苯选择加氢与环己烯水合绿色集成系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环己醇是一种重要的饱和脂环醇,它是生产己内酰胺和己二酸的重要中间体。传统的环己醇工业生产工艺循环量大,能耗高,收率低。20世纪80年代,日本旭化成公司开发了以苯为原料,经选择加氢生成环己烯,再由环己烯水合制得环己醇的两步反应工艺。本文通过设计开发一类具有新颖结构的高效双功能纳微尺度复合催化剂,将苯选择加氢制环己烯及其进一步水合制环己醇两步催化反应过程集成在同一催化剂颗粒中进行,进而构建合成环己醇反应过程的纳微尺度绿色集成系统,为开发清洁、短流程的合成环己醇先进工艺提供技术基础。
     制备了一系列Ru-Zn/SiO_2催化剂用于催化苯选择加氢反应,考察了催化剂载体粒径对苯选择加氢反应性能的影响;结合孔径分布及比表面积表征,分析了载体孔结构对催化剂催化性能的影响;对比了不同制备方法所制催化剂的催化性能。
     考察了离子液体对Ru-Zn催化苯选择加氢反应性能的影响。离子液体对Ru-Zn催化剂有良好的分散作用,可取代传统ZrO_2分散剂,减少分散剂用量的同时可使Ru-Zn催化剂回收变得简单。
     采用化学还原法制备了一种新型准均相纳米Ru/[Bmim]BF_4催化剂用于催化苯选择加氢反应。发现[Bmim]BF_4在化学还原过程中不仅起到了保护剂及稳定剂的作用,同时作为修饰层修饰在Ru离子表面,阻止其团聚长大;考察了Ru负载量对Ru/[BMim]BF_4催化剂催化性能的影响;对比了不同还原剂加入方式对纳米Ru形貌的影响。
     对硫酸催化环己烯间接水合工艺进行了考察,优化了反应工艺。考察了有机溶剂对杂多酸催化环己烯水合反应性能的影响,以正交实验的方式优化了丙酮为有机溶剂时,磷钨酸催化环己烯水合反应的工艺条件。考察了HZSM-5硅铝比对环己烯水合反应性能的影响,确定了最佳分子筛硅铝比为25;结合酸性表征推测强B酸中心是环己烯水合反应中心;优化了HZSM-5分子筛催化环己烯水合的工艺条件,适宜条件下,环己烯转化率可达11.8%,环己醇选择性为98.7%。对有机溶剂存在时,HZSM-5分子筛催化环己烯水合的工艺条件进行了优化,适宜条件下,环己烯转化率可达34.5%,环己醇的选择性为99.3%,环己醇收率较文献报道值高出约10.0%。
     采用多种模板剂合成了ZSM-5分子筛,重点考察了以TPAOH为模板剂、TEOS为硅源、Al(NO_3)_3为铝源,动态水热合成HZSM-5分子筛时,pH调节剂、硅铝比、晶化温度以及表面活性剂等因素对HZSM-5形貌和粒径的影响;合成了一种单分散圆饼状HZSM-5分子筛,由于其粒径小,可为环己烯水合反应提供更多的活性中心,在环己烯水合反应中可获得12.3%的环己醇收率。以单分散圆饼状HZSM-5分子筛为晶种,采用原位水热合成法、超声波预涂晶种法以及自组装预涂晶种法,在不规整载体表面合成了HZSM-5分子筛膜,对比了不同方法合成分子筛膜的差别。
     制备了以Ru-Zn或Ru-Zn/SiO_2催化剂为核,HZSM-5膜为壳的纳微尺度复合催化剂,并在此基础上构建了纳米尺度苯选择加氢与环己烯水合绿色集成系统。提出了一种脉冲加氢的动态操作方式,解决了苯选择加氢与环己烯水合反应时间不匹配的问题。以机械混合的Ru-Zn+HZSM-5分子筛为催化剂,构建了微米尺度苯选择加氢与环己烯水合绿色集成系统,并考察了工艺条件对集成反应性能的影响,在适宜条件下,可获得18.1%的环己烯收率和1.9%的环己醇收率。
     考察了苯选择加氢与环己烯水合反应之间存在的交互影响,发现HZSM-5的引入会导致苯选择加氢体系产生严重氢溢流,使苯加氢速率变快,苯转化率增大,环己烯选择性降低;溢流效应与HZSM-5分子筛表面酸中心数量及晶粒大小有密切关系;在环己烯水合反应中,Zn~(2+)的引入可导致HZSM-5强酸中心减少,表面B酸中心减弱,水合性能下降;在HZSM-5表面,苯及环己烷与环己烯产生竞争吸附,导致环己烯与HZSM-5接触几率降低,环己烯转化率下降。
Cyclohexanol is an important industrial intermediate used to produce adipic acid and caprolactam. Traditional process for producing cyclohexanol suffers from several drawbacks such as extremely large recycles, high energy consumption, poor selectivity and explosion hazards. In the 1980s, Asahi developed a commercial process for cyclohexene hydration. In this process, cyclohexene was produced through selective hydrogenation of benzene. In this paper, a novel nano-microscale catalyst with high efficiency and multi-function was designed and developed for the integration of selective hydrogenation of benzene and hydration of cyclohexene. A green integrated system for synthesizing cyclohexanol was established on this catalyst. It provided the technical basis for developing a clean and short process for synthesizing cyclohexanol.
     A series of Ru-Zn/SiO_2 catalysts were prepared for selective hydrogenation of benzene. The effects of particle size and pore structure of the supports on the catalytic activity were studied. The catalytic performance of the catalysts prepared by different methods was compared.
     The effect of ILs on the activity of benzene selective hydrogenation was studied. ILs could replace ZrO_2 as dispersant, and simplify the recovery of Ru-Zn.
     A new quasi-homogeneous catalyst, nano-Ru/[Bmim][BF_4] was developed by chemical reduction method. It was proved that the ionic liquid served not only as the protective agent or stabilizing agent to inhibit the aggregation of Ru nanoparticles, but also modification agent adsorbed on the Ru nanoparticles. The effect of Ru loading on catalytic performance of Ru/[Bmim][BF_4] was examined. The morphology of nano-Ru prepared by different dropping sequences was characterized.
