高速旋转电弧传感器水下焊缝自动跟踪系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着深海资源的开发,海洋工程的建造规模和施工深度的不断加大,而水下焊接是海洋工程建造和维修中必不可少的关键技术之一。因潜水焊工受到深水饱和度的限制,迫切需要应用机器人来取代潜水焊工,实现水下焊接的自动化和智能化,而机器人焊缝跟踪是其中的重要研究内容之一。
     基于高速旋转电弧传感的机器人水下焊缝跟踪系统直接使用焊接过程中的焊接电流信号来进行焊缝跟踪。它通过电弧的旋转来扫描焊接坡口,引起导电嘴与工件之间的距离(CTWD)有规律变化而引起焊接电信号变化来探测焊炬高度和左右偏差。通过分析焊接电流的变化规律得到偏差信息从而实现水下焊缝跟踪。其稳定性好,灵敏度高,空间可达性好,因而它是目前最有效的水下焊缝跟踪方法之一。
     本文基于前人的研究成果,首先改善了旋转电弧传感器,在此基础上建立了一套基于旋转电弧传感器的机器人水下焊缝跟踪系统硬件平台,为实现焊缝的跟踪奠定了研究基础。该跟踪系统的硬件主要包括旋转电弧传感器、霍尔电流传感器、单片机、光电传感器、数据采集卡、工控机和机器人。该系统是由焊接子系统、信号采集子系统、滤波与偏差识别子系统、机器人跟踪控制子系统四个子系统组成。
     采用PWM控制方式和PID控制算法,设计了以单片机为核心控制芯片的水下旋转电弧直流电机转速闭环控制系统,具有电路简单,控制方便和工作稳定可靠等特点,为水下焊缝偏差识别提供了保障。
     由于水下焊接过程中受到冷却速度快和水压力的影响以及弧光、飞溅和短路过渡等因素的综合影响,采集到的电流信号和转速信号受到干扰。在LabVIEW8.5开发平台上进行小波滤波和中值滤波后,明显地改善电流波形;消除了弧光对转速信号的干扰,并和电流信号合并,确定电流信号周期,为偏差识别提供更加准确的信息;采用左右区间积分进行焊缝偏差识别,取得较高的识别精度,为水下焊接焊缝跟踪奠定了基础。
     对影响水下焊接焊缝成形质量和电流信号特征的四个主要因素:旋转电弧传感器的旋转频率、旋转半径、焊接高度和焊接电流,进行了正交试验,并分别对抗拉强度、熔宽、熔深等三个试验指标进行了分析比较,确定最优水下焊接工艺参数。
     最后建立工控机与机器人之间的通信,在斜线和折线两种V形坡口上进行水下焊缝跟踪实验,获得了较好的跟踪结果。
With the exploitation of deep ocean resource, offshore engineering construction become a large scale. As one of the key technologies in offshore engineering construction and maintenance, underwater welding is required absolutely necessary. Due to the saturation restrict of diving welder in deep water, underwater robot, instead of diving welder, is in emergent need to achieve underwater welding automatization and intelligentization. The robot seam tracking is among the important research area.
     The robot underwater seam tracking system based on the rotating arc sensor, directly use the welding current to track the seam. When the rotational arc scans the groove, causing the distance between the tip and workpiece (CTWD) to change regularly, the welding current change in accordance. Therefore the offset between the center of the welding torch and the midline of the seam can be detected by the current variation. By analyzing the variation of welding current, offset information obtained in order to achieve underwater seam tracking. With high stability, sensitivity and spatial accessibility, the seam tracking system based on the rotating arc sensor is one of the most effective methods currently.
     Based on previous research results, we improved of the rotating arc sensor firstly, hence the hardware of the robot underwater seam tracking system based on the rotational arc sensor is set up, which was the research basis for seam tracking. The hardware largely include the rotating arc sensor, the current sensor, singlechip, photoelectric sensor, data capture card, IPC and the robot. The system is composed of welding subsystem, signal acquisition subsystem, filter and offset identification subsystem, and the robot tracking control subsystem.
     Aimed at the DC motor used in high speed rotational arc sensor of underwater welding, a system of speed feedback controlled by closed-loop has been designed, in which singlechip is used as the core control chip, the control mode of PWM and the control algorithm of PID are adopted. With simple circuit, easy to control and work stable and reliable, it provided a guarantee for offset identification of underwater welding.
