连续晶化法合成高性能4A沸石的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
4A沸石由于其独特的吸附性、共价载体性和良好的化学可修饰性,广泛应用于洗涤助剂、石油化工及环境保护等诸多领域。近年来随着4A沸石的应用范围越来越广,其用量也越来越大。目前工业生产普遍采用间歇法生产,其设备投资大、能耗高、产量低,产品成本高、质量不稳定。为了克服这一缺陷,本论文通过对传统的间歇晶化条件加以改进,将最关键的晶化过程连续化,实现了合成高性能4A沸石工艺条件的优化。主要内容如下:
     在间歇晶化条件下,通过加大反应混合物碱度、减少体系水量(即高碱度少水体系)和加入适量的表面活性剂,加快了凝胶溶解速度及晶化速度、缩短了4A沸石晶化的诱导期、加快了晶化速率、减小了平均粒径,使得整个工艺过程所需时间明显缩短,此结果为4A沸石的连续化合成提供了可能。
     在对自行设计、研制具有中试规模的连续晶化器进行了调试的基础上,通过正交实验的方法得到了连续晶化法合成4A沸石的的最佳工艺为:成核浆液浓度为30%、流量为2L/min,反应混合物配比n(SiO2)/n(Al_2O_3)=1.8~1.9,n(Na2O)/n(Al_2O_3)=3.2~3.4,n(H2O)/n(Al_2O_3) =80~100,晶化时间t=20min,晶化温度90℃、添加十二烷基磺酸钠(SDS)摩尔比数为0.1。通过对浆液中固体颗粒的沉降理论分析得出,在20min内沸石颗粒沉降距离为1.998×10-5mm,由于其沉降速度非常慢,所以对连续晶化过程几乎没有影响,且在实际实验过程中也未发现管道堵塞现象,实现了高性能4A沸石连续晶化的稳定中试合成。
     对连续晶化法合成的4A沸石产品进行了表征,结果表明:采用连续晶化法可以制备出结晶度高,粒度小且分布范围窄,钙交换能力高、速率快的高性能4A沸石;通过对连续晶化法与间歇晶化法合成的4A沸石铝离子含量、洗净力、摩损性、LCC性能对比分析表明,铝离子含量从18.34%提高到18.61%、洗净力比间歇晶化法高20%、摩损性几乎没有、LCC从39.0g/100g提高到44.2g/100g。
     与传统合成工艺相比,连续化工艺的料浆固含量提高85%以上,水电汽消耗及材料检修维护费用大幅降低,目前全球沸石的商业产值超过3500亿元,而4A沸石则占50%以上,若按年产20万吨4A沸石计算,合计降低成本大于2200万元/年。
     连续晶化法合成4A沸石的热力学过程的研究表明,连续晶化法合成过程的成核活化能En为51.1kJ·mol~(-1)、晶核生长活化能Ec为5.8kJ·mol~(-1),晶核生长活化能与传统间歇法的相比大幅降低,晶化时间相对缩短。
     连续晶化法水热合成4A沸石反应体系突破了传统间歇法的典型组成,在实验中并没有观察到4A沸石转晶为方钠石,由此推测形成方钠石的原因除了由于碱度太高之外,还与晶化方式有关。
     对连续晶化法合成4A沸石的生长历程研究表明,连续化合成机理属液相转化机理。建立了连续晶化法合成4A沸石的生长模型,连续晶化水热条件下沸石晶粒的形成经历了前驱物溶解-成核并形成纳米小粒子(成核期)-纳米晶粒叠合生长为亚微米晶(快速生长期)这样3个阶段,称之为“第二类叠合生长模型”。
     连续晶化法制备4A沸石的研究,从本质上揭示连续水热条件下4A沸石晶体生长的基本规律,开辟了4A沸石形成机理和晶体生长研究的新途径,提高和发展了4A沸石的晶体生长理论,丰富了沸石合成化学的内容。不仅对降低4A沸石制备成本有着很高的实用价值,而且对有特定结构和性能的新型沸石分子筛的设计合成,特别是对实现纳米沸石制备技术研究的指导和预言具有重要的理论意义。
4A zeolites have been widely used in various industries such as detergent, petrochemical, environmental protection, etc. because of their unique absorbability, ion exchange character and chemical modificable property. In recent years, with the increasingly widespread application of 4A zeolite, it has been manufactured on a greater scale. Currently the general industrial production method of 4A zeolite is batch operation, in which the investment is large and the energy consumption is high, but the output is low and the quality of the product is unstable. In order to overcome these shortages, a modified method for the traditional batch operation is introduced in this paper, by the new method the process of crystallization is changed to continuous synthesis, in which the technological conditions are optimized.
