过渡金属改善铝材料储氢性能的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化改善轻金属配位氢化物的储氢性能是新能源领域的重要研究方向,广泛的实验探索对其催化机理的理论研究提出了迫切要求。我们主要采用第一性原理方法和改进的Nudged Elastic Band Method技术研究过渡金属掺杂对铝氢化的催化能力及机制,基于对氢分子在掺杂表面上的分解和氢原子扩散过程的最小能量路径、相应状态的几何结构和电子性质之上,在原子层次上阐述过渡金属的催化机理,为实验研究提供理论借鉴,促进新能源材料的设计开发和应用研究。本论文主要研究内容如下:
     1、过渡金属Ti掺杂在Al(111)表面台阶下沿时,对材料的氢化过程有很好的催化作用,氢分子在台阶表面分解的能量势垒为0.37eV,分解后的氢原子只需要0.45eV能量就能脱离过渡金属的束缚。通过计算Ti原子在铝表面上的掺杂能,以及在Ti原子附近挖走一个铝原子的能耗,我们认为过渡金属Ti可以稳定存在于台阶下沿位置,在材料反复充放氢过程中保持良好的催化作用。文中也对氢分子分解过程过渡态的结构参数和电荷特性进行了详细研究,同时发现表面台阶提高了过渡金属Ti对材料氢化过程的催化能力。
     2、基于系统研究的考虑,对比分析了过渡金属(Sc, Ti, V, Cr和Mn)替代掺杂在理想Al(111)模型的最上层和次上层、表面台阶模型的台阶边缘位置时对铝氢化的催化作用。过渡金属掺杂在Al(111)表面的最上层时,3d轨道和氢分子的H-H σ共价键之间存在电荷转移和反向转移的Kubas相互作用,能够明显降低氢分子的分解势垒。当过渡金属掺杂在光滑Al(111)表面的次上层时,由于表面上铝原子的屏蔽作用,过渡金属不能和吸附的氢分子之间产生Kubas相互作用。催化作用主要通过掺杂引起的结构形变、过渡金属对铝表面电荷的吸引能力、过渡金属的外层价电子的数目和3d轨道的劈裂以及参与反应的具体轨道等实现。为了实现过渡金属催化剂的循环利用,我们还对分解后的氢原子脱离过渡金属束缚的扩散过程进行了研究。当Sc和Ti掺杂在表面台阶的下沿时,在Kubas相互作用和活性增强的表面台阶的共同作用下,完成氢分子分解过程和氢原子的扩散过程只需要0.4eV的能量,是我们研究的所有构型中完成一个氢化循环需要能量最低的构型。对比过渡金属在不同体系中的催化性能,发现元素的原子半径和电负性是寻找和设计有利于提高轻金属储氢的新型催化材料选择的参考依据。据此,我们预测过渡金属Sc、Ti、Zr、Nb、Hf和Ta因为具有和铝原子相比更大的原子半径和更低的电负性,当它们形成近表面合金时将会对铝材料的氢化起到优良的催化性能。
     3、尽管Al(100)表面的热稳定性低于Al(111)表面,但它也是实验研究中经常采用的指数面。同时Ti掺杂Al(100)表面的局域结构与实验报道的TiAl3催化活性材料具有相似的结构特征。因此,我们详细研究了过渡金属Sc、Ti、V、Cr和Mn在Al(100)台阶表面上掺杂时对氢分子分解过程的催化机制。通过计算掺杂体系的总能量,发现单个过渡金属原子掺杂在表面台阶的下沿位置具有最好的热力学稳定性。当Sc、Ti和V掺杂在Al(100)表面台阶下沿位置时,它们向周围的铝原子转移电荷,而Cr和Mn从周围的铝原子获得电荷。在Sc、Ti、V、Cr和Mn掺杂的LS构型表面上完成一个完整氢化反应过程,包括氢分子的分解过程和分解后的氢原子的扩散过程,所需要的总能量分别为0.37、0.43、0.54、0.56和0.61eV。氢化过程的能量势垒降低说明过渡金属掺杂在表面台阶下沿的位置时能有效提高铝的储氢性能。在Sc和Ti掺杂表面上,氢分子在过渡态中同时与过渡金属以及表面层上的铝原子成键,导致了双氢分子获得了0.8e的电荷,H-H被拉长了0.4,降低了氢分子的分解势垒。而在其它过渡金属掺杂情况时,氢分子仅与过渡金属之间存在弱相互作用,H2在过渡态中的作用是引起了表面电荷的再分布,双氢分子只获得不超过0.1e的电荷量。通过对结构参数和电荷特性的详细分析,理解过渡金属对铝材料氢化过程的催化机制,能够为实验科学家寻找适合的氢气储存介质提供帮助。