     As the fast cooling speed and water pressure in the underwater welding process, due to the strong arc, splash, short circuit transfer and so forth, the current signal and speed signal have been interfered. After the wavelet filter and median filter in the LabVIEW8.5 software development platform, current waveform have improved significantly. Eliminated the interference of arc on the speed signal, mergered the current signal and speed signal to determine the current signal cycle, provided a more accurate information for offset identification. Finally, left-right integral method was adopted to identify the welding torch offset. Obtained quite high recognition accuracy, builted a foundation for underwater welding seam tracking.
     The four main factors, which were rotating frequency, the radius of the torch, torch height and welding current, affect the welding forming and the underwater current waveform characteristics. Orthogonal tests were carried through, the three test indicators, which were the tensile strength, weld width and pool depth, were analyzed and compared respectively, to determine the optimal parameters for underwater welding.
     Finally, set up the communication between the IPC and the robots. The underwater seam tracking experiments were carried out on the steel plates with the bias seam and broken seam, achieved a good tracking results.
引文
[1]李玉飞,于永平,张新江.浅谈我国焊接行业的现状与未来[J].黑龙江科技信息,2009,33:9-15
    [2]王彬.中国焊接生产机械化自动化技术发展回顾与展望[J].电焊机,2000,30:1-6
    [3]林尚扬,陈善本,李成桐.焊接机器人及其应用[M].北京:机械工业出版社,2000,58-79
    [4]吴伏海,明道群.焊缝自动跟踪技术[J].岳阳师范学院学报,2003,16:33-35
    [5]经士农.焊接过程自动跟踪控制装置[J].电焊机,1982,6:5-10
    [6]张惠斌,周振丰,吴林,等.遥控弧焊机器人系统[J].焊接学报,1995,(16):30-34
    [7]潘际銮.展望21世纪焊接科研[J].中国机械工程,2000,111(2):21-27
    [8]林尚扬,陈善本,李成桐.焊接机器人极其应用[M].北京:机械工业出版社,2000:222-254
    [9]黄政艳.焊接机器人的应用现状与技术展望[J].装备制造技术,2007,3:5-9
    [10]王庆香.自动焊接焊缝图像处理与远程机器人控制[D].广州:广东工业大学,2003
    [11]许志军,张明浩,钟家桢.弧焊机器人焊缝位置的电流检测法[J].北京科技大学学报,1994,2:16-20
    [12]徐建宁,陈焕明,熊振宇.电弧传感器的研究及应用现状与面临的问题[J].电焊机,2000,5:19-21
    [13]潘际銮.现代弧焊控制[M].北京:机械工业出版社,2000:15-27
    [14]董德祥,亢稚禄.接触式传感焊缝跟踪技术的研究[J].焊接技术,1999,1:27-28
    [15]胡胜钢,李俊岳.光学弧焊传感器的发展状况极其控制技术[J].焊管,1998,1:10-19
    [16]石永华.基于视觉传感的药芯焊丝水下焊接焊缝自动跟踪系统[D].广州:华南理工大学,2001
    [17]王文凯.基于弧焊机器人接缝视觉信息检测与识别研究[D].南京:南京理工大学,2003
    [18]席文明,郑梅生.视觉引导下的机器人跟踪复杂焊缝的研究[J].东南大学学报,2000,30(2):79-83
    [19]贾剑平,张华,潘际銮,等.用于弧焊机器人焊缝纠偏的高速旋转扫描电弧传感器[J].南昌航空工业学院学报,1999,13(2):17-22
    [20]熊震宇,张华,贾剑平,等.旋转电弧传感器的研制[J].传感器技术,2003,7:5-9
    [21]熊震宇,张华,潘际銮.电弧传感器的发展状况及应用前景[J].焊接技术,2001,10 (30):16-21
    [22]刘文焕,费跃农,覃健,等.V型坡口及角焊缝的电弧传感器自动跟踪系统[J].中国机械工程,1994,5:21-26
    [23]熊震宁,张华,贾剑平,等.基于旋转电弧传感的弧焊机器人焊缝跟踪系统[J].中国机械工程,2003,14(12):39-42