     The indirect hydration of cyclohexene catalyzed by sulfuric acid was studied. The reaction conditions were optimized. The effect of organic solvents on the activity of cyclohexene hydration catalyzed by phosphorus acid was studied. The reaction conditions were optimized by orthogonal experiments with acetone as solvent. The effect of SiO_2/Al_2O_3 ratio of HZSM-5 zeolite on cyclohexene hydration was investigated. The optimum SiO_2/Al_2O_3 ratio of HZSM-5 zeolite was 25. It was proved by acidic characterization that the strong Br?nsted acid sites were the active sites of cyclohexene hydration. Under the optimum conditions, the highest cyclohexene conversion was 11.8% with 98.7% cyclohexanol selectivity. Effect of different kinds of organic solvents on cyclohexene hydration was studied, and the optimal organic solvent was selected. The reaction conditions of cyclohexene hydration with solvents were optimized. Under the most suitable conditions, the highest cyclohexene conversion was 34.5%, the cyclohexanol selectivity was 99.3%.
     HZSM-5 zeolite was synthesized using various templates. HZSM-5 zeolite synthesized using aluminum nitrate (Al(NO_3)_3), tetraethyl orthosilicate (TEOS), and tetrapropyl ammonium hydroxide (TPAOH) as raw materials was mainly studied. The effects of pH regulators, SiO_2/Al_2O_3 ratio, crystallization temperature and surfactants on morphology and particle size of HZSM-5 zeolite were investigated. Because the HZSM-5 zeolite with regular morphology and small particle size could provide more active sites in cyclohexene hydration, it could obtain cyclohexanol 12.3% yield. On the basis of HZSM-5 zeolite synthesis, HZSM-5 zeolite membranes were synthesized on irregular supports by in situ hydrothermal synthesis method, pre-seeding method and self-assembly seeding method. The differences of these HZSM-5 zeolite membranes synthesized by different methods were studied.
     A new multi-functional composite catalyst for the integration reaction was prepared with Ru-Zn catalyst or Ru-Zn/SiO_2 catalyst as core, HZSM-5 zeolite membrane as shell. The green integrated system of benzene selective hydrogenation and cyclohexene hydration in nano-scale was established on the Ru-Zn@HZSM-5 and Ru-Zn/SiO_2@HZSM-5 catalysts. The green integrated system of benzene selective hydrogenation and cyclohexene hydration in micro-scale was established on the mechanical mixed Ru-Zn+HZSM-5 catalyst. A dynamic operation by pulsed hydrogenation for the integration reaction was investigated to deal with the mismatch of reaction time. The reaction conditions of the integrated reaction were optimized. Under the most suitable conditions, the yield of cyclohexene and cyclohexanol was 18.1% and 1.9% respectively.
     The interaction between benzene selective hydrogenation and cyclohexene hydration was studied. The addition of HZSM-5 resulted in high conversion of benzene and low selectivity of cyclohexene. It was thought to be the result of the effect of hydrogen spillover which was closely related to the number of acid sites and particle size of HZSM-5 zeolite. The addition of ZnSO4 resulted in decreasing of cyclohexene conversion and cyclohexanol yield. It was found that the existence of Zn2+ on the surface of HZSM-5 resulted in decreasing of B acid. The competitive adsorption of benzene, cyclohexane and cyclohexene on the suface of HZSM-5 resulted in cyclohexene conversion decreasing.
引文
[1] Hall N. Chemists clean up synthesis with one-pot reactions. Science, 1994, 266: 32-34
    [2]田爱国.苯部分加氢工艺生产环己醇.化工进展, 2003, 22 (5): 529-532
    [3] W佩舍尔, T阿德里安, H鲁斯特,等.由苯制备环己醇的方法[P]. CN1639090A, 2005, 7
    [4]马希平,胡延韶,顾书敏,等.环己烯水合反应工艺研究及参数优化.化工科技, 2003, 11(4): 35-37
    [5]吴济民,戴新民,陈聚良,等.环己烯水合反应生成环己醇工艺条件的优化.化工进展, 2003, 22(11): 1222-1224
    [6] Truffaulf R. Catalytic hydrogenation of aromatic hydrocarbons in liquid media in the pressure of nichel black and phosphoric anhydride. Bulletin of the Chemical Society of Japan, 1934, 5(1): 391-406