     4、为了理解过渡金属原子掺杂浓度对其催化性能的影响,我们也对过渡金属Ti掺杂Al(100)表面形成近表面合金时的催化效果作了详细研究。研究发现过渡金属Ti以单个孤立原子、位于次近邻(0,2)位置的Ti-Ti原子对,以及对应于较高浓度情形的Ti原子位于次近邻类型的[0,2]掺杂域有很好的催化性能。当它们掺杂在Al(100)表面的最上层时,能够促使氢分子以较低的能量势垒分解,但是Ti和H之间的强相互作用阻碍氢原子在表面上的扩散过程,体系完成一个氢化循环过程需要的能量势垒在0.6eV左右。当它们掺杂在铝表面的次上层时,能提高表面层的铝原子与氢原子之间的相互作用,促进氢分子在表面上的分解。在单个Ti原子、位于次近邻的Ti-Ti原子对,以及较高浓度的[0,2]掺杂域掺杂在次上层表面时,氢分子分解的能量势垒分别为0.80、0.68和0.48eV。由于表面铝原子的屏蔽作用,较强的H-Ti键没有形成,分解后的氢原子能非常容易地脱离过渡金属的束缚。适当升高过渡金属的掺杂浓度,能提高对材料氢化过程的催化作用。电荷分析表明过渡金属和双氢分子之间的电荷转移对氢分子的分解过程起重要作用。当过渡金属位于Al(100)表面的最上层时,Ti原子的3d轨道和氢分子的成键态之间产生Kubas类型的σ反馈键,导致氢分子从过渡金属获得电荷,H-H键被拉长,降低了分解势垒。当过渡金属Ti掺杂在次上层时,表面层的铝原子阻碍了Ti原子与H2之间产生直接相互作用。然而掺杂区域的结构形变、Ti原子较低的电负性、以及钛原子具有更多的价电子等因素共同作用,有利于其上方的铝原子向氢分子转移电荷,促进了氢分子的分解。
It has attracted intensive attention in the field of renewable energy materials to catalyticallyenhance the hydrogen storage properties of light metal complex hydrides. The extensiveexperimental investigations call for detailed theoretical studies on the catalytic mechanism. Weuse the first-principles method and the improved nudged elastic band technique in studying thecatalytic mechanism of the early transition metal doped aluminum. We have discussed in detailthe minimum energy path for the H2dissociation and the produced H atom diffusion onaluminum surface doped with the transition metals. Combining the analyses on structural andelectronic properties, we conclude the catalytic mechanism for improving the hydrogen storageperformance. Our theoretical studies can facilitate new materials design by providing predictionsand guidance to the future experimental studies. The main results of this thesis can besummarized below:
     1.The Ti catalyst doped in the vicinity of surface step could split H2with0.37eVactivation energy and the dissociated hydrogen atom could diffuse by overcoming0.45eV barrier.Our analysis on the energies of the Ti doping and the surface etching phenomenon suggest thatTi could remain as recycling active catalyst during the aluminum hydrogenation. The electronicproperties of the intermediate state could account for the enhanced splitting properties. Thesestudies on the role of surface step could contribute to understanding the catalytic mechanism oftransition metal catalyzed hydrogen uptake in aluminum.
