中国科学(B集),1992,(12):1300-1308
    [65] 王宁练,姚檀栋等,全新世早期强降温事件的古里雅冰芯记录证据,科学通报,2002,47(11):818-823
    [66] 施雅风主编,中国全新世大暖期气候与环境.北京:海洋出版社,1992,1-212.
    [67] 施雅风主编,本卷主编张丕远.中国气候与海洋变化及其趋势和影响,1)中国历史气候变化.济南:山东科学技术出版社,1996。1-533.
    [68] 温孝胜,彭子成,赵焕庭.中国全新世气候演变研究的进展.地球科学进展,1999,14(3):292-298.
    [69] Yao Tandong, Jiao Keqin, Tian Lide,et al. climate variations since the Little Ice Age recorded in the Guliya Ice Core. In China(Series D), 1996,39(6),587-596.
    [70] Lou Tianyu, Chen Chentung, Warm Jenkang. Paleoclimatological records of the Great ghost lake in Tai wan. Science In China(Series D), 1997,40(3):284-292.
    [71] Vogl R J,1977. Fire: destuctive menace or a nature process. In Cairns Jed.Symposium on Recovery and Restoration of Damaged Ecosystems. University Press of Virginia, Charlottsville, VA. 261—289.
    [72] Jones T P, Chalone W G, 1991. Fossil charcoal, its recognition palaeoatomospheric significance. Paleogeogr. Palaeoclimatol. Palaeoecol.,97:39—50
    [73] Scott A C, Cripps J A, Collinson M E ,Nichols G J,2000,The taphonomy of charcoal following a recent heathland fire an some implications for the interpretation of fossil charcoal deposits. Paleogeogr. Palaeoclimatol. Palaeoecol,, 164:1—31
    
    
    [74] Stocks B J, Kauffman J B, 1997. Biomass consumption and behaviour of wildland fires in .boreal, temperate and tropical ecosystems parameters necessary to interpret fire regimes and future fire scenarios. In: Clark J S, Cachier H M, Goldammer J G; Stocks Beds. Sediment records and Biomass Burning and Global Change, NATO ASI Series, Vol.131. Springer, Berlin, 169—188
    [75] 孙湘君,李逊,陈怀成.南海北部最近37ka以来天然火与气候.中国科学(D),2000,30(2):167-168
    [76] 水涛.论甘青地区青铜时代文化和经济形态转变与环境变化的关系.见:周昆叔,宋豫琴主编.环境与考古研究(第二辑).北京:科学出版社,2000,52-58.
    [77] 夏敦胜,马玉贞,陈发虎等.秦安大地湾高分辨率全新世植被演变与气候变迁初步研究.兰州大学学报(自然科学版),1998,34(1):119-127。
    [78] 莫多闻,宋豫琴,李水成.河南驻马店地区与甘肃葫芦河流域中全新世环境演变及其对人类活动影响的对比研究.见:周昆叔,宋豫琴主编.环境与考古研究(第二辑).北京:科学出版社,2000,52-58.
    [79] 庞奖励,黄春长.一万年以来西安地区古土壤特征与气候波动变化研究.高原气象,2003,22(1):79-83
    [80] 刘东生,郭正堂,吴乃员,等.史前黄土高原的自然植被景观.地球学报,1994,3-4:230-232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700