    [7] Van Der Steen P J, Scholten J J F.Selectivity to cyclohexene in the gas phase hydrogenation of benzene over ruthenium, as influenced by reaction modifiers: I Adsorption of the reaction modifiers, water andε-caprolactam, on ruthenium. Applied Catalysis, 1990, 58:281-289
    [8] Nagahara H, Ono M, Konishi M, et al. Partial hydrogenation of benzene to cyclohexene. Applied Surface Science, 1997, 121: 448-451
    [9] Hartog F, Zwietering P. Olefins as intermediates in the hydrogenation of aromatic hydrocarbons. Journal of Catalysis, 1963, 2(1) : 79-81
    [10]唐雷,石秋杰,谌伟庆.酸改性海泡石负载钌-硼合金催化剂苯选择加氢制环己烯.石油化工, 2005, 34(12): 1140-1144
    [11]路芳,刘菁,徐杰.负载型钌基催化剂催化苯选择加氢合成环己烯.化工进展, 2003,15(4): 338-342
    [12]薛伟,赵青青,王冬冬,等. Ru/MCM-41催化苯选择加氢制环己烯.石油学报(石油加工). 2009, S2: 120-124
    [13]藤田直子,神山寿治,真木隆夫,等.生产一类环烯烃的方法[P]. CN1044469C, 1994
    [14] Chen Yu-Wen, Hu Sung-Cheng. GroupⅧmetal catalyst on a gallium-zinc oxide support [P]. US060423, 1999
    [15] Rolf F, Roman D, Laszlo M. Preparation of cyclohexene by partial hydrogenation of benzene [P]. US 5589600, 1996
    [16]刘国际,汪志宏,雒廷亮,等.苯部分加氢制环己烯的钌系催化剂研究新进展.郑州工业大学学报, 1999, 20(4): 1-5
    [17] Xie Songhai, Qiao Minghua, Li Hexing, et al. A novel Ru-B/SiO2 amorphous catalyst used in benzene-selective hydrogenation. Applied Catalysis A: General, 1999, 176(1): 129-134
    [18] Liu Zheng, Dai Wei-Lin, Liu Bo, et al. The effect of boron on selective benzene hydrogenation to cyclohexene over ruthenium boride powders. Journal of Catalysis, 1999, 187(1): 253-256
    [19]刘仲毅,孙海杰,李小英,等.载体焙烧温度对苯选择加氢制环己烯Ru-Fe-B/ZrO2催化性能的影响.信阳师范学院学报(自然科学版), 2010, 23(2): 423-429
    [20]宁剑波,刘菁,路芳,等.微乳液法制备纳米钌基催化剂及其对苯选择加氢反应的催化性能.石油化工, 2005, 34: 459-461
    [21] Pham H C, Keller N, Estournes C. Syhthesis of CoFe2O4 nanowire in carbon nanotubes. Chemistry Communications, 2002, 17: 1882-1883
    [22] Kluson P, Had J, Belohlav Z, et al. Selective hydrogenation of toluene over ruthenium catalysts prepared by the sol-gel method. Applied Catalysis A: General, 1997, 149: 331-339
    [23] Milone C, Neri G, A. Donato, et al. Selective hydrogenation of benzene to cyclohexene on Ru/γ-Al2O3. Journal of Catalysis, 1996, 159(2):253-258
    [24] Mazzieri V A, L`Argentiere P C, Coloma-Pascual F, et al. Effect of chlorine on the properties of Ru/Al2O3. Industrial and Engineering Chemistry Research, 2003, 42(11): 2269-2272
    [25] Hronec M, Cvengrosova Z, Kralik M, et al. Hydrogenation of benzene to cyclohexene over polymer-supported ruthenium catalysts. Journal of Molecular Catalysis A-Chemical, 1996, 105(1-2): 25-30
    [26]王建强,郭平均,乔明华,等. Ru/AlOOH催化剂的制备、表征及其苯选择加氢反应的研究.化学学报, 2004, 62(18): 1765-1770
    [27] Wang J Q, Guo P J, Yan S R, et al. Colloidal RuB/Al2O3·xH2O catalyst for liquid phase hydrogenation of benzene to cyclohexene. Journal of Molecular Catalysis A: Chemical, 2004, 222(1-2): 229-234
    [28] Da-Silva J W, Cobo A J G. The role of the titania and silica supports in Ru-Fe catalysts to partial hydrogenation of benzene. Applied Catalysis A: General, 2003, 252(1): 9-16
    [29]庞先燊,叶代启,陈凤楼,等.液相法苯部分加氢制环己烯.石油化工, 1994, 23(9): 566-572
    [30]韩民乐,刘寿长,杨笑迪,等.助剂对Ru-B/ZrO2非晶和金催化剂性能及表面性质的影响.分子催化, 2004, 18(1): 47-50
    [31]姬永亮,王志武,刘寿长,等.苯选择加氢制环己烯Ru系催化剂的研究.贵金属, 2003, 24(1): 26-30
    [32]师瑞娟,刘寿长,王辉,等.沉淀法制备苯选择加氢制环己烯双助剂Ru系催化剂研究.分子催化, 2005, 19(2): 141-145
    [33] Galvagno S, Donato A, Neri G, et al. Rh/nylon catalysts for partial hydrogenation of benzene to cyclohexene. Reaction kinetics and catalysis letters, 1988, 37(2): 443-449
    [34] Struijk J, Seholten J J F. Selectivity to cyclohexene in the gas phase hydrogenation of benzene over ruthenium, as influenced by reaction modifiers.Ⅲ. FT-IR study of the interaction between the reaction modifiers and cyclohexene. Applied Catalysis, 1990, 62: 151-159
    [35] Grundy S L, Smith A J, Adams H, et al. The selective reduction of benzene to cyclohexene mediated by platinum metal complexes: X-ray crystal structure of [(η5-C5Me5)Ir(η5-C6H6CH2NO2)][BF4]. Journal of the Chemical Society, Dalton Transactions, 1984, 8: 1747-1754
    [36]王建强.新型钌催化剂的制备表征及其苯选择加氢反应研究: [博士学位论文].上海:复旦大学,2005
    [37]叶代啓,庞先燊,黄仲涛.聚酰胺生产新技术—苯不完全加氢制环己烯的开发研究.高分子通报, 1993, 3: 170-177
