玉米麦根酸代谢评价体系的建立及缺铁胁迫相关代谢基因片段的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺铁是世界农业生产中非常普遍的一个产量限制因子,在干旱半干旱的石灰性土壤上,果树、玉米、高粱等作物的缺铁问题尤为严重。解决这一问题有两条途径:一是通过改良土壤营养状况,改变或排除土壤障碍因子以适应植物生长发育,如施肥、添加土壤改良剂和其他技术措施等。二是通过育种手段,改良植物的矿质营养遗传特性,使其活化被土壤吸附固定的养分,变固定态为可利用态,从而被植物吸收利用,即挖掘植物和土壤本身固有的潜力充分利用自然资源。培育铁营养高效新品种是减轻缺铁影响的有效方法,是当前的研究热点之一。
     禾本科类植物能够由根系分泌麦根酸类物质(Mugineic acids,简称MAs),也叫植物铁载体(Phytosiderophores,简称PS)来活化土壤中难以被植物吸收利用的铁,使之易于被植物吸收利用,从而解决自身铁营养缺乏的问题。
     本研究以玉米自交系为材料,对三种玉米麦根酸类物质的测定方法进行比较,同时分析了不同玉米自交系苗期麦根酸类物质的分泌能力和缺铁敏感性,比较了不同生育时期玉米麦根酸分泌能力的差异,研究了玉米麦根酸分泌特性的遗传规律,建立了玉米苗期缺铁胁迫诱导的cDNA文库,并对该cDNA文库的近1000个克隆进行了测序分析。主要研究结果如下:
     1筛选建立了玉米麦根酸类物质测定方法
     以16种玉米自交系为材料,根据麦根酸类物质的溶铁特性,建立了麦根酸类物质间接测定新方法——ICP-AES法,改良了脱氧麦根酸(DMA)的UV-HPLC直接测定法,并与传统的比色法测定结果进行比较。结果表明,采用ICP-AES法,以Fe_2O_3粉末作为活化对象,与传统采用Fe(OH)_3的测定结果相比,结果稳定、重复性好,说明ICP-AES法是玉米麦根酸类物质分泌量的一种简单、快速的间接测定方法。改良的UV-HPLC法也具有准确、高效的特点,可应用于禾谷类作物DMA分泌量的直接测定。高效液相色谱法是PS测定的准确方法,但在材料选择时可以利用ICP-AES方法来对材料的麦根酸分泌能力进行测定。
     2建立了玉米自交系麦根酸分泌特性的评价体系
     以46种玉米自交系为材料,利用高效液相色谱法和等离子体法测定了苗期和穗花期缺铁胁迫前后玉米根系的麦根酸分泌速率,评价了不同材料的麦根酸分泌能力、缺铁敏感性和不同生育时期分泌量的变化。结果得出,在苗期缺铁胁迫前后材料的PS分泌能力之间存在着显著相关关系同时两种测定方法之间存在显著相关关系r (Fe+) = 0.7149~(**);麦根酸分泌特性在不同发育时期存在较大差异,四叶一心期和穗花期的测定结果具有显著的相关性r=0.9701~*,穗花期玉米PS分泌速率的下降程度与苗期玉米PS分泌速率之间具有显著的对数相关关系r=0.892~*;利用苗期材料的麦根酸分泌能力和缺铁敏感性建立了麦根酸分泌特性的评价体系,以缺铁胁迫前PS分泌速率的平均数[2.836 mg/(g~*per plant~*3h)]和缺铁胁迫后的PS分泌速率增加量的平均数[0.209 mg/(g~*per plant~*3h)]作为分界线可以将材料分为具有不同PS分泌能力和缺铁敏感性的四种类型:HH,HL,LH,LL,其中具有LH型低PS分泌速率和高缺铁胁迫敏感性的材料是铁营养高效育种的理想材料。
     3分析了玉米麦根酸代谢遗传规律
     选用八个具有不同MAs分泌能力的玉米自交系,采用半双列杂交的试验设计,分析了杂交后代的麦根酸分泌能力,结果表明亲本麦根酸分泌特性的测定结果与材料自身GCA的相关系数均达到极显著水平,SCA效应值最高的组合并不一定是麦根酸分泌能力最高的组合,只有组合的SCA和双亲的GCA效应均高,才有可能获得麦根酸分泌能力较高的组合,组合的表现与其TCA效应一致。玉米麦根酸类物质的分泌特性以显性效应占优势,遗传加性效应相对较小,麦根酸分泌能力的遗传模型经检验证明符合加性-显性模型,而其缺铁敏感性的遗传模型则不符合。控制麦根酸分泌能力表现显性的主效基因组不少于一组,显性方向为减效;控制麦根酸缺铁敏感性表现显性的主效基因组数较少,显性方向为增效,二者的主效基因组可能不相同。
     4建立了缺铁胁迫诱导的抑制性扣除杂交cDNA文库
     以缺铁胁迫前的昌7-2根尖cDNA为driver cDNA,缺铁胁迫后的昌7-2根尖cDNA为Tester cDNA;以缺铁胁迫后的昌7-2根尖cDNA为driver cDNA,缺铁胁迫后的郑58根尖cDNA为Tester cDNA,进行两组抑制性扣除杂交,获得了与玉米缺铁胁迫代谢和麦根酸代谢能力差异表达有关的cDNA PCR产物,建立了相关文库。
     5分析了玉米缺铁诱导代谢的相关基因
     分析已获得的与玉米缺铁胁迫特异性表达的抑制性扣除杂交的PCR产物建立的SSH文库,其包含的片段大小为200bp-900bp。从文库中挑取了1230个克隆进行测序,除去8%的冗余片段共得到非重复的序列203个,其中77个的Blast结果表明它们可能是新发现的序列,除此之外其中:9个片段(0002,0034,0039,0143,0152, 0214, 0355,0375, 1152)可能与缺铁胁迫后植物适应代谢能量降低的调控有关;3个片段(0183,0232,0350)可能与细胞质膜上铁的还原酶有关;2个片段(0061,0622)可能与植物体内或细胞膜上铁离子的结合蛋白有关;5个片段(0094,0155,0208, 0249, 0985,1055)可能与细胞质膜的转运功能有关,3个片段(0234,0362,0387)与氨基酸的转运功能有关,5个片段(0103,0116,0274, 0382,0681)与植物的抗逆性有关,2个片段(0201,1183)与转录调控有关。同时在所有得到片段中, 0257与DNA的促旋酶有关。可能与遗传规律的减效显性作用有关。其余部分片段可能为未知功能片段。这些基因的差异表达与玉米缺铁胁迫的基因调控的关系有待进一步阐明和分析。
Iron (Fe) deficiency chlorosis (lime chlorosis) is a world widespread mineral nutrient deficiency in higher plants, especially corn, sorghum and fruit tree, grown on calcareous soils. Soil amendments and foliar sprays of Fe are not viable economically in the long term to correct Fe deficiency. Therefore, to alleviate Fe chlorosis in the long term, alternative methods, for example breeding of more chlorosis resistant genotypes (cultivars) are required. The recent hotspot in agricultural research is to reach the high yield, quality and efficiency target by the using of plant’s stress tolerance. Graminaceous species can enhance iron (Fe) acquisition from sparingly soluble inorganic Fe (Ⅲ) compounds by release of phytosiderophores (PS) which mobilize Fe (Ⅲ) by chelating.