     Under batch crystallization conditions, the rate of gel dissolution and crystallizate was accelerated, the time of induction was shortened and the average particle size was reduced by increasing alkalinity of the reaction mixture, reducing system of water (that is less-water and high-alkalinity system), and adding an appropriate amount of surfactant. This result provides possible for the continuous synthesize 4A zeolite.
     In our own designed and manufactured pilot-scale continuous crystallization reactor, the parameters such as slurry concentration, flow rate and so on were adjusted to obtain the optimal synthesis conditions of continuous synthesis through orthogonal experiments: the concentration of nucleation slurry 30%, flow 2L/min, the reaction mixture ratio of n (SiO2) / n (Al_2O_3) = 1.8 ~ 1.9, n (Na2O) / n (Al_2O_3) = 3.2 ~ 3.4, (n (H2O) / n (Al_2O_3) = 80 ~ 100, crystallization time t= 20min, the crystallization temperature is 90℃, add the dodecyl sulfonic sodium (SDS) by molar ratio of 0.1. Through the theoretical analysis, the deposition distance of zeolite particle is 1.998×10~(-5)mm in 20min. As the deposition is very slow, there is almost no effect on a continuous crystallization process, and in the actual experiment the phenomenon of pipe blockage has not been found. The synthesis of high-performance 4A zeolite was achieved in the pilot-scale continuous crystallization reactor.
     The performance of the synthetic 4A zeolite was characterized. And the results showed that the 4A zeolites with a high degree of crystallinity, small crystal size, narrow crystal size distribution, high calcium exchange capacity, fast calcium exchange rate can be produced with continuous method. In comparison with synthesis technique of batch operation, the Al~(3+) content in crystallization system under continuous synthesis was increased to 18.61% from 18.34%, the detergency was increased by 20%, the LCC of the product is increased to 44.2g/100g from 39.0g/100g, and it has little wear behavior according to the results from a series analysis.
     The energy consumption analysis results showed that in comparison with traditional technique, the solid content in slurry of continuous synthesis system is increased by more than 85%, and the consumption of water, steam, power and repair cost can be greatly reduced. If calculated as an annual output of 200,000 tons, the total cost reduction is greater than 22 million yuan per year.
     The thermodynamic study of continuous crystallization process showed that the nucleation activation energy En is 51.1kJ·mol-1 and the growth activation energy Ec is 5.8kJ ? mol-1. Compared to conventional batch method they reduced , the crystallization time is relatively shorter. Continuous crystallization system breaks through the typical composition of the traditional batch method. In the experiment, there is no sodalite formation was observed, thus we can speculate that the reasons for the formation of sodalite are not only the high degree of base, but also the way of crystallization.
     The results of our study showed that continuous synthesis mechanism was a liquid-phase transformation mechanism. The crystallization growth model was established for a continuous synthesis way, the crystallization process experiences three stages: collid, nanocrystalline and ultra-fine crystallite in continuous process, that was known as "Type II splicing growth model."
     The study about continuous process for preparation of 4A zeolite revealed the basic law of 4A zeolite crystal growth under the conditions, opened up a new way for study of formation mechanism and crystal growth of 4A zeolite, improved and developed the theory of zeolite crystal growth, enriched the content of zeolite synthetic chemistry. Therefore this study not only has a high practical value to reduce the synthetic cost of 4A zeolite, but also possesses important theoretical significance to carry out the guidance and predict of the preparation technique for zeolite of specific structure and properties.
引文
[1]张全昌.天然沸石离子交换性能及应用[M].北京:科学出版社,1986, 5-30.
    [2]中国科学院大连化学物理研究所分子筛组.《沸石分子筛》[M].北京:科学出版社,1978。
    [3]徐文,曹景慧,窦淘.洗涤剂用4A沸石的研究[J].日用化学工业,1988,(1):5-8.
    [4] Svetlana M, Norman H O, Valentin V, et al. Mechanism of zeolite A nanocrystal growth from colloids at room temperature [J]. Science, 1999, 283: 958-960.
    [5]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学工业出版社,2004:5-15.
    [6] Hui K S, Chao C Y H. Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash [J]. Microporous and Mesoporous Materials,2006,88 :145–151.
    [7]杨效益,张高勇,李秋小,等. 4A沸石的生产和应用[J].日用化学工业,2003(2):33-35。
    [8]于耀宗,王多闻,国外洗涤剂用合成沸石助剂的研究和开发[J],日用化学工业,1980(3):1-9。
    [9]潘旭辉.国家宏观政策对洗涤剂用4A沸石的新要求[J],中国洗涤用品工业,2008(4):38-40.
    [10] Ando H, Mihara C. The fate of ammonium nitrogen applied to flooded rice as affected by zeolite addition [J]. Soil Sci, 1996, 42: 5312538.