     2. With the purpose to present a systematic investigation on the catalytic mechanism, wehave also carefully analyzed the H2splitting processes catalyzed by the early transition metals(Sc, Ti, V, Cr and Mn), which are substitutionally doped in the top layer and the subsurface of anideal flat Al surface and at the edge site of surface step. The transition metal doped in the topsurface can provide3d orbitals to develop the well-known donation and back-donation Kubasinteraction with σ-type H-H bond, which could significantly reduce the activation energy of H2splitting. The catalyst doped in the subsurface could not develop Kubas interaction with H2because of the screening from the charge distributed on the top surface, whose role could beunderstood by combining the structural deformation induced by the doping, the attraction of thedopant to the electrons distributed around Al atoms in the top layer, and the d orbital attendancein the reaction. For the sake of recycling perspectives of the doped catalyst, the diffusion of thedissociated H atoms has also been studied. Thus, the Sc and Ti doping at the lower edge site ofthe stepped surface are better for their low activation energies. The atomic size andelectronegativity could be used to aid new catalyst design for enhancing the hydrogen recharge properties of alanate hydrides. Accordingly, the near-surface alloying of Sc, Ti, Zr, Nb, Hf, andTa in the aluminum surface could be expected to have superior catalytic properties.
     3. Though the thermodynamics stability of Al(100) is lower than Al(111), it is usuallyinvestigated in experimental studies. Also, the local structure of Ti-doped Al(100) has analogousstructural characteristics of the TiAl-terminated TiAl3(001) surface (the TiAl3is found inexperiment to be catalytically active for aluminum hydrogenation). So, we have also studied indetail the enhanced hydrogen interaction with transition-metal (Sc, Ti, V, Cr and Mn) dopedAl(100) stepped surface. Judged from the calculated total energies, the early transition metalsprefer to dope at the lower edge sites of surface step. The Sc, Ti, and V donate electrons whilethe Cr and Mn gain electrons. The low energy costs for activating both the H2splitting and the Hatomic diffusion show improved catalytic performances. In the transition states, hydrogen wouldbond to both transition metal and Al atoms for H2splitting on Sc-and Ti-doped surfaces, while itwould only develop rather weak interaction with the metals in the other studied materials. Thecharge transfer results in0.8e charge gain and0.4increase in bond length of H2, facilitatingH2dissociation on Sc-and Ti-doped surfaces. However, in the other studied materials, thepresence of hydrogen only induces charge re-distribution, resulting in a rather small charge gainof H2(<0.1e). The insights into catalytic mechanism, on the basis of our detailed analysis onstructural and electronic properties, could benefit the experimental investigations in pursuingmoderate hydrogen storage medium.
     4. Based on the detailed first-principles studies, we have investigated the catalyticperformances of near-surface alloy of Ti in Al(100) along with the analysis on catalyticmechanism. The doping of single Ti atom, Ti-Ti pair in next-nearest neighbor configuration (0,2),and the local Ti domain [0,2] in the next-nearest neighbor arrangement have better catalyticperformances. In top surface, they need to cost~0.6eV energy to complete a whole catalyticcycle. The main obstacle comes from the strong Ti-H bond hindering the dissociated H atoms todiffuse. They, when doped in subsurface, can also enhance hydrogen interaction with aluminumsurface to catalyze H2splitting. The calculated activation energies are0.80,0.68, and0.48eV forsingle Ti atom,(0,2) pair, and [0,2] domain, respectively. Due to less of the strong Ti-H bond, thedissociated H atoms could diffuse quickly with small activation energies. The charge transferbetween metal and dihydrogen plays crucial role. In the top surface, the Ti could provide3doribitals to develop the Kubas type σ back-bonding interaction with H2, resulting in the chargegain and bond elongation of dihydrogen. However, the Ti doped in subsurface could not bedirectly approached by H2molecule. The slight structural expansion in doping domain, the lowerelectronegativity of Ti, and the fact of more valence electrons of Ti could cooperatively facilitate the charge transfer from the above Al atoms to H2molecule, accounting for the enhancedsplitting properties.
引文
[1] OECD/IEA. World Energy Outlook2004[R].2005.
    [2]能源科学学科发展战略研究组.2011-2020年我国能源科学学科发展战略报告[R].2010.
    [3] Liu W., Lund H., Mathiesen B. V, et al. Potential of renewable energy systems in China[J].Applied Energy,2011,88,518-525.
    [4] Schlapbach L., Züttel A. Hydrogen-storage materials for mobile applications[J]. Nature,2001,414,353-358.
    [5] Jules Verne. L’ le Mystérieuse [M]. Magasin d’éducation et de Récréation,1874.
    [6]刘永峰,李超,等.高容量储氢材料的研究进展[J].自然杂志,2011,33,19-26.
    [7] Jena P. Materials for hydrogen storage: past, present, and future[J]. J. Phys. Chem. Lett.,2011,2,206-211.