     Using corn inbred lines as material, this study had compared three PS amount test method, analized the PS secretion ability and iron sensitivity at seedling stage.While the different of PS secretion ability between seedling and heading stage and the regulation of PS secretion characteristic’s inherit had been studied. Two SSH cDNA library which one was about the Fe deficiency metobolize regulating, another was about the different PS secretion ability had been constructed.Using the SSH cDNA library which one was about the Fe deficiency metobolize regulating, the cDNA which reduced by Fe deficency had been analized.The main results were summarized as follow:
     1 The Phytosiderophores (PS)’s test method had been set up.
     Using 16 corn inbred lines,according to the Fe(Ⅲ) chelated characteristic of mugineic acid, a new indirect method of inductively coupled plasma-atomic emission spectrometry (ICP-AES) and a modified direct method of ultra-spectra high performance liquid chromatography (UV-HPLC) for the measurement of MAs or deoxymugineic acid (DMA) were established in corn inbred lines. The comparison of these two methods with traditional spectrometry was also made. The results showed that the ICP-AES method, using Fe_2O_3 as the dissoluble object instead of the traditional Fe (OH)_3, was more stable and repeatalble suggesting that ICP-AES was a simple and quick method for evaluation of the MAs content in corn and other graminaceous crops. The modified UV-HPLC was also precise and efficient, and could be used for the direct mesurement of graminaceous’s deoxymugineic acid.
     2 The corn inbred lines PS secretion characteristic had been analized.
     The rates of phytosiderophore secretion had been tested by using ultra-spectra high performance liquid chromatography (UV-HPLC) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) with 46 corn inbred lines at seedling stage and heading stage. The iron deficiency sensitivity, the phytosiderophores secretion ability and change in different growth stage had been estimated. There was marked correlation existed in phytosiderophore secretion rate under Fe(+) and Fe(-) condition, and a marked correlation, r(Fe+) = 0.7149~(**),existed in Fe(+) rates of phytosiderophore secretion between two test methods. The rates of phytosiderophore secretion of seedling stage and heading stage had marked correlation, r=0.9701~*. Between the phytosiderophores secretion rate in seedling stage and the decrease degree of phytosiderophores in heading stage, there was a marked logarithm correlation r=0.892~*.The corn inbred-lines could be clustered into 4 types with different phytosiderophores secretion rate and iron difficiency sensitivity using the median of Fe(+) phytosiderophores secretion rate [2.836 mg/(g~*per plant~*3h)] and the increment of phytosiderophores secretion rate after being Fe(-) treatment [0.209 mg/(g~*per plant~*3h)] as standard.The HPLC was an exact method in PS testing, but the ICP-AES could be used in material selection. The phytosiderophores secretion characteristic was different at different growth stage. An estimated system had been constructed using PS secretion ability and iron deficiency sensitivity, and corn inbred lines could been divided into four types. The type with low PS secretion rate and high iron difficiency sensitivity are the expected Fe-efficient nutrition breeding material.
     3. Genetic analysis of PS secretion characteristic
     8 inbred lines which has different PS secretion characteristic each were used to make 28 hybrids by (1/2) n(n-1) diallel crosses design.The PS secretion ability of the hybrids and parents had been analized. It had been realized that there was a highly significantly correlationship existed between the PS secretion ability and the GCA from same parent.The combination with top SCA maybe not the best PS secretion ability combination .Only when both combination SCA and parent GCA were high ,the combiantion with strong PS secretion ability could be got.The PS secretion characteristic was mainly controlled by dominant effect,and the additive effect was proved to be weaken.The genetic model of PS secretion abilitys were proved to match the additive-dominant model, and was controlled by at least 1 major gene. However the iron sesectivity was not,and it has ralative less major gene.The major gene group seemed not to be the same group, hence the dominant effect they controlled were opposition,which is possitive(iron sensitivity),another is negative(PS secretion ability).
     4 suppression substractive hybridization
     Using the root apex cDNA from Chang7-2 under normal treatment as driver and Chang7-2 under iron deficient treatment as tester, one suppression subrstractive hybridization had been handled. While another hybridizaiton the iron deficiency treatment root apex cDNA from Chang7-2 as driver and zheng 58 as tester had been done. The PCR product from specific expressed cDNA had been gotten. The secific expressed cDNA was associated with the control of iron deficiency and PS secretion ability.
     5 Analysis about the gene which controlled corn iron deficiency metabolize
     SSH library had been constructed using the PCR product associated with iron dificiency. The lengh of segments which come from library were about 200 bp-900 bp.1230 clones had been choosen out and sequenced, 203 non-repeated sequence information had been got. Among them, there was 9 fragment could be putatived to be related with lower energy regulate after being iron deficiency treatmeng, 3 fragment was hypothetical iron oxidoreductase, 2 fragment may be associated with iron binding protein, 5 fragment may have the function about the membrane trasport,3 fragment was associated with aminotransferase, 5 could be putatived with plant resistant ability and 2 fragment were putative transcriptional regulator. 0257, a most special fragment within all fragment, was putative to has relationship with helix-turn-helix which was different to the bHLH (helix-loose-helix). The function of 0257 may be the negative control and had some touch with the negative dominateffec of genetic control. Besides, 77 fragments may be the new gene sequence, and the other was unknown function. Further reaseach should be done to explain the fragments’s special expression with corn iron deficiency gene control.