    [11]关连珠,梁成华,金耀青,等.天然沸石保氮供氮能力及其机制的研究[J].土壤通报, 1990 (2) .71-75.
    [12]姜淳,周恩湘,霍习良,等.沸石改土保肥及增产效果的研究[J].河北农业大学学报, 1993, 16 (4): 48-52.
    [13] Mao R L V, Sjiariel B, Dunnigan J. Asbestos-derived zeolites as water-retainingmaterials in soils [J]. Zeolites, 1991, 11 (8): 804-809.
    [14] Phillips IR. The use of soil amendments to reduce nitrogen phosphorus and heavymetal availability [J]. J. Soil Contam, 1998, 7 (2): 191-212.
    [15] Gworek B. Inactivation of cadmium in contaminated soils using synthetic zeolites [J]. Environ Pollut, 1992, 75: 269-271.
    [16] Invan B H, Flanigen E M, Jansen J C, et al. Introduction to zeolite science and practice, Chapter 5 [J]. Amsterdam: Elsevier, 1991: 767-769.
    [17] Haralambous A, Maliou E, MalamisM. The use of zeolite for ammonium uptake [J]. Water Sci Technol, 1992, 25 (1): 139-142.
    [18] Siriwardane R V, Shen M-S, Fisher E P, et al. Adsorption of CO2 , N2 and O2 on natural zeolites [J]. Energ Fuel, 2003, 17 (3): 571-576.
    [19] Ichiura H, Nozaki M, Kitaoka T, et al. Influence of uniformity of zeolite sheets prepared using apapermaking technique on VOC adsorptivity[J]. Adv Environ Res, 2003, 7 (4): 975-979.
    [20]严建华,冯乃谦,翟凡,等.载银天然沸石抗菌耐久性研究[J].硅酸盐通报, 2002, (3): 7210.
    [21] ChangW S, Hong S W, Park J. Effect of zeolitemedia for the treatment of textile waste water in a biological aerated filter [J]. Process Biochem, 2002, 37 (7): 693-698.
    [22]赵玲,洪爱华,伊平河,等.沸石载铜除藻剂的探讨[J].中国环境科学, 2002, 25 (2): 49-50.
    [23] Ouki S K, Kavamiagh M. Treatment o metals-contaminated waste waters by use of natural zeolites [J]. Water Sci Technol, 1999, 39 (10211): 115-122.
    [24] Mabel V M, Callejas R L, Gehr R, et al. Heavy metal removal with Mexican clinop tilolite multi-component ionic exchange [J]. Water Res, 2001, 35 (2): 373-378.
    [25]袁俊生,郎宇琪,张林栋,等.沸石法工业污水氨氮治理技术研究[J].环境污染治理技术与设备, 2002, 3 (12): 60-63.
    [26]徐德林,洗涤剂用4A沸石合成工艺条件的探讨[J],日用化学工业,1985(2):1-4。
    [27]刘福生,鲍黎裕,彭同江, 4A沸石分子筛制备及其影响因素[J].非金属矿,2001(9):13-16。
    [28] Thompson R..W. Recent advances in the understanding of Zeolite Synthesis, Molecule Sieves, 1998 (1): 1-33.
    [29] Drag E. B., Miecznikowski A. , Abo-Lemon F. , etc., Synthesis of A, X and Y zeolite from clay miners [M]. Amsterdam: Elsevier Science Publishers B.V., 1985: 147-154.
    [30]高俊,高智,简丽等,偏高岭土水热合成4A沸石晶化行为的研究[J],无机化学学报,2001,17(5): 751-754.
    [31] Hollman G.G., G.Steenbruggen, M.Janssen-Jurkovicova. A two step process for the synthesis of zeolites from coal fly ash[J]. Fuel, 1999, 78(10): 1225-1230.
    [32] Hidkazu T., Yasuhiko S., Ryozi H. Formation of Na-A and X zeolites from waste solutions in conversion of coal fly ash to zeolites [J]. Materials research bulletin, 2002, (37): 1873-1884.
    [33] Querol X., Moreno N., Umaňa J. C., etc. Synthesis of zeolites form coal fly ash: an overview [J].International journal of coal geology, 2002, (50): 413-423.
    [34] Hui K. S., Chao C.Y.H., Kot S.C., Removal of mixed heavy metal ions in waste water by zeolite 4A and residual products from recycled coal fly ash [J]. Journal of hazardous materials , 2005,(B27): 89-101.
    [35] Hui K.S. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents,journal of hazardous material[J]. Journal of Hazardous Materials, 2006, B137(1): 401-409.
    [36] Breek D. W., Flanigen e. M., Molecular sieves [M]. London: Society of the Chemical Industry, 1968: 49.