    [24]Sugitani,Yuji,Murayama,et al.Development of articulated arc welding robot with high speed rotating arc process[J]. NKK Technical Review, 1989(57):111-117
    [25]Kim C.H, Na S J.A study of an arc sensor model for gas metal arc welding with rotating arc-part1:dynamic simulation of wire melting.Proceedings of the Institution of Mechanical Engineers-Part B[J].London,2001,215(B9):1271-1279
    [26]Kim C.H,Na SJ.A study of an arc sensor model for gas metal arc welding with rotating arc-part2:dynamic simulation of wire melting.Proceedings of the Institution of Mechanical Engineers-Part B[J].London,2001,215(B9):1281-1288
    [27]Kim C.H,Yoo WS,Na SJ.Development of an arc sensor with mechanized rotation of electrode[J]. Materials Science Forum,2003,426-432(5):4135-4140
    [28]Dilthey U,Collnick J.Through-the-arc-sensing in GMA-Welding with high speed rotating torch[J].Proceedings of the 24th Annual Conference of the IEEE.United States. 1998,1017-1026
    [29]M.Kodama, Dilthey U,Lee Gunyou.Development of high speed rotating arc sensor and seam tracking controller for welding robots[J].2001 IEEE ISIE,Pusan, 2001:845-850
    [30]徐建宁,陈焕明,熊振宇.电弧传感器的研究及应用现状与面临的问题[J].机械工人热加工,2002,5:19-21
    [31]贾剑平,张华,潘际銮.用于弧焊机器人的新型高速旋转电弧传感器的研制[J].南昌大学学报,2000,3:1-4
    [32]张华,熊震宇.基于旋转电弧传感的示教再现弧焊机器人智能化研究[J].机械工程学报,2002,12(38):5-9
    [33]J.W.Kim,S.J.Na.A Self-Organizing Fuzzy Control Approach to Arc Sensor for Weld Joint Tracking in Gas Metal Arc Welding of Butt Joint[J].Welding Journal.1993, 72(20):60-66
    [34]W. S. Yoo, Y. H. Shi, J. T. Kim and S. J. Na. End Point Detection of Fillet Joint UsingMechanized Rotating Arc Sensor in GMAW. Welding Journal. 2006(8)
    [35]H. Shi, W. S. Yoo and S. J. Na. Mathematical modelling of rotational arc sensor in GMAW and its applications to seam tracking and endpoint detection. Science and Technology of Welding and Joining. 2006, vol.11
    [36]朱加雷,俞建荣.水下焊接技术研究和应用的进展[J].焊接技术,2005,34(4):1-3
    [37]屈岳波,洪波,潘际銮,等.低频旋转电弧传感器焊缝跟踪技术[J].电焊机,2005,4:52-56
    [38]潘际銮.展望21世纪焊接科研[J].中国机械工程,2000,1:21-25
    [39]国家海洋局.2005年中国海洋经济统计公报.2006年3月
    [40]刘春厚,潘东民,吴谊山.海底管道维修方法综述[J].中国海上油气,2004,1:17-22
    [41]石永华,王国荣,YOO Won-Sang,NA Suck-Joo.高速旋转电弧传感器的数学模型[J].机械工程学报,2007,11:217-223
    [42]贾剑平,张华,叶建雄.高速旋转电弧传感焊缝偏差信息识别的研究[J].传感器与微系统,2007,8(26):17-20
    [43]吴世德,廖宝剑,潘际銮.高速旋转电弧传感器[J].焊接学报,1997,1:61-66
    [44]曾喜良,赵欢.基于C8051F020的PWM调速控制[J].计算机与数字工程,2008,8:195-197
    [45]汪玉成.直流电机PWM调速系统设计[J].商场现代化,2007,14:37
    [46]张晓青.直流电动机数字PWM调速系统设计[J].北京机械工业学院学报,2000,4:44-48
    [47]宋健,姜军生,赵文亮,孙学岩.基于单片机的直流电动机PWM调速系统[J].农机化研究,2006,01:102-103
    [48]龙瑜.论单闭环直流调速系统[J].电机电器技术,2004,01:39-42
    [49]潘策,陈晓楠,杨培林.基于最优PID控制的直流脉宽调速系统[J].机床电器,2003,06:34-36
