超临界二氧化碳在膜中的传质机理及超临界耦合膜分离过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界流体萃取技术和膜分离技术是现代化工分离技术中倍受关注的新技术,将二者耦合有利于回收高压超临界流体、强化膜分离过程以及应用于超临界膜反应器等。目前,对于超临界流体在多孔膜内的渗透扩散机理研究并不多,因此,通过实验研究以及建立模型计算对此进行深入研究是非常有必要的。
     (1)为了避免传统焙烧法产生的大裂纹缺陷,本文首先用超临界萃取的方法脱除模板剂制得MCM48复合膜。之后在温度40-100℃,压力1-12MPa条件下,考察二氧化碳在介孔膜(MCM48复合膜,有效分离层理论孔径2.6nm)和大孔膜(商业化陶瓷管膜,平均孔径50nm)内的渗透扩散行为。实验发现,虽然孔径差别较大,但是温度和压力对于二氧化碳在两种膜内的渗透扩散行为的影响极为相似。压力和温度对渗透通率都有显著的影响,在低压区域二氧化碳的渗透通率随压力成线性变化;随着压力增加,渗透通率的变化率增大,特别是在临界点附近的增加更加明显;在高压区随着压力的增加,渗透通率的变化不太显著,特别是在低温区,渗透通率随着压力的增加不再增加甚至有下降趋势。
     (2)在实验的基础上,对二氧化碳在膜内的渗透扩散只考虑努森流和粘性流,忽略表面扩散的影响,建立理论模型对实验结果进行预测和拟合。由于二氧化碳在高压区粘度和密度会随温度压力发生变化,用P-R气体状态方程代替理想气体状态方程来建立理论模型,发现预测值在低压区与实验值吻合很好,但是在高压区都略高于实验值。这可能是由于膜参数和膜孔径的预测过程中只采用低压下的实验数据造成偏差;另外也有可能是由于二氧化碳在超临界区粘度和密度发生变化,导致渗透机理的改变。
     (3)基于从发酵液中提取多元醇的研究背景,本文用超临界流体萃取法提取乙醇稀水溶液中的乙醇,初步实验之后耦合NaA膜进行分离,研究了回收高压二氧化碳的可行性.结果表明,在稳态连续操作条件下,萃取率会随着温度的增加而显著增加,在萃取时间为120min时,萃取率从35℃条件下的10.27%提升到了55℃条件下的19.99%。耦合膜分离后,随着操作时间的增加,分离因子会逐渐减少,但是随着温度的增加,分离因子会逐渐增加。另外尝试采用超临界二氧化碳微乳耦合膜分离1,3-PDO水溶液,实验结果表明采用增溶1,3.PDO的超临界二氧化碳微乳可以实现1,3-PDO水溶液的分离,并且可以通过耦合膜分离过程实现高压二氧化碳的回收。
Supercritical fluid extraction technology and membrane separation technology are highly concerned new technologies in the modern chemical separation techniques. A combination of these two technologies is beneficial for recycling the high-pressure supercritical fluid, strengthen the membrane separation process, as well as expand application in supercritical membrane reactor. Currently, few researches are reported on the diffusion and permeation mechanism of supercritical fluids in the porous membrane penetration. Thus, further studies using experiment method and model calculations are necessary.
     (1) In order to avoid large crack defects of the traditional method of calcinations, the method of supercritical fluid extraction are used to remove the template to obtain MCM48composite membrane. The mechanism of diffusion and permeation of CO2in mesoporous membrane (MCM48composite membrane with theoretical aperture of2.6nm in effective separation layer) and macroporous membrane (commercial ceramic membrane with average pore diameter of50nm) are investigated at40-100℃and1-12MPa. The results show that the effects of temperature and pressure on the diffusion and penetration behaviors of CO2in these two membranes are significant and almost the same. At low pressure range, the penetration rate increases linearly with the increase of pressure and increases sharply near the critical point. But at high pressure range, no significant changes of penetration rate are observed with an increase of pressure and even a downward trend appears at low temperature.