    [37] Mcnicol B.D, Pott G. T., Loss K. R., et al, Synthesis and characterization of large NaX zeolite crystals [J].ADV. CHEM. SER. 1973, (121): 152-153.
    [38] Kerr G.T., Chemistry of Crystalline Aluminosilicates.I. Factors. Affecting the Formation of Zeolite A. [J]. J. Phys. Chem. 1966(70): 1047-1058.
    [39] Ciric J., Kinetics of zeolite A crystallization [J]. J. Colloidal Interface Sci., 1968, (28): 315-324..
    [40] Zhdanov, S.P., Molecular Sieve. Zeolites I [M]. Washington. D.C,: Adv. Chem. Seri., 1971(101): 20-43.
    [41] Gabelia Z. et al, APPL. Cata., 1980, (1): 201.
    [42]施尔畏,夏长泰,王步国,等.水热法制备陶瓷粉体中的聚集生长[J].中国科学(E辑),1997,27(2):126-133.
    [43]李酽. A型沸石纳米品及其组装介孔SiO2复合膜的研究[D].湖南:中南大学资源环境与建筑工程学院,2000.
    [44]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999:127-129.
    [45]闵乃本.实际晶体的长大机制[J].人工晶体学报,1992,21(3): 217-229.
    [46]姚连增.晶体生长基础[M].北京:中国科学技术出版社,1995. 130-131.
    [47]郑燕青,施尔畏,李汶军,等.晶体生长理论研究现状与发展[J].无机材料学报,1998,14(3):321-331.
    [48] Van de Leemput L.E.C,VanBentm P.J.M,DriessenF.A.J.M.,et al. Mophology and Surface topology of YBa2Cu2O7 crystals[J]. J.Cryst.Growth, 1989, 98: 551-560.
    [49] Sun B.N., Hartman P., woensdregt C.F. Structural morphology of YBa2Cu2O7[J]. J.Cryst.Growth, 1994, 100:605-614.
    [50] Kramer M., Wittmuss D., Kupper H., et al. Relations between crystal structure and growth morphology ofβ-Si3N4[J]. .J.Cryst.Growth, 1994, 140:157-166.
    [51]施尔畏,仲维卓,华素坤,等.关于负离子配位多面体生长基元模型[J].中国科学(E辑),1998,28(1): 37-45.
    [52] http://www.iza-structure.org.
    [1] Thompson R. W., Recent advance in the understanding of zeolite synthesis, in: H.G. Karge, J. Weitkamp(EDS.), Molecular sieves[M]. Berlin, Science and Technology, Synthesis, Springer, 1998, 1-33.
    [2] Mintova S, Olson N.H., Valtchev V., Bein T. Mechanism of zeolite A nanocrystal growth from colloids at room temperature[J]. Science ,1999, 283: 958-960.
    [3] Fan W., Ogura M., Sankar G., ect. In situ small-angle and wide-angle X-ray scattering investigation on nucleation and crystal growth of nanosized zeolite A [J]. Chem Mater 2007,19: 1906-1917.
    [4] Hui K.S., Chao C.Y.H. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents [J]. J Hazard Mater 2006, B.137: 401-409.
    [5] Hanson A.L., Jones K.W., Determination of the Si/Al and Na/Al ratios of two specimens of zeolite A by proton inelastic scattering, Zeolites, 1987, 7: 18-20.
    [6] Krznaric I., Antonic T., Subotic B., Physical chemistry of aluminosilicate gel. Part 2 Influence of the batch molar ratio SiO2/Al2O3 on chemical composition of the gels, Microporous and Mesoporous, 1998,20: 161-175.
    [7] Mohamed R.M., Aly H.M., El-Shahat M.F., etc., Effect of the silica sources on the crystallinity of nanosized ZSM-5 zeolite. Microporous Mesoporous Mater [J]. 2005, 79: 7-12.
    [8] Bosnar S., Subotic B. Mechanism and kinetics of the growth of zeolite microcrystals Part 1: Influenc e of the alkalinity of the system on the growth kinetics of zeolite A microcrystals[J]. Microporous and Mesoporous Materials,1999,28: 483-493.
    [9] Cheng Y., Liao R.H., Li J.S, etc. Synthesis research of nanosized ZSM-5 zeolites in the absence of organic template [J]. Journal of materials processing technology, 2008, 206: 445-452.
    [10] North M. R., Swaddle T. W., Kinetics of silicate exchange in alkaline aluminosilicate solutions [J]. Inorg. Chem., 2000, 39(12): 2661-2665
    [11] Alfaro S., Rodríguez C., Valenzuela M.A., etc., Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template. Mater Lett [J]. 2007, 61:4655-4658.