引文
1.崔美香,薛进军,王秀茹.树干高压注射铁肥矫正苹果失绿症及其机理[J].植物营养与肥料学报,2005,22: 119-130.
    2.陈洁,潘光堂,李华雄,杨克诚,王康宁,谢传晓,张世煌,张谦.玉米种质籽粒铁含量的测定及差异分析[J].西南农业学报,2007,20(6):1198-1201.
    3.谷丽萍,周阮宝.植物铁素营养的研究进展[J].植物杂志,1995,2: 3-5.
    4.郭朝辉.植物微域营养研究进展(一) [J].土壤通报,1999(1):4-49.
    5.郭世伟,邹春琴,江荣凤.提高植物体内铁再利用效率的研究现状及进展[J].中国农业大学学报,2000,3:80-86.
    6.郭新红,姜孝成,潘晓玲,陈良碧,周广洽.抑制性差减杂交技术(SSH)及其在基因克隆上的应用[J].激光生物学报,2001,10(3):236-239.
    7.黄鑫,戴斯兰,孟丽,郑国生.抑制性差减杂交(SSH)技术在分离植物差异表达基因中的应用[J].分子植物育种,2006,4(5):735-764.
    8.洪剑明,汪洪杰,邱泽生.缺铁对玉米根和叶细胞超微结构的影响[J].电子显微学报, 1999,18: 590-595.
    9.金亚波,韦建玉,王军.植物铁营养研究进展Ⅰ:生理生化[J].安徽农业科学, 2007, 35 (32): 10215-10219.
    10.旷远文.根系分泌物及其在植物修复中的作用[J].植物生态学报,2003,27(5):707-719.
    11.刘文荣,张积森,饶进,蔡秋华,翁笑艳,阮妙鸿,阙友雄,陈如凯,张木清.干旱胁迫下斑茅消减的构建及分析[J].作物学报,2007,33(6):961 - 967.
    12.刘来福,毛盛贤,黄远樟.作物数量遗传[M].农业出版社,1984,125 - 181.
    13.刘芷宇,李良谟,施卫明.根际研究法[M].1997, 65-68.
    14.李大志,韩宝芹.海洋细菌活性代谢产物的研究进展[J].中国海洋药物,2006,05: 1002-1005.
    15.李凌,罗小英,周泽扬.缺铁胁迫下4种果树砧木中三价铁螯合物还原酶基因的表达[J].植物生理与分子生物学报,2002,28(4): 299-304.
    16.李燕婷,白灯莎.买买提艾力,张福锁,江荣风,毛达如.酸性根际肥对石灰性土壤PH和铁有效性的影响研究[J].植物营养与肥料学报. 2003, 9 (3):312-316.
    17.李玉红,宗良纲,黄耀.螯合剂在污染土壤植物修复中的应用[J].土壤与环境, 2002, 11 (3):303-306.
    18.马瑞欣,耿美玉,李晋萍.蛋白组氨酸磷酸酶研究进展[J].生物化学与生物物理进展, 2005,32(12): 1103-1108.
    19.米国华,陈范骏,刘向生.玉米籽粒铁含量的基因型差异[J].玉米科学,2004,12 (2): 13-15.
    20.施卫明.应用薄层层析法分离植物铁载体[J].植物生理学讯,1989(6):60-62.
    21.王傲雪,张红霞,华子春.植物铁富集的基因工程[J].植物生理学通讯, 2002, 38 (5): 471 -474.
    22.王景安,梁晓华,彭永康.玉米铁营养不服从报酬递减率的研究[J].中国生态农业学报, 2004, 10(4):95-97.
    23.韦建玉,金亚波,杨启港,王军.植物铁营养研究进展Ⅱ:铁运输与铁有关的分子生物学基础[J].安徽农业科学,2007,35(33):10589-10593,10595.
    24.吴辉.根系分泌物及其生态效应[J].生态学杂志,1992,11(6):42-47.
    25.吴慧兰,王宁,凌宏清.植物铁吸收、转运和调控的分子机制研究进展[J].植物学通报, 2007,24(6):779-788.
    26.吴乃虎.基因工程原理[M].第二版.北京:科学出版社,1998:221-225, 6-364.
    27.吴平,印莉萍,张立平.植物营养分子生理学[M].科学出版社出版, 228-298.
    28.汪耀富,杨天旭,刘国顺,赵春华,王佩,陈新建.渗透胁迫下烟草叶片基因的差异表达研究[J].作物学报,2007,33(6):914-920.
    29.肖洁凝,黄学林,张以顺,黎茵,李筱菊.与芒果子叶切段不定根形成相关基因的cDNA片段的克隆[J].植物生理与分子生物学学报,2004,30(2):136-140.
    30.谢传晓,王康宁,张德贵,李明顺,李新海,潘光堂,陈洁,张世煌.玉米铁微营养生物有效性与生物强化的研究进展[J].玉米科学,2007,15(1):81-84.
    31.徐耀辉,焦新安,李求春,潘志明,黄金林.鸡白痢沙门氏菌与鸡伤寒沙门氏菌基因组消减文库的构建[J].中国农学通报,2007,23(7):15-18.
    32.严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997
    33.叶优良,张福锁,史衍玺.叶面喷施麦根酸铁对矫正山定子缺铁黄叶病的效果[J].果树学报,2001,18(5):251-254.
    34.邹春琴,张福锁,毛达如.铁对玉米体内氮代谢的影响[J].中国农业大学学报,1998,3(5):45-49.
    35.张朝红,王跃进,李琰.缺铁黄化对酥梨叶片营养元素含量和光合特性的影响[J].西北林学院学报,2002,17(4):9-11.
    36.张福锁.根分泌物与禾本科植物对缺铁胁迫的适应机理[J].植物营养与肥料学报, 1995,1(1):17-23.
    37.张福锁.土壤与植物营养研究动态(第一章)[M].北京:北京农业大学出版社,1992: 15-931.
    38.周厚基,仝月澳.苹果树缺铁失绿研究进展Ⅱ[J].中国农业科学,1988,21 (4): 46 - 50.
    39.张国平,马国瑞.大豆铁营养的遗传和铁高效品种的选育[J].大豆科学,1996,15(2): 159-163.
    40.张凌云,翟衡,张宪法.植物铁营养效率遗传研究进展[J].山东农业大学学报(自然科学版),2001,32(1): 112-116.