     (2) On the basis of experiment, theoretical model is established to predict and fit the effect of Knudsen diffusion and Viscous flow on the diffusion and permeation of CO2in membrane. The prediction results with P-R equation but not the ideal gas status equation show good agreement with the experimental results, though a little higher than experimental results at high pressure range. This may be result from only membrane parameters and diameters at low pressure range are used in the process of prediction or the change of diffusion and permeation mechanism at supercritical region of CO2.
     (3) Based on the research background of extracting polyalcohol from fermentation broth, extracting ethanol from ethanol dilute aqueous solution using the method of supercritical fluid extraction is studied in this article. In addition, the feasibility of recovering carbon dioxide at high pressure using the method of supercritical fluid extraction combining with NaA membrane is discussed. The results show that the extraction rate increases significantly with the increase of temperature under steady state continuous operating conditions. The extraction rate increases from10.27%at35℃to19.99%at55℃when the extracting time is120minutes. After membrane separation, the separation factor gradually decreases as the operation time increases but gradually increases as the temperature increases.
引文
[1]ECKERT CA, KNUTSON BL, DEBENEDETTI PG. Supercritical fluids as solvents for chemical and materials processing[J]. Nature,1996,383(6598):313-318.
    [2]姚明辉,马震,商紫阳,等.离子液体介质中催化合成生物柴油技术研究[J].当代化工,2011,40(10):991-996.
    [3]AZEVEDO ABA, KIECKBUSH TG, TASHIMA AK, et al. Extraction of green coffee oil using supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2008,44(2): 186-192.
    [4]银建中,周丹,商紫阳,等.超临界流体技术中的膜过程研究[J].化工装备技术,2009,30(05):1-8.
    [5]ROMO-HUALDE A, YETANO-CUNCHILLOS AI, GONZALEZ-FERRERO C, et al. Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L.) by-products[J]. Food Chemistry,2012,133(3):1045-1049.
    [6]刘永,周家华,孙福强,等.超临界C02萃取技术提取生理活性物质的研究进展[J].化工生产与技术,2002,9(04):18-21+51.
    [7]HERRERO M, MENDIOLA JA, CIFUENTES A, et al. Supercritical fluid extraction:Recent advances and applications[J]. Journal of Chromatography A,2010,1217(16):2495-2511.
    [8]RAWSON A, TIWARI BK, BRUNTON N, et al. Application of Supercritical Carbon Dioxide to Fruit and Vegetables:Extraction, Processing, and Preservation[J]. Food Reviews International,2012,28(3):253-276.
    [9]CHEN CR, WANG CH, WANG LY, et al. Supercritical carbon dioxide extraction and deacidification of rice bran oil[J]. The Journal of Supercritical Fluids,2008,45(3): 322-331.
    [10]DAVARNEJAD R, KASSIM KM, ZAINAL A, et al. Supercritical fluid extraction of β-carotene from crude palm oil using CO2[J]. Journal of Food Engineering,2008,89(4):472-478.
    [11]KIM WJ, KIM JD, KTM J, et al. Selective caffeine removal from green tea using supercritical carbon dioxide extraction[J]. Journal of Food Engineering,2008,89(3): 303-309.
    [12]PROKOPCZYK B, HOFFMANN D, COX JE, et al. Supercritical fluid extraction in the determination of tobacco-spec ific n-nitrosamines in smokeless tobacco[J]. Chemical Research in Toxicology,1992,5(3):336-340.
    [13]MEKKI S, WAI CM, BILLARD I, et al. Cu(ii) extraction by supercritical fluid carbon dioxide from a room temperature ionic liquid using fluorinated β-diketones[J]. Green Chemistry,2005,7(6):421.
    [14]丁一刚,黄海涛,田志高.超临界C02中络合反胶团萃取痕量重金属的研究[J].襄樊学院学报,2009,30(5):5-9.
    [15]FULTON JL, SMITH RD. Reverse micelle and microemulsion phases in supercritical fluids[J]. The Journal of Physical Chemistry,1988,92(10):2903-2907.
    [16]张国栋,韩富,张高勇.超临界二氧化碳微乳液中的表面活性剂[J].化学通报,2006,(02):84-90.