    [12] Hui K. S., Chao C.Y.H., Effects of step-change of synthesis temperature on synthesis of zeolite4A from coal fly ash. Microporous Mesoporous Mater [J]. 2006, 88:145-151.
    [13] Sang S. Y., liu Z. M., Tian p., etc. Synthesis of small crystals zeolite NaY [J]. Materials letters, 2006, 60: 1131-1133.
    [14] Direnzo F., [J]. Ctal. Today, 1998, 41: 37-.
    [15] K?roglu H.G., Sarroglan A., Tather M. etc., Effects of low-temperature gel aging on the synthesis of zeolite Y at different alkalinities [J].Journal of crystal growth 2002, 241: 481-488.
    [16] Narita E., Sato K., Yatabe N., etc, Synthesis and Crystal Growth of Zeolite ZSM-5 from Sodium Aluminosilicate Systems Free of Organic Templates[J].Ind. Eng. Chem Prod. Res. Dev.,1985,24: 507-512.
    [17] Bosnar S., Subotic B., Mechanism and kinetics of the growth of zeolite microcrystals Part 1: Influence of the alkalinity of the system on the growth kinetics of zeolite A microcrystals [J]. Microporous and Mesoporous Materials, 1999, 28: 483-493.
    [18]申少华,廉价矿物原料法合成水热法制备沸石分子筛的形成机理与晶体生长模型研究[D].长沙,中南大学,2001。
    [19] Antonic T., Suboti? B., Stubi?ar N., Influence of gel properties on the crystallization of zeolites: Part 1: Influence of alkalinity during gel preparation on the kenetics of nucleation of zeolite A [J]. Zeolotes, 1997, 18: 291-300.
    [20] Zhdanov, S.P., Samulevich N.N., in Proceeding of the 5th International Zeolite Conference, Heyden: London-Phladelphia-Rheine,1980.
    [21] Plee D. Bive C., in Proceeding of the 8th International Zeolite Conference, Elsevier: Amseterdam,1989.
    [22] Tisser A.J., Wallau W.M., Unger K.K., in Proceeding of the 8th International Zeolite Conference, Elsevier: Amseterdam,1989.
    [23] Suboti? B., Graovac A., Kinetic analysis of autocatalytic [J]. Studies in Surface Science and Catalysis, 1985, 24: 189-195.
    [24] Broni? J., Suboti? B., Smit I., etc., [J]. Studies in Surface Science and Catalysis, 1989, 37: 107-
    [25] Torres J.C., Cardoso D., The influence of gel alkalicity in the synthesis and physicochemical properties of the zeolite [Ti,Al]-Beta [J]. Microporous and Mesoporous Materials, 2008, 113: 204-211.
    [26]朱森.Gemini阴离子表面活性剂水溶液的聚集性质[J].物理化学学报, 2004, 20(10):1245-1248.
    [27]赵剑曦.新一代表面活性剂: Geminis[ J].化学进展,1999, 11(4): 348-357.
    [28] Scott G.,Thompson R.W., The role of triethanolamine in zeolite crystallization [J]. Zeolites, 1990, 10: 44-50.
    [29] Morris M., Dixon A.G., Investigations on the relative effectiveness of some tertiary alkanolamines in the synthesis of large-crystal zeolite NaA [J]. Zeoltes, 1993, 13: 113-121.
    [30] Takayuki B., Takafumi O., Influence of the addition of alkanolamines and tetramethyammonium hydroxide on the shape and size of zeolite-A particles [J]. International Journal of Inorganic Materials, 1999, 1: 243-251.
    [31] Prabir K. D., Chris B., Synthesis of zeolites A and X: influence of cosolvents [J]. Zeolites, 1991, 11 : 507-510.
    [32]胡维杰,宁桂玲.结晶过程[M].大连:大连理工大学出版社,1991.60-70.
    [33]徐如人,李守贵,韩淑芸等.沸石分子筛的生成机理与晶体生长(Ⅻ)—非自发成核体系中沸石分子筛的晶体生长模型[J].高等学校化学学报,1985,6(9):765-770.
    [34]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001.250-252.
    [35]李酽,汪信,陆路德等.A型分子筛生长的理论模型[J].功能材料,2002,33(3):288-293.
    [36] Prabirk D., Shieh D.C., Crystallization of Zeolite A:A Spectroscopic study[J]. The Journal of Physical Chemistry,1986,90(11):2331-2334.
    [37] Svetlana M.,Norman H. O.,Valentin V., Mechanism of Zeolite A Nanocrystal Growth from Colloids at Room Temperature [J]. Science,1999,283(5404):958-960.
    [38]马淑杰,刘孔凡,崔美珍. A型沸石的生成机理[J].高等学校化学学报,1984,5(2),158-162.