    41.张明,潘仁瑞,余增亮,吴龙飞.利用荧光蛋白对大肠杆菌蛋白质Tat转运系统的研究[J].生物化学与生物物理学报,2003,35(8):702-706.
    42.张漱茗,阎华,张军,刘光栋,崔荣宗.山东主要土壤养分状况的系统研究。[M]. 1991.
    43.张新华,孙立茹,张跃新.抑制性消减杂交技术与基因克隆化[J].传染病信息, 2002, 15(1): 25-28.
    44.章艺,史锋,刘鹏,陈旭微.土壤中的铁及植物铁胁迫研究进展[J].浙江农业学报, 2004,16(2):110-114.
    45.左元梅,李晓林,王秋杰.玉米/花生混作对玉米铁载体的分泌和花生铁营养的影响[J].华中农业大学学报,1998,17(4):357-363.
    46.左元梅,李晓林.玉米、小麦与花生间作改善花生铁营养机制的探讨[J].生态学报, 1998,18(5):489-495.
    47.左元梅,张福锁.不同间作组合和间作方式对花生铁营养状况的影响[J].中国农业科学,2003,36(3):300-306.
    48.左元梅,张福锁.不同禾本科作物与花生混作对花生根系质外体铁的累积和还原力的影响[J].应用生态学报,2004,15(2): 221-225.
    49. Agarwal S, Grover A. Isolation and transcription profiling of low - O2 stress - associated cDNA clones from the flooding-stress-tolerant FR13A rice genotype [J]. Annal Botany, 2005, 96:831-844.
    50. Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].Science, 1999, 284:2148-2152.
    51. Baucer P, Ling H Q, Guerinot M L. FIT, the FER-like iron deficiency induced transcription factor in Arabidopsis[J]. Plant Physiology and Biochemistry, 2007, 45:260-261.
    52. Bell W D, L Bogorad, W J Mcllrath.Response of the yellow-stripe maize mutant (ys1) to ferrous and ferric iron[J]. Botanical Gazette, 1958, 120:36-39.
    53. Bienfait H F. Regulated redox process at the plasmalemma of plant root cells and their function in iron uptake [J]. Journal of Bioenergetics and Biomembranes, 1985,17:73-83
    54. Bilwes A M, Alex L A,Crane B R.Structure of ChenA,a signal-transducing histidine kinase.Cell,1999,96(1):131-141.
    55. Brait J F, Lebrun M. Plant response to metal toxicity [J]. Annals of the New York Academy of Sciences, 1999 (322): 43-54.
    56. Bassani M, Neumann P M, Gepstein S.Differential expression profiles of growth -related genes in the elongation zone of maize primary roots. Plant Molecular Biology, 2004, 56 (3):367-380.
    57. Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi Person V. Expression profiling of up-regulated plant and fungal genes in early and late stages of medicago truncatula-Glomus masseae ineractions [J]. Mycorrhiza, 2004, 14(4):253-262.
    58. Brown J C. Mechanism of iron uptake by plants [J]. Plants Cell and Environment, 1978, 1: 249-257.
    59. Brumbarova T,Baucer P.Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato[J].Plant Physiology, 2005, 137: 1018-1026.
    60. Bughio N,Yamaguchi H,Nishizawa N K.Cloning an iron-regulated metal transporter from rice[J].J Experimental Botany,2002,53:1677-1682.
    61. Cary E E,Grunes D L,Dallyn S L.Plant Fe,Al and Cr concentrations in vegetables as influenced by soil inclusion[J].Food Quality,1994, 17: 467-476.
    62. Champonx, Nordquisf M C,Compton W A.Use of chromosomal translocations to locate genes in maize for resistance to high-pH soil[J].Plant,88,11:783-791.
    63. Chaney R L, Brown J C, Tiffin L O.Obligatory reduction of ferric chelates in iron uptake by soybeans [J].Plant Physiology, 1972, 50:208-213.
    64. Cho S K,Jeung J U,Kang K H,Shim K S,Jung K W,You M K,Ok S H,Chung Y S,Hwang H G,Choi H C,Moon H P,Shin J S.Identification of genes induced in wound-treated wild rice(oryza minuta).Molecular Cells,2004,17(2):230-236.
    65. Clair-Lise Rosenfield, David W Reed, Matthew W. Kent. Dependency of iron reduction on development of a unique root morphology in Ficus benjamina L[J]. Plant Physiology, 1991, 95:1120-1124.
    66. Clarkson D T, Sanderson J.Sites of absorption and translocation of iron in barley roots, tracer and microautoradio graphid studies [J].Plant Physiology, 1978, 61:731 - 736.
    67. Cohen C K, Fox T C. The role of iron-deficiency stress responses in stimu lating heavy-metal transport in plants [J].Plant Physiology, 1998, 116: 1063- 1072.
    68. Colangelo E P, Guerlnot M L. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response [J].Plant Cell, 2004, 16: 3400-3412.
    69. Connolly E L, Campbell N H, Grotz N, Prichard C L, Guerinot M L. Over express ion of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers post-transcriptional control [J].Plant Physiology, 2003, 133:1102-1110.
    70. Curie C, Alonso J M,Le Jean M.Involvement of NRAMP1 from Arabiodopsis thaliana in iron transport[J]. Biochemical Journal, 2000, 347:749-755.
    71. Curie C, Panaviene Z, Loulergue C,Dellaporta S L,Briat J F,Walker E L.Maize yellow stripe 1 encodes a membrane protein directly involved in Fe(Ⅲ)uptake [J]. Nature, 2001, 409:346-349.
    72. Darrell R, Van C, Raynond P G. Micronutirient bioavailability techniques: accuracy, problems and limitations [J]. Field Crops Research, 1999, 60: 93-113.
    73. Dekock P C, Hall A, Inkson R H E.Active iron in plant leaves [J]. Annals of Botany, 1979, 43: 737-734.
    74. Diachenko L.Lau Y C, Campbell A P.Suppression subtractive hybridizaiton: A method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proceedings of the National Academy of Science of USA, 1996, 93: 6025-6030.
    75. DiDonato R J,Roberts L A,Sanderson T,Eisley R B,Walder E L.Arabidopsis yellow stripe-like2 (YSL2) : a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes [J]. Plant Journal, 2004, 39: 403-414.