    [17]LEE CT, JOHNSTON KP, DAI HJ, et al. Droplet Interactions in water-in-carbon dioxide microemulsions near the critical point:a small-angle neutron scattering study[J]. The Journal of Physical Chemistry B,2001,105(17):3540-3548.
    [18]SHEN D, ZHANG R, HAN B, et al. Enhancement of the solubilization capacity of water in triton x-100/cyclohexane/water system by compressed gases[J]. Chemistry European Journal,2004,10(20):5123-5128.
    [19]SAGISAKA M, IWAMA S, HASEGAWA S, et al. Super-Efficient Surfactant for Stabilizing Water-in-Carbon Dioxide Microemulsionst[J]. Langmuir,2011,27(10):5772-5780.
    [20]CASCIATO MJ, LEVITIN G, HESS DW, et al. Controlling the properties of silver nanoparticles deposited on surfaces using supercritical carbon dioxide for surface-enhanced Raman spectroscopy[J]. Journal of Nanoparticle Research,2012,14(5).
    [2l]KLOSTERMANN M, STREY R, SOTTMANN T, et al. Structure and dynamics of balanced supercritical CO2-microemulsions[J]. Soft Matter,2012,8(3):797-807.
    [22]HUTTON BH, PERERA JM, GRIESER F,et al. AOT reverse microemulsions in scCO2-a further investigation[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2001,189(1-3):177-181.
    [23]LIU JC, WANG W, LI GZ. A new strategy for supercritical fluid extraction of copper ions[J]. Talanta,2001,53(6):1149-1154.
    [24]GOETHEER ELV, VORSTMAN MAG, KEURENTJES JTF. Opportunities for process intensification using reverse micelles in liquid and supercritical carbon dioxide[J]. Chemical Engineering Science,1999,54(10):1589-1596.
    [25]周丹,喻文,徐琴琴,等.超临界二氧化碳微乳液增溶多元醇特性[J].物理化学学报,2011,27(06):1300-1304.
    [26]GE J, JACOBSON GB, LOBOVKINA T, et al. Sustained release of nucleic acids from polymeric nanoparticles using microemulsion precipitation in supercritical carbon dioxide[J]. Chemical Communications,2010,46(47):9034-9036.
    [27]GENNARI FC, CARBAJAL RAMOS A, CONDO A, et al. Hydrogen interaction wi th Pd/CeO.8ZrO.202 nanocomposites prepared by microemulsion, coprecipitation and supercritical ('02 treatment[J]. Applied Catalysis a-General,2011,398(1-2):123-133.
    [28]TINGEY JM, FULTON JL, SMITH RD. Interdroplet attractive forces in aot water-in-oil microemulsions formed in subcritical and supercritical solvents[J]. Journal of Physical Chemistry,1990,94(5):1997-2004.
    [29]HUTTON BH, PERERA JM, GRIESER F, et al. Investigation of AOT reverse microemulsions in supercritical carbon dioxide[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,1999,146(1-3):227-241.
    [30]LIU JC, IKUSHIMA Y, SHERVANI Z. Investigation on the solubilization of organic dyes and micro-polarity in AOT water-in-CO2 microemulsions with fluorinated co-surfactant by using UV-Vis spectroscopy[J]. Journal of Supercritical Fluids,2004,32(1-3): 97-103.
    [31]JOHNSTON KP, HARRISON KL, CLARKE MJ, et al. Water in carbon dioxide microemulsions: An environment for hydrophiles including proteins[J]. Science,1996,271(5249): 624-626.
    [32]JIMENEZ-CARMONA MM, DE CASTRO MDL. Reverse-micelle formation:a strategy for enhancing CO2 supercritical fluid extraction of polar analytes[J]. Analytica Chimica Acta, 1998,358(1):1-4.
    [33]HOLMES JD, STEYTLER DC, REES GD, et al. Bioconversions in a water-in-CO2 microemulsion[J]. Langmuir,1998,14(22):6371-6376.
    [34]SHIMIZU R, NIBE A, SAWADA K, et al. Preparation of hydrophobic platinum catalysts using a water-in-CO2 microemulsion[J]. Journal of Supercritical Fluids,2008,44(1):109-114.