    [39] Rajiv K., Asim B., Ranjeet K., etc. Promoter-induced enhancement of the crystallization rate of zeolites and related molecular sieves [J]. Nature,1996, 381: 298-300.
    [40]李酽,汪信,陆路德等.A型分子筛生长的理论模型[J].功能材料,2002,33(3):288-293.
    [41]沈钟,赵振国,王国庭.胶体与表面化学[M].北京:化学工业出版社,2004,107-114。
    [42] Kissa,E. In dispersions: characterization, testing, and measurement, surfactant science series, vol. 84, New York, Marcel Dekker, Inc.: 1999, 654-660.
    [43] Occelli M.L., Robson H.E., Zeolite synthesis [M]. Washington, DC: American chemical society, 1989: 49-65.
    [44]裘炳毅,《化妆品和洗涤用品的流变特性》,[M],化学工业出版社,2004,5-21。
    [45]洪昕林,张高勇,张越,等.表面活性剂对氧化锰悬浮体系流变学振荡行为的影响[J].化学学报,2002,60:1872-1875。
    [46] Schramm G. Approach to rheology and rheometry, gebrueder HAAKE gmbh, D-76227 karlsruhe, dieslstrasser 4, Federal Republic of Germany, 1994, Trans. Li X H. Beijing: Petroleum Industry Publishing House[李晓晖译.实用流变测量学,北京:石油工业出版社,1998:113-120]。
    [47]徐桂英,陈爱民,刘尚营,等. C12NBr对黄原胶/Cr(Ⅲ)凝胶体系粘弹性的影响[J].物理化学学报,2002,18(11):1043-1047.
    [1] Ju J.X., Zeng C.F, Zhang L.X., etc., Continuous synthesis of zeolite NaA in microchannel reactor [J]. Chemical engineering journal, 2006, 116: 115-121.
    [2]马淑杰,徐如人,赵泽民,等.沸石转晶的研究—A型沸石转晶为NaHS型沸石的生成机理[J].1984,5(5): 609-612.
    [3]申少华,方克明,张术根,等.酸处理红辉沸石-氢氧化钠-铝酸钠-水的水热反应体系A型沸石的形成机理[J].北京科技大学学报,2003,25(6):489-494.
    [4]申少华,李爱玲,张术根,等. A型沸石的水热制备及生长机制研究[J].硅酸盐学报,2003,31(8):732-737.
    [5]湛雪辉,肖忠良,李飞,等.水热法合成4A沸石分子筛的影响因素及其合成机理[J].化工矿物与加工,2009,5:1-7.
    [6]黄志良,张联盟,刘羽,等.水热法合成4A沸石的相变/纳米聚合生长过程及其机理研究[J].无机材料学报,2005,20(2):401-406.
    [7]焦淑红,邹若飞,武玉梅.导向剂在合成洗用4A沸石中的应用[J].江苏化工,2004,32(3):48-50.
    [8]卜天梅,赵志英,郭晋梅,等.添加导向剂合成洗涤剂用4A沸石的研究[J].无机盐工业,2004,36(3):31-32.
    [9]梁红玉,李春香,张连红,等.晶化导向剂在合成洗涤剂用4A沸石中的应用[J].抚顺石油学院学报,2002,22(1):33-39.
    [10]梁红玉,张连红,刘晓红.非晶态晶化导向剂在洗涤剂用4A沸石合成中的应用[J].日用化学工业,2001,1:15-17.
    [11]魏志恒,林国林,曹卫星,等.表面活性剂对粉煤灰合成4A沸石的影响[J].粉煤灰综合利用,2007,3:27-29.
    [12]蒋月秀,郭尚伟,张雪,等.微波辐射下用膨润土合成4A沸石[J].非金属矿,2006,29(3):31-32.
    [13]李金树,张春启.微波辐射法合成4A沸石及表征[J].光谱实验室,2001,18(3):413-420.
    [14]陈晶,孙德坤,董少春,等.微波法煅烧高岭土及合成洗涤助剂4A沸石[J]. 2000,2000,5:769-774.
    [15]朱保安,郭新峰,黎燕,等.超声波条件下膨润土合成4A沸石[J].化工矿物与加工,2009,7:9-11.
    [16]曹吉林,邢冬强,刘秀伍,等.超声波合成磁性4A沸石分子筛[J].物理化学学报,2007,23(12):1893-1898.
    [17] P.Artigas, N.Ram Produce and device for obtaining zeolite 4A [P]. EP: 525272, 1993-02-03.
    [18] W.E. Whitehead Carding machine [P]. US:266334, 1882-10-24.
    [19] M. Michel, G. Vrisaks, L. Seigneurin etc. [P]. EP: 1601040,1981-10-21.
    [20]霍登伟,朱德学,冯晓明,等.洗涤助剂用4A沸石的连续合成方法[P].中国专利:200410049910.5,2006-04-12.