    [50]邱丹,王东,高振东.直流电机PWM闭环调速系统[J].青岛大学学报,2000,1:10-12
    [51]孙宜,于向东.经济型直流电机PWM闭环调速系统设计[J].煤矿现代化,2006,4:75-76
    [52]林桂花,李戈文.直流电动机PWM调速的软件实现[J].仪器仪表用户,2005,4:80-81
    [53]李维军,韩小刚,李晋.基于单片机用软件实现直流电机PWM调速系统[J].机电一体化,2004,05:99-101
    [54]李扬,张喜验.MCS-51单片机在直流电机闭环调速系统中的应用[J].山东科技,2006, 05:55-57
    [55]张培仁,孙占辉,张村峰,等.MCS-51单片机原理与应用[M].北京:清华大学出版社,2003:193-222
    [56]闫玉德,俞虹.MCS-51单片机原理与应用[M].北京:机械工业出版社,2003:107-119
    [57]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,1998:1-11,22-38,220
    [58]陈锡,张银鸿.LabVIEW8.20程序设计从入门到精通[M].北京:清华大学出版社,2007:49-55
    [59]王磊,陶梅.精通LabVIEW8.0[M].北京:电子工业出版社,2007:1-3
    [60]赵易彬,周以琳.基于LabVIEW的数据采集系统[J].青岛科技大学学报,2005,5(26):452-454
    [61]闫玲,方开翔,姚寿广.基于LabVIEW的多功能数据采集与信号处理系统[J].江苏科技大学学报,2006,20(3):17-20
    [62]王志娟,金秀慧.基于LabVIEW的信号分析处理系统[J].山西电子技术,2006,5:34-37
    [63]张勇,徐忻,蔡艳,等.基于LabVIEW虚拟仪器的CO2焊接参数采集分析系统[J].焊接学报,2003,24(4):22-26
    [64]李桓,陈育浩,薛海涛,等.焊接电弧电信号滤波方法的选用[J].焊接,2003,11:29-33
    [65]李彦军,苏红旗,杨峰,等.改进的中值滤波图像去噪方法研究[J].计算机工程与设计,2009(30):2995-2996
    [66]吴加富,樊景峰.一种改进的快速中值滤波算法[J].济源职业技术学院学报,2009(3):21-22
    [67]赵传敏.熔池图像特征识别的傅立叶变换方法研究[D].广州:广东工业大学,2007
    [68]王新年,梁德群.基于傅立叶和小波域的多通道图像恢复方法[J].计算机工程与设计,2005,11: 78-79
    [69]崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995:128-189
    [70] YOO W.S. A study on sensors for automatic welding of 3-D seam in ship hull assembly [D]. PhD Thesis.KAIST,Korean:89-98
    [71]潘泉,张磊,孟晋丽等.小波滤波方法及应用[M].北京:清华大学出版社,2005
    [72]冯象初,甘小冰,宋国乡.数值泛函与小波理论[M].西安:西安电子科技大学出版社,2003:89-106
    [73]杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2005
    [74]刘君华,郭会军,赵向阳,等.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003:292-296
    [75] Donoho D L. De-noising by soft-thresholding. IEEE Trans. Inform.Theory, 1995,41(3):613~627
    [76]Donoho D L, Johnstone I M. Minimax estimation via wavelet shrinkage. Annals of Statistics, 1998, 26(3):879~921
    [77]叶裕雷,戴文战.一种基于新阈值函数的小波信号去噪方法[J].西安电子科技大学学报(自然科学版),2006,26(7):17-19
    [78]Vattereli M, Kovacevic J. Wavelet and Subband Coding[M].Englewood Cliffs, NJ: Prentice Hall,1995
    [79] Vattereli M, Kovacevic J. Wavelet and Subband Coding[M].Englewood Cliffs, NJ: Prentice Hall,1995
    [80] Yang Dali,Xu Mingxing,Wu Wenhu.A Noise Cancellation Method Based on Wavelet Transform[C].Beijing:Intemational Symposium on Chinese Spoken Language Processing, 2000.211-214
    [81]罗传红,张富巨,黄颖等.基于电弧传感方式的窄间隙焊枪高度自适应跟踪系统[J].焊接技术,2001,4(30):9-11
    [82]廖宝剑,吴世德,潘际銮.电弧传感器理论模型及信息处理[J].焊接学报,1996,17(4):263-270
    [83]陶秋燕.电弧传感器系统数学模型的研究[J].焊接,1999,7:22-26
    [84]赵强,徐辉.浅谈如何提高焊缝质量[J].农机使用与维修,2004,1:37
    [85]张金利,郭翠梨.化工基础实验[M].化学工业出版社,2006:66-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700