    76. Durrett T P, Gassmann W, Rogers E E. The FRD3-mediated efflux of citrate into the root vasculature is nessary for efficient iron translocation [J].Plant Physiology, 2007, 144: 197-205.
    77. Duy D, Wanner G, Meda A R, Von Wiren N, Soil J, Philippar K. PIC1, an ancient permease in Arabidopsis chloroplasts mediates iron transport [J].Plant Cell, 2007, 19: 986-1006.
    78. Eckhardt U,Mas Marques A,Buckhout T J.Two iron regulated cation transporters from tomato complement metal uptake-deficient yeast mutants [J]. Plant Molecular Biology, 2001, 45:437-448.
    79. Edward J., Whitley Jr., Ann Ginsburg. A novel reaction catalyzed by unadenylylated glutamine synthease from Escherichia coli [J]. Journal of Biological Chemistry, 1980, 22(255):10663-10670.
    80. Eide D,Broderius M,Fett J,Guerinot M L.A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J]. Proceedings of the National Academy of Science of USA, 1996, 93:5624-5628.
    81. Fernandez A,Amarco S G,Lucena J J.Evaluation of synthetic iron(Ⅲ) -chelates (EDDHA/ Fe3+ and the novel EDDHSA/ Fe3+ )to correct iron chlorosis[J].Europe Journal of Agronomy,2005,22:119-130.
    82. Feng H,An F,Zhang S,Ji Z,Ling H Q,Zuo J. Light-regulated, tissue - specific, and cell differentiation-specific expression of the Arabidopsis Fe(Ⅲ) -chelate reductase gene AtFRO6[J].Plant Physiology, 2006,140:1345-1354.
    83. Fumiyuki Goto, Toshihiro Yoshihara, Naoki Shigemoto, etal. Iron fortification of rice seed by the soybean ferritin gene[J]. Nature Biotechnology, 1999, 17:282-286.
    84. Goto.F, Yoshihera.F, Iron accumulation in tobacco plants expressing soybean ferritin gene[J].Saiki-H.Transgenic-Reasearch, 1998, 7(3): 173-180
    85. Guerinot M L, Yi Y.Iron: nutritious, noxious, and not readily available [J]. Plant Physi ology, 1994, 104:815-820.
    86. Gunshin H, Mackenzie B, Berger U V, Gunshin Y, Romero M F, Boron W F, Nussberger S, Gollan J L, Hedlger M A. Clong and charaterization of a mammalian proton-coupled metal-ion transporter [J]. Nature, 1997, 388: 482-488.
    87. Gunter Neumann, Charlotte Haake, Volker Romheld.Improved HPLC method for determination of phytosiderophores in root washings and tissue extracts[J].Journal of Plant Nutrition,1999,22(9):1389-1402.
    88. Hallberg L, Brune M, Rossander L.Iron absorption in man: ascorbic acid and dose -dependent inhibition by phytates [J]. American Journal of Clinical Nutrition, 1989, 49: 140-144.
    89. Harper J F, Manney L, Sussman MR. The plasma membrane H+-ATPase gene family in Arabidopsis: genomic sequence of AHA10 which is expressed primarily in developing seeds [J]. Molecular and General Genetics, 1994, 244(4): 572-587.
    90. Herbik A, Koch G, Mock H P, Dushikov D, Czlhal A, Thlelmann J, Stephan U W, BaumieinH.Isolation, characterization and cDNA cloning of nicotianamine synthase from barley- A key enzyme for iron homeostasis in plants [J]. European Journal of Biochemistry, 1999, 265: 231-239.
    91. Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa N K, Mori S. Cloning of nicotianmine synthase genes, novel genes involved in the biosynthesis of phyto - siderophores[J].Plant Physiology,1999,119:471-480.
    92. Higuchi K,Watanabe S,Takahashi M,Kawasaki S,Nakanishi H,Nishizawa N K,Mori S.Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions[J]. Plant Journal, 2001, 25:159-167.
    93. Hinderhofer K, Zentgraf U.Identification of a transcription factor specifically expressed at the onset of leaf senescence [J].Planta, 2001, 213(3): 469-473.
    94. Hiradate S.,Inoue K..Determination of mugineic acid, 2-deoxymugineic acid, 3-hydroxymugineic acid,and their iron complexs by ion-pair HPLC and colorimetric procedures[J]. Soil Science and Plant Nutrition, 1996, 42:659-665.
    95. Horvatic M, Gacic M, Vedrina-Dragejeviz I. Accumulation of iron, copper, manganese and nickel during maize grain maturation [J].Agronomy.Crop Science, 1999, 182: 99-103.
    96. Hubank M, Schatz D G.Identifing differences in mRNA expression by represent iational difference analysis of cDNA [J]. Nucleic Acids Research, 1994, 22(25): 5640 - 5648.
    97. Inoue H, Higuchi K,Takahashi M,Nakanishi H,Mori S,Nishizawa N K.Three rice nicotianamine synthase genes, OsNAS1, OsNAS2 and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron[J].Plant Journal,2003,36:366-381.
    98. Ishimaru Y,Suzuki M,Tsukamoto T,Suzuki K,Nakazono M,Kobayashi T,Wada Y,Watanabe S,Matsuhashi S,Takahashi M.Rice plants take up iron as an Fe3+ - phytosiderophore and as Fe2+[J].Plant Journal,2006,36:366-381.
    99. Itai R , Suzuki K , Yamaguchi H et al . Induced activity of adenine phosphoribosyltrans ferase (APRT) in iron-deficiency barley roots: a possible role for phytosiderophore production [J]. Journal of Experimental Botany, 2000, 51(348):1179-1188.
    100. Jackson M.B, M C Drew.Flooding and plant growth [J].Academic Press, 1984, 47-128.
    101. Jackon M J.The assessment of bioavailability of micronutrients: introduction [J]. European Journal of Clinical Nutrition, 1997, 51:S1-S2.
    102. Jakoby M. Wang H Y, Reidt W,Welsshaar B,Baucer P. FRU(BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana [J]. FEBS Letters, 2004, 577: 528-534.
    103. James C P,Miller G W.The effect of iron and light treatments on chloroplast composition ultrastructure in iron-deficient Barley leaves[J].Journal of Plant Nutrition, 1982, 5(417): 311-321.
    104. Janet R H .High, but not low-bioavailability diets enable substantial control of women’s iron absorption in relation to body iron stores, with minimal adaptation within several weeks [J].American Journal of Clinical Nutrition, 2003, 78: 1168-1177.