    [21] Cundy, C.S., Henty, M.S., Plaisted, R.J. zeolite synthesis using a semicontinuous reactor, part1: controlled nucleation and growth of zem-5 crystals having well-defined morphologies [J]. Zeolites, 1995,15: 353-372.
    [22] Cundy, C.S., Henty, M.S., Plaisted, R.J. zeolite synthesis using a semicontinuous reactor, part 2: Synthesis at high nucleation rates [J]. Zeolites, 1995,15: 400-407.
    [23] Ju J.X., Zeng C.F., Zhang L.X. etc., Continuous synthesis of zeolite NaA in microchannel reactor[J]. Chemical engineering journal, 2006, 116: 115-121.
    [24]姚玉英,陈常贵,刘邦学,等.化工原理[M].天津:天津大学出版社,1987:132-142.
    [1]邢冬强,曹吉林,刘秀伍,等.超声波条件下合成小粒度4A沸石[J].河北师范大学学报(自然科学版),2007,31(4):484-487.
    [2]杨建利,晏志军,李栋梁,等.加入导向剂合成超微4A沸石[J].纳米加工工艺,2006,3(3) :34-37.
    [3]晏志军,杨建利,李栋梁.加入碱金属盐合成超微沸石[J].应用化工,2007,36(7):673-676.
    [4]王水利,葛岭梅,赵世永.熔融-水热合成法制备超微4A沸石[J].粉煤灰综合利用,2007,2:10-11.
    [5]张慧宁,王德举,唐颐,等.低温水热合成超微NaA沸石[J].日用化学工业,2004,34(4):226-228.
    [6] Hu D., Xia Q.H., Lu X.H. Synthesis of ultrafine zeolites by dry-gel conversion without any organic additive [J]. Mater. Res. Bull. 2008 , doi:10.1016/j.materresbull.2008.01.008.
    [7] Larlus O., Mintova S., Bein T., Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution[J].Microporous and Mesoporous Materials, 2006,96: 405-412.
    [8] Majano G., Mintova S., Ovsitser O., etc., Zeolite Beta nanosized assemblies[J]. Microporous and Mesoporous Materials 2005,80: 227-235.
    [9] Yang H., Chen H.L., Du H.B, etc., Incorporating platinum precursors into a NaA-zeolite synthesis mixture promoting the formation of nanosized zeolite[J]. Microporous and Mesoporous Materials 2009, 117: 33-40.
    [10] Zhan B.Z., White M.A., Lumsden M., ect., Control of Particle Size and Surface Properties of Crystals of NaX Zeolite[J]. Chem. Mater. 2002, 14: 3636-3642.
    [11] Marc P.T., Marta B., Llorens J., etc., Preparation of inner-side tubular zeolite NaA membranes in a continuous flow system [J]. Separation and Purification Technology 2008, 59: 141-150.
    [12] Marc P.T., Reyes M., Llorens J., etc., Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system [J].Journal of Membrane Science 2006, 278: 401-409.
    [13] Cundy C.S., Henty M.S., Plaisted R.J., Zeolite Synthesis Using a Semi-continuous Reactor (part I). [J]. Zeolite, 1995,15: 353-372.
    [14] Cundy C.S., Henty M.S., Plaisted R.J., Zeolite Synthesis Using a Semi-continuous Reactor (partII). [J]. Zeolite, 1995, 15: 400-407.
    [15] Ju J.X., Zeng C.F, Zhang L.X., etc., Continuous synthesis of zeolite NaA in microchannel reactor [J]. Chemical engineering journal, 2006, 116: 115-121.
    [16]吴刚,张高勇,杨效益等,阳离子表面活性剂对4A沸石的影响[J].精细化工,2005,2(22):103-105.
    [17]张威,张高勇,杨效益等,十二烷基硫酸钠对合成4A沸石的影响, [J].精细石油化工,2005,1(124):5-8.
    [18]张威,张高勇,杨效益等,浓稠胶体变温陈化合成小粒径4A沸石[J].化工新型材料,2005,2(33):36-38.
    [19]杨效益,张高勇,李秋小等,无机盐对4A沸石晶化过程的影响[J].化工新型材料,2005,10(33):67-69.
    [20]杨效益,张高勇,李秋小等,亚微米4A沸石的合成、结构与性能研究[J].精细石油化工,2004,3:33-35。
    [21]杨效益,张高勇,李秋小等,亚微米4A沸石的合成[J].石油化工,2005.11(34):1099-1102.
    [22]杨效益,张高勇,张威等,SDS与CTAB混合表面活性剂体系对合成4A沸石的影响[J].应用化工,2006,4(35):246-248.