    [35]MAHURIN SM, LEE JS, WANG X, et al. Ammonia-activated mesoporous carbon membranes for gas separations[J]. Journal of Membrane Science,2011,368(1-2):41-47.
    [36]KONG W, ZHU IIY, FEI ZY, et al. A modified dusty gas model in the form of a Fick's model for the prediction of multicomponent mass transport in a solid oxide fuel cell anode[J]. Journal of Power Sources,2012,206:171-178.
    [37]CHEN SH, RUAAN RC, LAI JY. Sorption and transport mechanism of gases in polycarbonate membranes[J]. Journal of Membrane Science,1997,134(2):143-150.
    [38]LEE KH, HWANG ST. The transport of condensable vapors through a microporous vycor glass membrane[J]. Journal of Colloid and Interface Science,1986,110(2):544-555.
    [39]SCHOFIELD RW, FANE AG, FELL CJD. Gas and vapor transport through microporous membranes.1. knudsen-poiseuille transition[J]. Journal of Membrane Science, 1990,53(1-2):159-171.
    [40]SCHOFIELD RW, FANE AG, FELL CJD. Gas and vapor transport through microporous membranes.2. membrane distillation[J]. Journal of Membrane Science,1990,53(1-2): 173-185.
    [41]VELDSINK JW, VANDAMME RMJ, VERSTEEG GF, et al. The use of the dusty-gas model for the description of mass-transport with chemical-reaction in porous-media[J]. Chemical Engineering Journal and the Biochemical Engineering Journal,1995,57(2):115-125.
    [42]MASON EA MA. Gas transport in porous medias:the dusty-gas model[J]. Elsevier,1983: 16-52.
    [43]陈佳明,裴丽霞,周静茹,等.气固吸附模型的研究进展[J].化工进展,2011,30(10):2113-2119.
    [44]SEMENOVA SI, OHYA H, HIGASHIJIMA T, et al. Separation of supercritical CO2 and ethanol mixtures with an asymmetric polyimide membrane[J]. Journal of Membrane Science, 1992,74(1-2):131-139.
    [45]SARRADE S, RIOS GM, CARLES M. Nanofiltration membrane behavior in a supercritical medium[J]. Journal of Membrane Science,1996,114(1):81-91.
    [46]高翔,刘丽丽,刘秀凤,等.加压和超临界流体在多孔膜中的渗透[J].高校化学工程学报,2005,19(05):5-10.
    [47]高翔.超临界二氧化碳在大孔膜中的渗透机理及模型计算[D]:天津大学,2005.
    [48]PATIL VE, VAN DEN BROEKE LJP, VERCAUTEREN FF, et al. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes[J]. Journal of Membrane Science, 2006,271(1-2):77-85.
    [49]PATIL V, MEEUWISSEN J, VANDENBROEKE L, et al. Permeation of supercritical fluids across polymeric and inorganic membranes[J]. The Journal of Supercritical Fluids,2006,37(3): 367-374.
    [50]ROMERO J, LE CAM S, SANCHEZ J, et al. Permeation of supercritical fluids through a MFI zeolite membrane[J]. Chemical Engineering Science,2001,56(10):3139-3148.
    [51]WALL Y, OMPE AIME M, BRAUN G, et al. Gas transport through ceramic membranes under super-critical conditions[J]. Desalination,2010,250(3):1056-1059.
    [52]KRATOCIIVIL AM, KOROS WJ. Effects of Supercritical CO2 Conditioning on Cross-Linked Polyimide Membranes[J]. Macromolecules,2010,43(10):4679-4687.
    [53]AKIN O, TEMELLI F. Effect of supercritical CO2 flux, temperature and processing time on physicochemical and morphological properties of commercial reverse osmosis membranes[J]. The Journal of Supercritical Fluids,2011,60:81-88.
    [54]AKIN O, TEMELLI F, KOSEOGLU S. Membrane Applications in Functional Foods and Nutraceuticals[J]. Critical Reviews in Food Science and Nutrition,2012,52(4): 347-371.