    105. Jia Bei, Huang Wen-xiang, Huang Ai-long.Bacterialmultidrug efflux pump systems and updates of analysis approach[J].中国抗生素杂志,2007,32(4):203-210.
    106. Jian Feng Ma, Genes controlling hydroxylations of phytosiderophores are located on different chromosomes in bareley (Hordeum, vulgarel) [J].Planta 1999, 207: 590-596.
    107. John A.Smith, Kevin Struhl Short protocols in molecular biology [M]. 2005,1021-1023.
    108. Kang Dong-chul, Raphael La France, Zao-zhong Su. Reciprocal subtraction differential RNA display: An efficient and rapid procedure for isolating differentially expressed gene sequences [J]. Proceedings of the National Academy of Science of USA, 1998, 95(11): 13788-13793.
    109. Katayi J C, Sharama B D. A new technique of plant analysis to resolve iron chrosis [J]. Plant Soil, 1980, 55: 105-119.
    110. Kawai S.,Takagi S.,Sato Y.Mugineic acid family phytosiderophores in root- secretions of barley, corn, and sorghum varieties[J]. Journal of Plant Nutrition,1988,11: 633-642.
    111. Kawai S.,Sato Y., Takagi S., Nomoto K. Separation and determination of mugineic acid and its analogues by high-performance liquid chroma tography [J]. J. Chromatography, 1987, 391:325-327.
    112. Kim S A, Punshon T, Lanzirotti A, Li L T,Alonso J M,Ecker J R,Kaplan J,Guerinot M L.Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1[J].Science,2006,314:1295-1298.
    113. Kanazawa K. Detection of two distinct isozymes of nicotianmine amino transferases in Fe-deficient barley roots [J]. Journal of Experimental Botany, 1995, 46: 1241-1244.
    114. Kobayshi T, Nakayama Y, Nishizawa IR, Nakanishi H, Yoshihara T, Mori S, Nishizawa N K.Dentification of novel cis-acting elements, IDE1and IDE2,of the barley IDS2 gene promoter conferring iron-deficiency - inducible, root - specific expression in heterogeneous tobacco plants [J]. The Plant Journal, 2003, 36,780- 793
    115. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S,Nishizawa N K. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem [J].Plant Journal,2004,39:415-424.
    116. Korshunova Y O,Eide D,Clark W G,Guerinot M L,Pakrasi H B.The IRT1 protein from Arabiodopsis thaliana is a metal transporter with a broad substrate range[J].Plant Molecular Biology,1999,40:37-44.
    117. Lanquar V, Lelievre F, Bolte S.Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron [J]. EMBO Journal, 2005, 24: 4041-4051.
    118. Le Jean M,Schikora A,Mari S,Briat J F,Curie C.A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading[J].Plant Journal,2005, 44: 769-782.
    119. Liang P,Authur B P.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J].Science,1992,257(14):967-971.
    120. Liang P, Pardee A B.Differential display of eukaryotic messenger RNA by means of polymerase chain reaction[J].Science,1992,257:967-971.
    121. Lisitsyn N, Wigler M. Clong the differences between two complex genomes [J]. Science, 1993,259:946-951.
    122. Li L,Cheng X,Ling H Q.Isolation and characterization of Fe(Ⅲ) - chelate reductase gene LeFRO1 in tomato[J].Plant Molecular Biology, 2004, 54: 125-136.
    123. Lindsay WL. Role of chelation in micronutrient availability.In The Plant root and its environment [J]. University Press of Virginia, Charlottesvil le, 1974, 507-524.
    124. Ling H Q,Bauer P,Bereczky Z,Keiler B,Ganal M.The tomato FER gene encoding a bHLH prtein controls iron-uptake responses in roots[J]. Proceedings of the National Academy of Science of USA, 2002, 99:13938-13943.
    125. Ling H Q,Pich A,Schoiz G,Ganal M W.Genetic analysis of two tomato mutants affected in the regulation of iron metabolism[J]. Molecular and General Genetics, 1996, 252: 87-92.
    126. Ling H Q,Pich A,Scholz G,Ganal M W.Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase [J]. Proceedings of the National Academy of Science of USA, 1999, 96:7098-7103.
    127. Longnkecker N, Welch R.The relationship among iron-stress response, iron defficiency and iron uptake of plant [J].Journal of Plant Nutrition, 1984, 7:911-928.
    128. Lu J P,Liu T B,Lin F C.Identification of mature appressoriumenriched transcrips in magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridzation[J].FEMS Microbiology Letters,2005,245(1):131-137.
    129. LYNCH J M, WHIPPS J M. Substrate flow in the rhizosphere [J].Plant and Soil, 1990, 129:1-10.
    130. M.Arahou, H.G.Diem. Iron deficiency induces cluster (proteoid) root formation in Casuarina guauca [J]. Plant and Soil, 1997, 196:71-79.
    131. Mengel K, Bubl W.Veterilung von eisen in blattern von weinreben mitHCO3- induzierter Fe-chlorose.Z P flanzernernahrung [J].Bodenkd, 1983, 146:560-571.
    132. Ma Jian Feng, Nomoto K.Two related biosynthetic pathways of mugineic acids in gramineous plants [J]. Plant Physiology.1993, 102:373-378.
    133. Moog P R, Ggemann W B.Iron reductase systems on the plant plasma membrane:A review[J].Plant Soil,1994,165:241-260.
    134. Mori S.Iron acquisition by plants[J]. Current Opinion in Plant Biology, 1999, 2: 250 -253.
    135. Mori S. , Nishizawa N. , Kawai S.,Takagi S.. Dynamic state of mugineic acid and analogous phytosiderophores in Fe-deficient barley[J]. Journal of Plant Nutrition,1987,10:1003-1011.
    136. Mori S. Induced activity of adenine phosphoribosyltransferase (APRT) in iron - deficient barley roots: a possible role for phytosiderophore production [J]. Journal of Experimental Botany, 2000,51(348):1179 -1188.
    137. Mori, S. Reevaluation of the genes induced by iron deficiency in barley roots. In : Tadao A et al(eds). Plant Nutrition for Sustaninable Food Production and Environment [J]. Dordrecht: Kluwer Academic Publishers, 1997.249-254.