    [38]唐雷,石秋杰.钌催化剂上苯加氢制环己烯的影响因素.工业催化, 2005, 13(7): 7-11
    [39] Wang J Q, Wang Y Z, Zhe S H, et al. Partial hydrogenation of benzene to cyclohexene on a Ru-Zn/m-ZrO2 nanocomposite catalyst. Applied Catalysis A-General, 2004, 272(1-2): 29-36
    [40] Mazzieri V A, L'Argentiere P C, Figoli N S. Influence of methanol addition during selective hydrogenation of benzene to cyclohexene. Reaction Kinetics and Catalysis Letters, 2004, 81(1): 107-112
    [41] Spinace E V, Vaz J M. Liquid-phase hydrogenation of benzene to cyclohexene catalyzed by Ru/SiO2 in the presence of water-organic mixtures. Catalysis Communications, 2003, 4(3): 91-96
    [42] Fan Guangying, Li Ruixiang, Li Xianjun, et al. Effect of organic additives on partial hydrogenation of benzene. Catalysis Communications, 2008, 9(6): 1394-1397
    [43]张怀彬,仝伟,李赫咺.沸石在环己烯水合反应中的催化性能.燃料化学学报, 1995, 23(4): 343-348
    [44] Heep H J. Cyclopentol and cyclohexanol [P]. USP 2414646, 1947, 1
    [45] Waller F J. Hydration of cyclohexene in presence of perfluorosulfonic acid polymer [P]. USP 4595786A, 1986, 06
    [46] Mitsui O, Fukuoka Y. Cycloalkanols [P]. JP 83209150, 1983, 11
    [47] Asahi chemical industry Co., Ltd. Cyclic alcohols [P]. JP 60104031 A, 1985, 06
    [48] Jojo M, Fukuoka Y. Proeess for preparation of cycloalkahols [P]. JP 61180735A, 1986, 08
    [49] Jojo M, Fukuoka Y. Liquid- phase regeneration of olefin hydrataion zeolite catalysts [P]. JP 61234945A, 1986, 10
    [50] Kralik M, Hronec M, Kucera M, et al. Hydration of olefins and cycloolefins over solid. Petroleum and Coal, 1995, 37(10): 60-62
    [51] Mueller U, Hill T, Henkelmann J, et al. Hydration process and zeolite catalysts for the production of an alcohol from an alkene and water [P]. DE 19951280, 2001, 04
    [52] Nuntasri D, Wu P, Tatsumin T. Highly selective formation of cyclopentanol through liquid-phase cyclopentene hydration over MCM-22 catalysts. Chemistry letters, 2002, (2): 224-225
    [53]王殿中,舒兴田,何鸣元.环己烯水合制备环己醇的研究Ⅰ.分子筛结构及晶粒大小的影响.催化学报, 2002, 23(6): 503-506
    [54] Ishida H, Fukuoka Y, Mitsui O, et al. Liquid- phase hydration of cyclohexene with highly silicious zeolites. Studies in surface science and catalysis, 1994, 83: 473-480
    [55] Ohtani F. Method for carrying out heterogeneous reaction and interfacial catalyst. JP 2002241326 [P]. 2002
    [56]马丙丽,淳远,周炜,等.新型两亲性HZSM-5沸石催化剂对环己烯水合相界面反应的催化研究.高等学校化学学报, 2005, 26(4): 731-737
    [57] Haruo O, Hao X, Teiji C. Hydration of cyclohexene by alkyl-immobilized H-ZSM-5 catalyst in decalin-water system. Catalysis Letters, 1998, 55: 121-123
    [58]于世涛,刘福胜,解从霞,等. SO42-/SiO2-ZrO2复合固体超强酸催化α-蒎烯水合反应.精细化工, 2004, 3(3): 178-184
    [59]孟祥瑜,陈霄榕,陈秀营.固体超强酸Ni/SO42--SnO2催化环戊烯水合反应.化工进展, 2010, 29: 179-184
    [60] Yuan Peiqing, Liu Ying, Bai Fan, et al. Hydration of cyclohexene in sub-critical water over WOx–ZrO2 catalysts. Catalysis Communications, 2011, 12: 753-756
    [61] Hanaoka T, Takeuchi K, Matsuzaki T, et al. Niobic acid as a solid acid catalyst for ring-opening reactions of phenyloxirane Catal. Today, 1990, 8: 123-132
    [62]许招会,严楠,周鹏,等.铌酸催化合成环戊醇.石油化工, 2010, 39(1): 28-31
    [63] Makoto T, Fujio M, Shuichi N, et al. Amorphous niobium oxide-silica catalyst and preparation of cyclohexanol from cyclohexene using the catalyst [P]. JP 63267438, 1988, 11
    [64] Jia B, Yang X, Huang M Y. Hydration of alkenes catalyzed by wool- palladium-iron complex. Reactive & Functional Polymers, 2003, 57: 163-168
    [65]高松义和,金岛节隆.生产环己醇的方法[P]. CN 1414933, 2003, 12
    [66] Takamatsu Y, Kabeshima T. Process for the preparation of cyclohexanol [P]. US 0018223 A1, 2003
    [67] Moryasu M, Setoyama T, Takewaki T, et al. Preparation of cycloalkanols by hydration of cycloalkenes [P]. JP 08176041, 1996, 07
    [68]杨付,陈光文,李恒强,等.带有微混合器固定床反应器中的环己烯水合反应.催化学报, 2006, 27(6): 459-461
    [69] Steyer Frank, Qi Zhiwen, Sundmache Kai. Synthesis of cylohexanol by three-phase reactive distillation:influence of kinetics on phase equilibria. Chemical Engineering Science, 2002, 57: 1511-1520