    [55]AYAZO JCP, SULEIMAN D. Supercritical fluid processing of Nafion (R) membranes:Methanol permeability and proton conductivity[J]. Journal of Applied Polymer Science, 2012,124(1):145-154.
    [56]BARTELA L, KOTOWICZ J. Influence of membrane CO2 separation process on the effectiveness of supercritical combined heat and power plant[J]. Rynek Energii,2011, (6):12-19.
    [57]PHOTINON K, BODDU A, ILIAS S. Recovery of liquid CO2 from cleaning solutions without phase change using ultrafiltration and microfiltration membranes[J]. Separation Science and Technology,2003,38(12-13):2951-2962.
    [58]CHIU YW, TAN CS. Regeneration of supercritical carbon dioxide by membrane at near critical conditions[J]. Journal of Supercritical Fluids,2001,21(1):81-89.
    [59]TAN CS, LIEN HC, LIN SR, et al. Separation of supercritical carbon dioxide and caffeine with mesoporous silica and microporous silicalite membranes[J]. Journal of Supercritical Fluids,2003,26(1):55-62.
    [60]SARRADE S, SCHRIVE L, GOURGOUILLON D, et al. Enhanced filtration of organic viscous liquids by supercritical CO2 addition and fluidification. Application to used oil regeneration[J]. Separation and Purification Technology,2001,25(1-3):315-321.
    [61]RUIVO R, COUTO R, SIMOES PC. Supercritical carbon dioxide fractionation of the model mixture squalene/oleic acid in a membrane contactor[J]. Separation and Purification Technology,2008,59(3):231-237.
    [62]银建中,周丹,王爱琴.超临界C02微乳/反胶束体系热力学行为与应用[J].化学进展,2009,21(12):2505-2514.
    [63]YONKER CR, FULTON JL, PHELPS MR, et al. Membrane separations using reverse micelles in nearcritical and supercritical fluid solvents[J]. Journal of Supercritical Fluids, 2003,25(3):225-231.
    [64]PEAY KA, BOTHUN GD, ANIM-MENSAH A, et al. Ultrafiltration of W/CO2 microemulsions in ceramic membranes[J]. Separation Science and Technology,2006,41(11):2603-2612.
    [65]JIA W, MURAD S. Molecular dynamics simulations of gas separations using faujasite-type zeolite membranes[J]. Journal of Chemical Physics,2004,120(10):4877-4885.
    [66]JIA W, MURAD S. Separation of gas mixtures using a range of zeolite membranes:A molecular-dynamics study[J]. Journal of Chemical Physics,2005,122(23):234708.
    [67]XULF, SAHIMI M, TSOTSIS TT. Nonequilibrium molecular dynamics simulations of transport and separation of gas mixtures in nanoporous materials[J]. Physical Review E, 2000,62 (5):6942-6948.
    [68]ZHANG Z, ZHANG H, ZHENG Y, et al. Gas separation by kinked single-walled carbon nanotubes: Molecular dynamics simulations[J]. Physical Review B,2008,78(3):035439.
    [69]ZHOU J, WANG WC. Adsorption and diffusion of supercritical carbon dioxide in slit pores[J]. Langmuir,2000,16(21):8063-8070.
    [70]FIROUZI M, TSOTSIS TT, SAHIMI M. Molecular dynamics simulations of transport and separation of supercritical carbon dioxide-alkane mixtures in supported membranes[J]. Chemical Engineering Science,2007,62(10):2777-2789.
    [71]FIROUZI M, SAHIMI M, TSOTSIS TT. Supercritical fluids in porous composite materials: Direction-dependent flow properties[J]. Physical Review E,2006,73(3):036312.
    [72]FIROUZI M, NEZHAD KM, TSOTSIS TT, et al. Molecular dynamics simulations of transport and separation of carbon dioxide-alkane mixtures in carbon nanopores[J]. Journal of Chemical Physics,2004,120(17):8172-8185.
    [73]戴猷元.中空纤维膜萃取的传质特性及其过程强化[J].膜科学与技术,2003,23(04):129-133.