    138. Mori S, Nishizawa N. Identification of barley chromosome No.4, Possible encoder of genes of mugineic acid synthesis from 2’- deoxymugineid acid using Wheat-barley addition line [J]. Plant Cell Physiology, 1989, 30: 1057-1061.
    139. Nakanishi H,Okumura N,Umehara Y.Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare [J].Plant Cell Physiology, 1993, 34:401-410.
    140. Negishi T, Nakanishi H, Yazaki J.cDNA microarry analysis of gene expression during Fe-deficient stress in barley suggests that polar transport of vesicles is impllicated in phytosiderophore secretion in Fe-deficient barely roots [J].Plant Journal, 2002, 30(1): 83-94.
    141. Nicolaus von W, Horst M, Volker R.Uptake Kinetics of iron-phytosiderophores in two maize genetypes in iron defficiency [J].Physiologia Plantarum, 1995, 93: 611-616.
    142. Nskanishi H, Yamaguchi H, Saskuma T, Nishizawa N K, Mori S. Two dioxy genase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the bio synthesis of mugi neic acid family phytosiderophores [J]. Plant Molecular Biology, 2000, 44: 199- 207.
    143. Nye P H. Acid-base change in the rhizosphere in Tinker PB, Lauchi A (eds). Advances in Plant Nutrition (vol.2).New York: Praeger Scientific, 1986, 129.
    144. O’Dell B L.Bioavailability of trace elements [J]. Nutrition Research, 1984, 42: 301-308.
    145. Okumura N, Nishizawa N K, Umehara Y.Iron deficiency specific cDNA (Ids1) with two homologous cysteine rich MT domains from the roots of barley [J]. Journal of Plant Nutrition, 1992, 15:2157-2172.
    146. Okumura N, Nishizawa N K, Umehara Y.An iron deficiency-specific cDNA from barley roots hawing two homologous cysteine rich MT domains [J].Plant Molecular Biology, 1991, 17:531-533.
    147. Okumura N, Nishizawa N K, Umehara Y.A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the root of Hordeun vulgare [J]. Plant Molecular Biology, 1994, 25:705-719.
    148. Olsen R A, Rennet J H, Blume D.Chemical aspects of the Fe stress response mechanism in tomatoes [J].J Plant Nutrition, 1981, 3:905-921.
    149. Ottow JCG, Benckiser G. Iron toxicity of rice as multiple nutrient soil stress [J]. Tropical Agriculture Research Series, 1982, 15:167-174.
    150. Pechan, T., A.Cohen, W.P.Willians, D.S.Luthe.Insect feeding mobillizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars [J]. Proceedings of the National Academy of Science of USA, 2002, 99:13319-13323.
    151. Peleman J. Strong cellular preference in the wxpression of a house keeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase [J].Plant Cell, 1989, 1:81-93.
    152. Pianelli K,Mari S,Marques L,Lebrun M,Czernic P.Nicotianamine over- accumula tion confers resistance to nickel in Arabidopsis thaliana [J]. Transgenic Research, 2005, 14:739-748.
    153. P.Lucca.R.Hurrell.I.Potrykus, Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains[J]. Theoretical and Applied Genetics, 2001, 102: 392-397.
    154. Price C A.Iron compounds in plant nutrition [J].Annals Reviews of Plant Physiol, 1968(19): 239-248.
    155. Rebrikov D V,Desai S M,Siebert P D,Lukyanov S A.Suppression subtractive hybridization[J].Methods Molecular Biology,2004,258:107-134.
    156. Rishi A S, Munir S, Kapur V, Nelson N D, Goyal A.Identification and analysis of safeneriinducible expressed sequence tags in popuhu using a cDNA microarry [J]. Planta, 2004, 2202(2):296-306.
    157. Roberts LA,Pierson AJ,Panaviens Z,Walker EL.Yellow stripe1.Expanded roles for the maize iron-phytosiderophore transporter[J].Plant Physiology, 2004 (135): 112 -120.
    158. Robinson N J, Groom Sadjuga J, Groom Q J.The fro2 gene family from Arabidopsis thaliana: Putative iron-chelate ruductases [J].Plant and Soil, 1997, 196: 245-248.
    159. Robinson N J,Procter C M,Connollly E L,Guerinot M L.A ferric-chelate reductase for iron uptake from soils[J].Nature,1999,397:694-697.
    160. Roberts L A,Pierson A J,Panaviens Z,Walker E L.Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter [J]. Plant Physiology, 2004, 135: 112-120.
    161. R?emheld V, Marschner H.Evidence for a specific uptake system for iron phytosiderophores in roots of grasses [J]. Plant Physiology,1986(80):175-180。
    162. Romheld V, Marschner H. Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores [J].Plant and Soil. 1990:147-153.
    163. R?mheld V, Muller C, Mmarcher. Localization and capacity of proton pumps in roots of in tact sunflower plants [J].Plant Physiology, 1984, 76: 603-606.
    164. Rogers E E, Guerinot M L.FRD3,a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis [J].Plant Cell, 2002, 14: 1787 -1799.
    165. Ross M Welch.Possible role of root-ethylene in Fe(Ⅲ) -phytometallophore uptake in stageⅡspecies[J].Plant and Soil,1997,196:229~232.
    166. Sahr T.,Voigt G.,Paretzke H. G.,Schramel P., Ernst D.Low-level radiocaesium exposure alters gene expression in roots of Arabidopsis[J]. New Phytologist, 2005b, 168 (1):141-148.
    167. Scandalious J G.Phytochemical society symposia series No.14 regulation of enzyme synthesis and activity in higher plants [J].Academic Press, 1977, 120-135.
    168. Sei-ichi Takagi, Naturally occurring iron-chelating compounds in oat and rice-root washingsⅠactivity measurement and preliminary char acterization [J]. Soil Science Plant Nutrition, 1976 22(4):423-426.
    169. Shimi D.Leaf chlorosis and stomatal aperature [J].New Phytology, 1967(66): 455 - 461.
    170. Spiller S C, Terry N. Limiting factors in photosynthesis.ⅡIron stress diminishes photochemical capacity by reducing the number of photosynthetic units [J].Plant Physiology,1980(65):121-125.
    171. Stephan U W, Scholz G.Nicotianamine:a medlator of transport of iron and heavy metals in the phloem?[J] Physiology Plantarum,1993, 88: 522 - 529.
    172. Stephane Lobreaux, Jean-Francois Briat. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development [J]. Biochemical Journal, 1991, 274:601-606.