    [70] Steyer Frank, Sundamcher Kai. VLE and LLE data set for the system cyclohexane+ cyclohexene+ water+ cyclohexanol+ formic acid+ formic acid cyclohexyl ester. Journal of Chemical & Engineering Data, 2005, 50: 1272-1282
    [71] Frank Steyer, Freund H, Sundamcher K. A novel reactive distillation process for the indirect hydration of cyclohexene using a reactive entrainer. Industrial & Engineering Chemistry Research, 2008, 47: 9581-9587
    [72]王延吉,薛伟,王冬冬,等.一种由环己烯制备环己醇的方法[P]. CN 101851151A, 2010, 10
    [73]王碧玉,葛秀秀,吴方棣,等.环己烯催化水合制环己醇的研究进展.化工进展, 2010, 29 (5): 861-865
    [74]马广伟,许中强,张慧宁,等.不同条件下合成的ZSM-5分子筛的SEM研究.硅酸盐学报, 2005, 33(2): 180-186
    [75]孙书红,丁伟,李朝昕,等.以水玻璃为硅源合成ZSM-5沸石分子筛.石化技术与应用, 2007, 25(6): 509-513
    [76]张领辉,李再婷,叶忆芳.不同晶粒大小ZSM-5的合成及表征.催化学报, 1994, 15(6): 468-473
    [77]戴燕,胡炳成,吕春绪.乙二胺合成ZSM-5沸石分子筛的结构表征及其催化性能.南京理工大学学报, 2007, 31(2): 252-257
    [78]徐磊,王公慰,魏迎旭,等.模板剂在分子筛合成中的作用.石油化工, 2000, 29: 248-231
    [79]王祥生,李书纹,李连华,等.氨水合成ZSM-5沸石的研究.大连工学院学报, 1984, 23(4): 145-148
    [80]王清遐,蔡光宇,李时瑶,等.无机铵型ZSM-5沸石晶化规律的研究.催化学报, 1986, 7(1): 54-59
    [81]高敏,刘春燕,王刃,等.在含乙醇的硅铝凝胶中合成ZSM-5沸石.化学通报, 2009, 12: 1097-1103
    [82] Whittam T V. Improvements in and relating to zeolites [P]. GB1553209, 1979, 09, 26
    [83]李赫晅,项寿鹤,吴德明,等. ZSM-5沸石分子筛合成的研究.高等化学学报, 1981, 2(4): 517-519
    [84]徐文旸,李文渊,曹景慧,等.在NaF-Na2O-Al2O3-SiO2-H2O体系中合成ZSM-5沸石的研究.石油化工, 1983, 12(12): 739-743
    [85]窦涛,冯芳霞,萧墉壮. ZSM-5沸石的合成及表征.石油学报(石油加工), 1997, 13(1): 100-103
    [86]赵杉林,张扬建,孙桂大,等. ZSM-5沸石分子筛的微波辐射法合成与表征.石油学报(石油加工), 1999, 15(3): 89-91
    [87]张珂,柳云骐,赵晋翀,等.硅藻土原料合成ZSM-5的表征及芳构化性能.石油学报(石油加工), 2010, 1: 120-123
    [88]徐玲,关利国,王虎.三维大孔硅铝材料和诱导ZSM-5分子筛的合成及表征.内蒙古民族大学学报(自然科学版), 2010, 25(5): 505-506
    [89] Di Renzo F. Zeolites as tailor-made catalysts: control of the crystal size. Catalysis today, 1998, 41: 37-40
    [90]王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究1.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程.石油学报(石油加工), 1994, 10: 38-43
    [91]刘明,项寿鹤.不同形貌和晶粒大小ZSM-5分子筛合成的研究.石油学报(石油加工), 2001, 17(2): 24-28
    [92]张领辉,李再婷,叶忆芳.不同晶粒大小ZSM-5的合成和表征.催化学报, 1994, 15(6): 468-473
    [93]张晓敏. ZSM-5合成新方法以及Er发光复合材料的制备与表征的研究: [博士学位论文].上海:华东师范大学出版社, 2008
    [94]张卿,张海荣,付玉川,等.铝源对合成ZSM-5分子筛晶粒大小及形貌的影响.现代化工, 2009, 1: 118-120
    [95] Persson A E, Schoman B J, Otterstedt J E. The synthesis of discrete colloidal partieles of TPA- Silicalite- 1. Zeolites, 1994, 14(7): 557-567
    [96]王中南,殷行知,薛用芳.小晶粒ZSM-5沸石的合成及其晶形的研究.石油化工, 1983, 12(12): 744-748
    [97] Loimann L D, Valvocsik E W. Continuous stream preparation of crystalline zolites [P]. Eur pat. Appl, 21675, 1981
    [98]刘志成,孔德金,王仰东,等.淀粉模板法合成介孔ZSM-5分子筛.第14次全国分子筛学术年会论文集, 2008, 11
    [99]李玉平,石秀峰,周升,等.双模板剂条件下介孔结构ZSM-5沸石的合成.第14次全国分子筛学术年会论文集, 2008, 11
    [100] Jacobsen C J H, Madsen C, Janssens T V W, et al. Zeolites by confined space synthesis- characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous and Mesoporous Materials, 2000, 39: 393-401
    [101] Choi M, Cho H S, Srivastava R, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity.Nature Materials, 2006, 5(9):718-723
    [102]裘式纶,庞文琴,赵大庆.弱酸性介质中合成B-ZSM-5型分子筛.高等学校化学学报, 1988, 10: 987-992
    [103]张春雷,阚秋斌,吴志云. Fe-ZSM-5的快速合成与表征.石油学报(石油加工), 1995, 11(12): 20-26
    [104]高健,刘民,郭新闻,等.气-固相法制备Ti-ZSM-5及其苯乙烯氧化性能.石油学报(石油加工), 2008, 24(5): 520-525
    [105]李潇,李保山.杂原子分子筛Ni-ZSM-5的合成及其影响因素.工业催化, 2008, 16: 52-54
    [106]罗坚,谭长瑜,董庆年.杂原子分子筛Ga-ZSM-5晶化过程考察.燃料化学学报, 1990, 18(8): 207-214
    [107]汪颖军,焦庆祝,孙淳伟.碱性介质中合成的Ge-ZSM-5结构和物性与Si/Ge比的关系.大庆石油学院学报, 1997, 21(2): 105-109
    [108]杜红宾,屠昆岗,周群,等.微酸性介质中V-ZSM-5的合成与结构表征.高等学校化学学报, 1994, 15(4): 473-477
    [109]庞文琴,赵大庆,裘式纶.气-固相置换法合成Sn-ZSM-5型分子筛.石油学报(石油加工), 1989, 5(2): 93-98
    [110]霍丽华,赵经贵,马淑杰.双杂原子Ti-Mn-ZSM-5分子筛的合成与表征.黑龙江大学自然科学学报, 2000, 17(4): 65-67
    [111]尚筱洁. Fe-Ti分子筛催化剂的制备及其光催化性能研究: [硕士学位论文].甘肃:兰州大学, 2007
    [112]成岳,苏晓渊. N-Ni-ZSM-5分子筛的合成及光催化性能研究.陶瓷学报, 2010, 31(1): 122-125
    [113]霍丽华,赵经贵,马淑杰.双杂原子Ti-V-ZSM-5分子筛的合成与表征.黑龙江大学自然科学学报, 2001, 18(1): 82-85
    [114]佟惠娟,李工. Fe-V-Ti-ZSM-5分子筛的合成及对NO与C3H6反应的催化性能.复旦学报(自然科学版), 2003, 42(3): 347-353
    [115] Erik Unneberg, Stein Kolboe. H-[B]-ZSM-5 as catalyst for methanol reactions. Applied Catalysis A: General, 1995, 124: 345-354