    [74]MOUSSIERE S, ROUBAUD A, BOUTIN O, et al.2D and 3D CFD modelling of a reactive turbulent flow in a double shell supercritical water oxidation reactor[J]. Journal of Supercritical Fluids,2012,65:25-31.
    [75]SIERRA-PALLARES J, SANTIAGO-CASADO P, CASTRO F. Numerical modelling of supercritical submerged water jets in a subcritical co-flow[J]. Journal of Supercritical Fluids, 2012,65:45-53.
    [76]AHMED S, SERAJI MT, JAHEDI J, et al. Application of CFD for simulation of a baffled tubular membrane[J]. Chemical Engineering Research & Design,2012,90(5):600-608.
    [77]YU H, YANG X, WANG R, et al. Analysis of heat and mass transfer by CFD for performance enhancement in direct contact membrane distillation[J]. Journal of Membrane Science, 2012,405:38-47.
    [78]BOCQUET S, ROMERO J, SANCHEZ J, et al. Membrane contactors for the extraction proces with subcritical carbon dioxide or propane:Simulation of the influence of operating parameters[J]. Journal of Supercritical Fluids,2007,41(2):246-256.
    [79]SHIRAZIAN S, ASHRAFIZADEH SN. Mass transfer simulation of caffeine extraction by subcritical CO2 in a hollow-fiber membrane contactor[J]. Solvent Extraction and Ion Exchange,2010,28(2):267-286.
    [80]SHIRAZIAN S, MARJANI A, FADAEI F. Supercritical extraction of organic solutes from aqueous solutions by means of membrane contactors:CFD simulation[J]. Desalination, 2011,277(1-3):135-140.
    [81]BESSIERE Y, FLETCHER DF, BACCHIN P. Numerical simulation of colloid dead-end filtration: Effect of membrane characteristics and operating conditions on matter accumulation[J]. Journal of Membrane Science,2008,313(1-2):52-59.
    [82]PARVAREH A, RAHIMI M, MADAENI SS, et al. Experimental and CFD study on the role of fluid flow pattern on membrane permeate flux[J]. Chinese Journal of Chemical Engineering, 2011,19(1):18-25.
    [83]巫树锋,鲁金明,杨建华,等.大孔氧化铝载体上制备MCM-48膜的研究[J].膜科学与技术,2010,30(01):13-17.
    [84]盛春光.高性能NaA沸石膜的制备及渗透蒸发应用研究[D]:大连理工大学,2011.
    [85]EL-SAFTY SA, SHAHAT A, MEKAWY M, et al. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration[J]. Nanotechnology,2010,21(37):375603.
    [86]HENSEMA ER, MULDER MHV, SMOLDERS CA. On the mechanism of gas-transport in rigid polymer membranes[J]. Journal of Applied Polymer Science,1993,49(12):2081-2090.
    [87]GHAYEB Y, NAJAFI B, MOEINI V, et al. Calculation of the viscosity of supercritical fluids based on the modified Enskog theory [J]. High Temperatures-High Pressures,2003,35-6(2): 217-226.
    [88]KAWI S. Supercritical fluid extraction of surfactant template from MCM-41[J]. Chemical Communications,1998,(13):1407-1408.
    [89]HUANG L, KAWI S, POH C, et al. Extraction of cationic surfactant templates from mesoporous materials by CHOH-modified CO supercritical fluid[J]. Talanta,2005,66(4): 943-951.
    [90]STOLTENBERG D, SEIDEL-MORGENSTERN A, ENKE D. Mesoporous Glass Membranes as Model Systems to Study Gas Diffusion through Porous Media[J]. Chemical Engineering & Technology,2011,34(5):831-836.
    [91]LU XB, ZHANG WH, XIU JH, et al. Removal of the template molecules from MCM-41 with supercritical fluid in a flow apparatus [J]. Industrial & Engineering Chemistry Research, 2003,42(3):653-656.
    [92]KONDO M, KITA H. Permeation mechanism through zeolite NaA and T-type membranes for practical dehydration of organic solvents[J]. Journal of Membrane Science, 2010,361(1-2):223-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700