    173. Su L Y, Miller G W.Chlorosis in higher plants as related to organic acid content [J].Plant Physiology, 1961, 36:415-420.
    174. Suzuki K.Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by iron defiency in barley roots [J].Plant Physiology, 1998, 116:725-732.
    175. Takahashi M. Enhanced tolerance of rice to low iron availability in alk alilne soils using barley nicotianamine aminotransferase genes [J]. Nature Biotechnology, 2001, 19:466-469.
    176. Takahashi M. Overcoming Fe deficiency by a transgenic approach in rice [J]. Plant Cell Tissue and Organ Culture.2003, 72:211-220.
    177. Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa N-K, Mori S Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategyⅡ) in graminaceous plants[J].Plant Physiology, 1999: 947-956.
    178. Takizawa R. Effect of iron deficiency on S-Adensosylmethionine synthetase in barly roots [J]. Journal of Plant Nutrition, 1996, 19:1189-1200.
    179. Takizawa R, Nishizawa N K, Nakanishi H.Effect of iron deficent on S- Adenso sylmethionine synthetase in barely roots [J].Plant Nutrition, 1996, 19: 1189- 1200.
    180. Terry N. Limiting factors in photosynthesis. I. Use of iron stress to control photo chemical capacity in vivo [J].Plant Physiology, 1980(65):114-120.
    181. Terry N,Rorcak P H.Effects of calciumon the photosynthesis of intact leaves and isolated chlorosis of sugar beets[J].Plant Physiology,1975 (55): 923-927.
    182. Thai C P, Huang L, Fukai S.Effect of organic compounds in rice grain on iron bioavailability [M].Beijing: Tsinghua University Press, 2005:434-435.
    183. Thomine S, Lellevre F, Debarbleux E. AtNRAMP3,a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J].Plant Journal, 2003, 34: 685-695.
    184. Thomine S, Wang R,Ward J M,Crawford N M,Schroeder J I.Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes[J]. Proceedings of the National Academy of Science of USA, 2000, 97:4991-4996.
    185. Tong Y A, Fan F, Korcak R F. Effect of micronutrients phosphorous and chelator to iron ratio on growth chlorosis and nutrion of apple seedlings [J].Journal of Plant Nutrition, 1986,9(23) :1115-1132.
    186. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regula tion senescene improves grain protein, zinc,and iron content in wheat [J]. Science, 2006, 314: 1298-1301.
    187. Verica J A, Maximova S N, Strem M D, Carlson J E, Bailey B A, and Guiltinan M J.Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with induces of the defense response [J]. Plant Cell Reports, 2004, 23(6):404-413.
    188. Vert G,Grotz N,Dedaldechamp F,Gaymard F,Guerinot M L,Briat J F,Curie C.IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J].Plant Cell,2002,14:1223-1233.
    189. Von Stein O D,Thies W G,Hormann M.A high throughput screening for rarely transcribed differentially expressed genes[J].Nucleic Acids Research,1997,25 (13): 2598-2602.
    190. Von Wiren N,Mori S,Marschner H.Iron inefficiency in maize mutant YS1(Zea mays L. cv yellow-stripe) is caused by a defect in uptake of iron phytosidero phore [J].Plant Physiology,1994,106:71-77.
    191. von Wiren N,Klair S,Banal S,Briat J F,Khodr H,Shloirl T,Leigh R A,Hlder R C.Nicotianamine chelates both Fe(Ⅲ)and Fe(Ⅱ). Impli cations for metal transport in plants [J].Plant Physiology, 1999, 119: 1107-1114.
    192. Wan J, Mattehew B W, Li C.Efficacy of SSH PCR in isolating differentially expressed genes [J].BMC Genomics, 2002, 3-12.
    193. Waters B M,Blevins D G,Eide D J.Characterization of FRO1,a pea ferric -chelate reductase involved in root iron acquisiton[J].Plant Physiology, 2002,129:85-94.
    194. Waters B M,Chu H H,Dldonato R J,Roberts L A,Eisley R B,Lahner B,Salt D E, Walker E L. Mutations in arabidopsis yellow stripe-like 1and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seed [J]. Plant Physiology, 2006, 141:1446-1458.
    195. Wei K, Tang DJ, He YQ, Feng JX, Jiang BL, Lu GT, Chen B and Tang JL. HpaR, a putative marR family transcriptional regulator, is positively controlled by hrpG and hrpX and involved in the pathogenesis, hypersensitive response and extra cellular protease production of Xanthomonas campestris pathovar campestris [J]. Journal of Bacterial, 2007, 189: 2055-2062.
    196. Weiss Martin G. Inheritance and physioiogy of efficiency in iron utilization in soybeans [J]. Journal of.Genetics.1943, 28:253-268.
    197. Wolters M G E,Diepenamaat H B,Hermus R J J.Relation between in vitro avail abiability of minerals and food composition:a mathematical mode[J].Food Science, 1993, 58: 1349 -1355.
    198. Wu H,Li L,Du J,Yuan Y,Cheng X,Ling H Q.Molecular and biochemical characterization of the Fe(Ⅲ) chelate reductase gene family in Arabidopsis thaliana[J].Plant Cell Physiology,2005,46,1505-1514.
    199. Yamg W E,Chen W R,Feng Y.Improving human micronutrient through biofortification in soil-plant system:China as a case.Plant nutrition for food security, human health and environmental protection[M].Beijing:Tsinghua University Press,2005:386-387.
    200. Yu Futong, Zhang Aimin, Zhang Fusuo, Hybrid effects on the release of phytosiderophores in winter wheat (Triticum aestivum) [J].Acta Botanica Sinica, 2002, 44(1):63-66.
    201. Yuan Y X, Zhang J, Wang D W, Ling H Q. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategyⅠplants [J].Cell Research,2005,15:613-621.
    202. Yun S, Habicht J, Miller D D.In vitro digestion/caco-2 cell model for iron bioavailability shows strong coreelation with human trials [J]. Nutrition, 2004, 134: 2717 -2721.
    203. Zhao T, Ling H Q. Effects of pH and nitrogen forms on expression profiles of genes involved in iron homeostasis in tomato [J].Plant Cell Environment, 2007, 30: 518 -527.
    204. Zhang M. Progress on the bacterial Tat protein translocation system. Progress in Biochemistry and Biophysics, 2001, 28 (3):326-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700