    [116]任瑞霞,刘姝,宋雯雯,等. ZSM-5分子筛的合成与应用.化工科技, 2011, 19(1): 55-60
    [117] Bein T. Synthesis and applications of molecular sieve layers and membranes. Chemistry of Materials, 1996, 8: 1636-1653
    [118] Paul D R, Kemp D R. Diffusion time lag in polymer membranes containing adsorptive fillers. Journal of Polymer Science Part C: Polymer symposia, 1973, 41: 79-93
    [119] Hennepe H J C,Bargeman D, Mulder M H V, et al. Zeolite-filled silicone rubber membranes: Part 1.Membrane preparation and pervaporation results. Journal of Membrance Science, 1987, 35(1): 39-55
    [120] Jia M, Peineman K V, Behling R D. Preparation and characterization of thin-film zeolite-PDMS composite membranes. Journal of Membrance Science, 1992, 73: 119-128
    [121] Duval J M, Folkerts B, Mulder M H V. Adsorbent filled membranes for gas separation: Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents. Journal of Membrance Science, 1993, 80: 189-198
    [122] Tantekin-Ersolmaz S B, Atalay-Oral C, Tatter M, et al. Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. Journal of Membrance Science, 2000, 175: 285-288
    [123] Wernick D L, Qsterhuber E J. Permeation through a single crystal of zeolite NaX. Journal of Membranes Science, 1985, 22: 137-146
    [124] Haag W O, Tsikoyiannis J G. Catalytic conversion over membrane composed of a pure molecular sieve [P]. USP 5110478, 1992
    [125] Suzuki H. Stripline filter apparatus and method of making the same [P]. USP 4609892, 1987
    [126] Matsufuji T, Nishiyama N, Ueyama K,etal. Crystallization of ferrierite (FER) on a porous alumina support by a vapor-phase transport method. Microporous and Mesoporous Materials, 1999, 32(1-2): 159-168
    [127] Dong J X, Dou T, Zhao X G, et al. Synthesis of membranes of zeolites ZSM-5 and ZSM-35 by the vapor phase method. Journal of the Chemical Society, Chemical Communications, 1992, 95: 1056-1058
    [128] Koegler H, Bekkum H V, Jansen J C. Growth model of oriented crystals of zeolite Si-ZSM-5. Zeolites, 1997, 19: 262-269
    [129]王金渠,王国强,江志东,等. ZSM-5沸石膜合成中几个影响因素.大连理工大学学报, 1998, 38(6): 654-658
    [130]张雄福,王金渠,刘海鸥,等. ZSM-5沸点膜的合成及成膜因素研究.石油学报(石油加工), 2001, 17(3): 9-15
    [131] Lai R, Yushan Y, Gavalas G R. Growth of ZSM-5 films on alumina and other surfaces. Microporous and Mesoporous Materials. 2000, 37: 9-19
    [132]张雄福,王金渠,殷德宏,等.用喷涂晶种法合成ZSM-5沸石膜及其影响因素考察.催化学报, 2000, 21(5): 451-454
    [133]张雄福,王金渠,殷德宏,等.多孔陶瓷管基膜上合成ZSM-5沸石膜新方法.大连理工大学学报,2000, 40(6): 672-675
    [134]李永生,王金渠,鲍钟瑛,等. ZSM-5沸石晶粒尺寸对合成膜性能的影响.石油学报(石油加工), 2000, 16(5): 31-35
    [135] Li Qinghua, Hedlund J, Sterte J, et al. Synthesis and characterization of zoned MFI films by seeded growth. Microporous and Mesoporous Materials, 2002, 56: 291-302
    [136]林海强,杨乐夫.预涂布晶种合成无缺陷A型分子筛膜的研究.高等学校化学学报, 2001, 22(12): 191-197
    [137]程志林,晁自胜,方维平,等.添加成膜促进剂合成致密ZSM-5分子筛膜.化学学报, 2003, 61(12): 1944-1948
    [138] Bernal M P, Xomeritakis G, Tsapatsis M. Tubular MFI zeolite membranes made by secondary (seeded) growth. Catalysis Today, 2001, 67: 101-107
    [139] Richter H, Voigt I, Fischer G, et al. Preparation of zeolite membranes on the inner surface of ceramic tubes and capillaries. Separation and Purification Technology, 2003, 32: 133-138
    [140]纪君美,项寿鹤.分子筛膜合成方法与条件的探讨.无机材料学报, 1995, 10(1): 100-104
    [141] Xu Xiaochun, Yang Weishen, Liu Jie, et al. Synthesis of a high-permeance NaA zeolite membrane by microwave heating. Advanced Materials, 2000, 12(3): 195-198
    [142] Tsai T G, Shih H C, Liao S J, et al. Well-aligned SAPO-5 membrane: Preparation and characterization. Microporous Mesoporous Mater, 1998, 22: 333-341
    [143] Mintova S, Mo S Y, Bein T. Nanosized AlPO4-5 molecular sieves and ultrathin films prepared by microwave synthesis. Chemistry of Materials, 1998, 10: 4030-4036
    [144]董强,徐南平,时钧. A型沸石分子筛膜微波合成及渗透汽化性能.化工学报, 2001, 8: 749-752
    [145]董维阳,任瑜.多孔玻璃载体自转晶B-Al-MFI型沸石膜的原位合成.化学通报, 2000, 58(11): 1311-1315
    [146] Cho Gyoujin, Lee Jae-Suk, Glatzhofer Daniel T, et al. Ultra-thin zeolite films through simple self-assembled processes. Advanced Materials, 1999, 11(6): 497-499