    [23]申少华,张术根,王大伟.酸处理红辉沸石-碱-铝酸钠-水的水热反应体系中A型沸石的合成[J]. 2001,29(5):451-454.
    [24]申少华,方克明.水热体系X型沸石晶体生长的影响因素[J].硅酸盐通报,2004,6 :113-116.
    [25]许俊强,储伟,陈慕华,等.介孔分子筛V-MCM-41的水热法制备与合成机理[J].催化学报,2006,27(8):671-677.
    [26]孙霞,许瑞波,王明艳.合成条件对4A沸石分子筛晶化的影响[J].山东陶瓷,2008,31(5):11-13.
    [27]刘福生,鲍黎裕,彭同江. 4A沸石分子筛制备及其影响因素[J].非金属矿,2001,24(5):13-16.
    [28]正交试验设计法编写组,正交试验设计法[M].上海:上海科学技术出版社,1979:45-54。
    [29]张楠,张大志,韩非,等,改性沸石除磷影响因素的正交试验分析[J].天津城市建设学院学报, 2007, 13 (2): 131-134.
    [30]滕海英,祝国强,黄平,等,正交试验设计实例分析[J].药学服务与研究,2008 , 8 (1):75-76.
    [31]林辉,伍志红,正交试验法优选西洋参水溶液制备工艺研究[J].时珍国医国药,1999,10(3):179-180.
    [32] QB1768-2003,洗涤剂用4A沸石[S].北京:中国标准出版社,2005.
    [33] Sang S. Y., liu Z. M., Tian p., etc. Synthesis of small crystals zeolite NaY [J]. Materials letters, 2006, 60: 1131-1133.
    [34]小川正英,粘土科学,1985,5(1):32-42.
    [35]中泽忠久,油化学,1983,32(4):16-20.
    [36]赵善雷,高浓度合成4A沸石[D].长沙:中南大学,2006.
    [1]申少华,方克明,张术根,等.水热法制备A型沸石粉体中的聚合生长[J].中国分体技术,2003(6): 10-14.
    [2]李酽,汪信,陆路德,等. A型分子筛生长的理论模型[J].功能材料,2002,33(3): 288-293.
    [3]焦国凤.沸石生长过程中分子反应和粒子聚集机理的理论研究[D].北京:北京化工大学,2008.
    [4]申少华.廉价矿物原料水热法制备沸石分子筛的形成机理与晶体生长模型研究[D].湖南:长沙,中南大学,2001.
    [5]谢传欣,赵静,刘兴玉,等.小晶粒沸石表观聚结作用及机理研究[J].燃料化学学报, 2003, 31(4): 355-359.
    [6]申少华,李爱玲,张术根,等. A型沸石的水热制备及生长机制研究[J].硅酸盐学报,2003,31(8):732-737.
    [7] Song H. W., Olusegun J. I., Albert S. J. Kinetics of zeolite NaA crystallization in microgravity[J]. Materials letters, 2005,59: 2668-2672.
    [8] Breck. W.,Zeolite Molecular Sieves[M]. New York: John wiley and Sons, 1974: 353.
    [9] Lindner T., Lechert H.., Chelate ligands us mineralizing agents in hydrothermal synthesis of faujasite type zeolites: a kinetic study [J]. Zeolites, 1996(16):196-201.
    [10] Baerlocher C., Meier W.M., Olson D.H. Atlas of zeolite framework types. Amsterdam , New York: Elsevier, 2001.
    [11]宋江伟.沸石分子筛的无模板合成以及多孔沸石粒子的组装与催化性能研究[D].吉林:吉林大学,2004.
    [12] Rocha J., Kllnowski J., Adams J. Synthsis of zeolite Na-A from metakaolinite revisited [J]. J. Chem. Soc. Faraday Trans., 1991, 87(18): 3091-3097.
    [13]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社, 2005 , 425-426.
    [14]田震,邴乃慈,解丽丽,等.以铝土矿为原料合成4A沸石[J].非金属矿,2008,31(4):24-31.
    [15]薛春峰,刘光焕,董晋湘. 500微米沸石分子筛单晶的制备方法[J].化学通报,2003,4:258-261.
    [16]谷名学,施林海,顾诚,等.高铝MAP沸石的非自发结晶动力学研究[J].化学学报,1999,57,603-608.
    [17]徐文旸,曹景慧,窦涛.洗涤剂用4A沸石的研究[J].日用化学工业,1988, 1: 5-9.
    [18] Chernov A. A. Modern crystallographyⅢ, Crystal growth[M]. Berlin: Springe-Verlag,1984: 381.
    [19]施尔畏,夏长泰,王步国,等.水热法制备陶瓷粉体中的聚集生长[J].中国科学E,1997,27(2):126-133.
    [20]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社, 1999. 208.
    [21]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700