    [147]王金渠,李邦民,刘建亮,等. ZSM-5型沸石膜反应器在乙苯脱氢反应中的模式.化工学报, 2006, 57(8): 1923-1927
    [148] Jansen J C,Koegler J H,Bekkum H,et al.Zeolitic coatings and their potential use in catalysis Microporous and Mesoporous Materials, 1998, 21: 213-226
    [149] Bernal M P, Coronas J, Menendez M, et al. Coupling of reaction and separation at the microscopic level: esterification processes in a H-ZSM-5 membrane reactor. Chemical Engineering Science, 2002, 57: 1557-1562
    [150]赵杰.二次生长法ZSM-5膜及其在超临界催化裂解正十二烷初步研究: [硕士学位论文].天津:天津大学, 2008, 8
    [151] Takafumi Sato, Ayumi Kumagai, Naotsugu Itoh. A catalytic ZSM-5 membrane sandwiched with silicalite-1 layers for highly selective toluene disproportionation. Separation and PurificationTechnology, 2010, 73: 32-37
    [152] Yang Guohui, Thongkam Montree, Vitidsant Tharapong, et al. A double-shell capsule catalyst with core-shell-like structure for one-step exactly controlled synthesis of dimethyl ether from CO2 containing syngas. Catalysis Today, 2011(3): 1-7
    [153]董俊斌. TS-1沸石膜的制备与氧化反应性能研究: [硕士学位论文]:大连,大连理工大学, 2007, 6
    [154] Zhou Jinglin, Zhang Xiongfu, Zhang Jian, et al. Preparation of alkali-resistant, Silicalite-1 encapsulated nickel catalysts for direct internal reforming-melten carbonate fuel cell. Caralysis Communications, 2009, 10(14): 1804-1807
    [155] Wang Xiaobin, Guo Yu, Zhang Xiongfu, et al. Catalytic properties of benzene hydroxylation by TS-1 film reactor and Pd–TS-1 composite membrane reactor. Catalysis Today. 2010, 156: 288-294
    [156]王延吉,胡洁,薛伟,等.催化反应过程绿色集成系统.化工学报, 2007, 58(11): 2689-2696
    [157] Li Yuan, Zhao Xinqiang, Wang Yanji. Synthesis odimethyl carbonate from methanol, propylene oxide and carbon dioxide over KOH/4A molecular sieve catalyst. Applied Catalysis A: General, 2005, 279 (1/2): 205-208
    [158]贾美林,李文钊,徐恒泳,等.含氮合成气直接制二甲醚的Cu基催化剂制备.分子催化, 2002, 16(1): 35-38
    [159] Meiers R, Dingerdissen U, Hlderich W F. Synthesis of propylene oxide from propylene, oxygen, and hydrogen catalyzed by palladium-platinum-containing titanium silicate. Journal of Catalysis, 1998, 176: 376-386
    [160] Motokura K, Fujita N, Mori K, et al. Development of one-pot reaction systems using heterogeneous catalysts based on hydrotalcite and montmorillonite clays. Catalysts Catalysis, 2005, 47(6): 439-441
    [161] Motokura K, Nishimura D, Mori K, et al. A ruthenium-grafted hydrotalcite as a multifunctional catalyst for directα-alkylation of nitriles with primary alcohols. Journal of American Chemical Society, 2004, 126: 5662-5663
    [162] Raja R, Thomas J M. Nanoporous solids as receptacles and catalysts for unusual conversions of organic compounds. Solid State Sciences, 2006, 8: 326-331
    [163] Thomas J M, Raja R. Design of a“green”one-step catalytic production ofε-caprolactam (precursor of nylon-6). PNAS, 2005, 102(39): 13732-13736
    [164] Yoneyama Y, He J, Nishiyama N, et al. Development of a capsule catalyst and the application on Fischer-Tropshch synthesis for one-step synthesis of isoparrafins. Catalysts Catalysis, 2005, 47(6): 403-405
    [165] Motokura K, Fujita N, Mori K, et al. An acidic layered clay is combined with a basic layered clay for one-pot sequential reactions. Journal of American Chemical Society, 2005, 127(27): 9674-9675
    [166]邬时海,谢在库,卢立义,等.薄壳型氧化物催化剂的制备及性能.石油化工, 2005, 34: 822-826
    [167]秦冉冉,常杰,叶跃元,等.一步法制二甲醚双功能催化剂的研究进展.可再生资源, 2009, 27(6): 96-101
    [168]李红霞.丙酮一步法制备甲基异丁基酮的催化剂及工艺研究: [硕士学位论文].浙江:浙江大学, 2003
    [169]汪颖军,张海菊,孙博,等.正庚烷异构化双功能催化剂的研究进展.石油化工, 2008, 37(9): 960-966
    [170]梁占桥,顾昊辉.双功能催化剂中金属铂对乙苯异构化反应的影响.石油化工, 2011, 40(1): 18-22
    [171]李留忠,达建文,管延斌.乙烯聚合双功能催化剂概述.广东化工, 1998(2): 15-18
    [172]王淑芳.气相直接合成碳酸二甲酯PdCl2-CuCl2-KOAc/AC催化剂的研究: [硕士学位论文].天津:河北工业大学, 2002
    [173]张海涛,王淑芳,赵新强,等.负载型CuO催化剂上甲醇气相氧化羰基化合成碳酸二甲酯反应研究.河北工业大学学报, 2004, 33(4): 36-40
    [174]李翠华,施其宏,张兴元. CuCl/沸石双功能羰基化催化剂催化合成叔碳醇.催化学报, 2000, 21(5): 431-433
    [175] Song Haiyan, Li Gang, Wang Xiangsheng. In situ synthesis of Au/Ti-HMS and its catalytic performance in oxidation of bulyk sulfur compounds using in situ generated H2O2 in the presence of H2/O2. Mieroporous and Mesoporous Materials, 2009, 120(3): 34-35
    [176]马书启. Au/TS-1催化氢氧直接合成过氧化氢及氧化反应的集成研究: [博士学位论文].大连:大连理工大学, 2008
    [177]邱俊,小村贞一,窐田好浩,等. Pd /Hβ双功能催化剂上苯加氢烷基化合成环己基苯.催化学报, 2007, 28(3): 246-250
    [178]钟琳,肖建良,李灿.多相双功能催化剂上的不对称直接Aldol反应.催化学报, 2007, 28(8): 673-675
    [179]崔咏梅,王淑芳,赵新强,等. Pt-[HSO3-bvim]HSO4/SiO2双功能催化剂制备及其催化性能研究.高校化学工程学报, 2009, 23(4): 617-622
    [180]顾蕙祥,阎宝石.气相色谱实用手册.第二版.北京:化学工业出版社, 1990
    [181]刘媛.苯选择加氢和环己烯水合催化反应过程研究: [硕士学位论文].天津:河北工业大学, 2007
    [182]王豪,范煜,石冈,等.水热沉积法制备高分散W/Al2O3加氢脱硫催化剂.催化学报, 2007, 28(4): 364-370
    [183] Xie Songhai, Qiao Minghua, Li Hexing, etal. A novel Ru–B/SiO2 amorphous catalyst used in benzene- selective hydrogenation. Applied Catalysis A: General, 1999, 176 (1): 129-134
    [184] Zhang J, Sun L D, Yin J L, et al. Control of ZnO morphology via a simple solution route. Chemistry Materials, 2002, 14 (10): 4172-4177
    [185] Zhou Y, Antonietti M. A series of highly ordered, super-microporus, lamellar silicas prepared by nanocasting with ionicliquids. Advanced Materials, 2003, 15 (17): 1452-1455
    [186]川人高士.シクロヘキサノールの製法[P] JP 5300974A, 1978
    [187]王冬冬.由苯“一锅法”制备环己醇催化过程研究: [硕士学位论文].天津:河北工业大学, 2010
    [188]王天普. C3、C4烯烃的水合技术.齐鲁石油化工, 2001, 29(3): 218-223
    [189]吕仁庆,王秋英,项寿鹤.碱性水蒸气处理对ZSM-5沸石酸性质及孔结构的影响.催化学报, 2002, 23(9): 421-424
    [190]金放,李永丹,吴元欣. ZSM-5分子筛酸性和晶体大小对醛氨缩合合成吡啶碱的影响.高校化学工程学报, 2010, 24(2): 227-232
    [191]刘兴云,李宣文,佘励勤,等.烃分子在锌改性的ZSM-5沸石上的芳构化Ⅰ.活性中心的形成和表征.石油学报(石油加工), 1988, 4(4): 36-43
    [192]胡延韶,张鲁湘.环己烯水合生产环己醇工艺条件优化.河南化工, 2003, 3: 24-25
    [193]贾爱忠,刘改霞,方玮玮,等.高浓度快速合成ZSM-5沸石.石油学报(石油加工), 2009, 10: 53-57
    [194]贾卫,郭群,崔晓静,等.以乙二胺为模板剂合成Y/ZSM-5复合分子筛.石油化工, 2006, 35(9): 832-836
    [195]刘春英,柳云骐,赵环宇,等.采用不同模板剂控制合成较大晶粒的ZSM-5分子筛.工业催化, 2005, 13(10): 56-62
    [196]赵大庆,裘式纶,庞文琴. Pr-3N-ZSM-5分子筛的合成与表征.高等学校化学学报, 1992, 16(8): 1030-1032
    [197]李庆宁.以1,6-己二胺合成高硅ZSM-5沸石的研究.精细石油化工文摘, 1999, 13(5): 68-71
    [198]王科,许智芳,张淑珍,等. ZSM-5分子筛合成研究.江苏化工, 2008, 36(10): 19-22
    [199]孙洪敏,杨为民,陈庆岭.晶化时间对ZSM-5分子筛物化性质及催化性能的影响.催化学报, 2001, 22(3): 291-293
    [200]王殿中,舒兴田,何鸣元.硅源对合成高硅ZSM-5分子筛的影响.石油炼制与化工, 2002, 33: 15-18
    [201]赵瑞玉,徐永强,殷长龙,等.硅源对介孔分子筛结构、性能的影响.中国石油大学学报(自然科学版), 2008, 32(6): 142-150
    [202]张卿,张海荣,付玉川,等.铝源对合成ZSM-5分子筛晶粒大小及形貌的影响.现代化工, 2009, (1): 118-120
    [203]童长春. BZSM-5沸石分子筛的合成.石油化工, 1984, 13: 410-411
    [204]陈然,窦涛,巩雁军,等.干粉体系中超低硅铝比ZSM-5沸石的合成与表征.分子催化, 2007, 21: 179-180
    [205]白妮.超微ZSM-5沸石分子筛的合成及性能研究: [硕士学位论文].西安:西安科技大学, 2006
    [206] Myatt G L, Budd P M, Price C.The influence of surfactants and water soluble polymers on the crystallization of zeolite .Zeolites, 1994, 14(3): 190-197
    [207]马忠林,赵天波,宗保宁. ZSM-5/丝光沸石混晶分子筛的合成、表征及性能研究.石油学报(石油加工), 2004, 20(2): 21-27
    [208]冯会,李春义,山红红.晶化时间对高岭土微球上ZSM-5沸石的原位合成及其催化性能的影响.石油学报(石油加工), 2008, 24(4): 438-445
    [209]杨国辉.自组装NaA沸石膜以及H-ZSM-5胶囊催化剂的设计和应用: [硕士学位论文].大连:大连理工大学, 2006
    [210] Fan Guang-Yin, Li Rui-Xiang, Li Xian-Jun, et al. Effect of organic additives on partial hydrogenation of benzene. Catalysis Communications, 2009, 9: 1394-1397
    [211] Estevam V Spinacé, Jorge M Vaz. Liquid-phase hydrogenation of benzene to cyclohexene catalyzed by Ru/SiO2 in the presence of water-organic mixtures. Catalysis Communications, 2003, 4: 91-96
    [212]樊光银,张松,李瑞祥,等.有机促进剂对苯部分加氢制环己烯的影响.第十三届全国催化学术会议, 2006, 09
    [213]刘旦初.会爬越的氢.化学世界, 2002, 08(19): 447-448
    [214]董庆年,单雅枫,肖有燮,等.红外光谱法考察苯加氢过程中的氢溢流效应.物理化学学报, 1988, 4(3): 301-306
    [215] Wang Jun, Huang Limin, Li Quanzhi. Influence of different diluents in Pt/Al2O3 catalyst on the hydrogenation of benzene, toluene and o-xylene. Applied Catalysis A: General, 1998, 175: 191-199
    [216] Simon L J, Van Ommen J G, Jentys A, et al. Sulfur tolerance of Pt/mordenites for benzene hydrogenation. Do Br?nsted acid sites participate in hydrogenation? Catalysis Today, 2002, 73: 105-112
    [217]高荫本,章斌,关春梅,等.超细Pd/Al2O3催化剂及其对乙炔选择加氢催化性能研究.天然气化工, 1996, 21(5): 14-18
    [218]谢有畅,唐有祺.氧化物和盐类在分子筛内外表面及孔穴中的自发分散及其应用.北京大学学报:自然科学版, 1998, 34(2): 302-308
    [219]佘励勤,王多才,李宣文,等.锌在ZnZSM-5沸石中的形态及其催化作用.物理化学学报, 1994, 10(3): 247-253
    [220]郭文珪,梁娟,赵素琴,等. ZSM-5和ZSM-11沸石吸附性质的研究.催化学报, 1990, 11(6): 469-476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700