    [8] U. S. Department of Energy, Targets for onboard hydrogen storage systems for light-dutyvehicles[R].2009,9.
    [9] Yang J., Sudik A., Wolverton C, et al. High capacity hydrogen storage materials: attributesfor automotive applications and techniques for materials discovery[J]. Chem. Soc. Rev.,2010,39,656-675.
    [10] Züttel A. Materials for hydrogen storage[J]. Materials today,2003,6,24-33.
    [11] Dillon A. C., Jones K. M., Bekkedahl T. A., et al. Storage of hydrogen in single-walledcarbon nanotubes[J]. Nature,1997,386,377-379.
    [12] Liu C., Chen Y., Wu C. Z., et al. Hydrogen storage in carbon nanotubes revisited[J].Carbon,2010,48,452-455.
    [13] Vajo J. J. Hydrogen storage in lithium-carbon systems: U.S. Patent20,130,004,867[P].2013,1-3.
    [14] Rosi N. L., Eckert J., Eddaoudi M., et al. Hydrogen storage in microporous metal-organicframeworks[J]. Science,2003,300,1127-1129.
    [15] Rowsell J. L. C., Yaghi O. M. Strategies for hydrogen storage in metal–organicframeworks [J]. Angew. Chem. Int. Ed.,2005,44,4670-4679.
    [16] Murray L. J., Dinc M., Long J. R. Hydrogen storage in metal–organic frameworks[J].Chem. Soc. Rev.,2009,38,1294-1314.
    [17] Suh M. P., Park H. J., Prasad T. K., et al. Hydrogen storage in metal–organicframeworks[J]. Chem. Rev.,2011,112,782-835.
    [18] Yang C., Wang X., Omary M. A. Fluorous metal-organic frameworks for high-densitygas adsorption[J]. J. Am. Chem. Soc.,2007,129,15454-15455.
    [19] Han S. S., Furukawa H., Yaghi O. M., et al. Covalent organic frameworks as exceptionalhydrogen storage materials[J]. J. Am. Chem. Soc.,2008,130,11580-11581.
    [20] Furukawa H, Yaghi O. M. Storage of hydrogen, methane, and carbon dioxide in highlyporous covalent organic frameworks for clean energy applications[J]. J. Am. Chem. Soc.,2009,131,8875-8883.
    [21] Cote A. P., Benin A. I., Ockwig N. W., et al. Porous, crystalline, covalent organicframeworks [J]. Science,2005,310,1166-1170.
    [22] Klontzas E., Tylianakis E., Froudakis G. E. Designing3D COFs with enhanced hydrogenstorage capacity[J]. Nano Lett.,2010,10,452-454.
    [23] Orimo S., Nakamori Y., Eliseo J. R., et al. Complex hydrides for hydrogen storage[J].Chem. Rev.,2007,107,4111-4132.
    [24] Sakintuna B., Lamari-Darkrim F., Hirscher M. Metal hydride materials for solid hydrogenstorage: a review[J]. Int. J. Hydrogen Energy,2007,32,1121-1140.
    [25] Zaluska A., Zaluski L., Str m-Olsen J. O. Structure, catalysis and atomic reactions on thenano-scale: a systematic approach to metal hydrides for hydrogen storage[J]. Appl. Phys.A,2001,72,157-165.
    [26] Kadir K., Sakai T., Uehara I. Synthesis and structure determination of a new series ofhydrogen storage alloys, RMg2Ni9(R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2Laves-type layers alternating with AB5layers[J]. J. Alloy Compd.,1997,257,115-121.
    [27] Kaye S. S., Long J. R. Hydrogen storage in the dehydrated prussian blue analogues M3
    [Co (CN)6]2(M=Mn, Fe, Co, Ni, Cu, Zn)[J]. J. Am. Chem. Soc.,2005,127,6506-6507.
    [28] Orimo S., Fujii H. Materials science of Mg-Ni-based new hydrides[J]. Appl. Phys. A,2001,72,167-186.
    [29] Sch th F., Bogdanovi B., Felderhoff M. Light metal hydrides and complex hydrides forhydrogen storage[J]. Chem. Commun.,2004,2249-2258.
    [30] Bogdanovi B., Schwickardi M. Ti-doped alkali metal aluminium hydrides as potentialnovel reversible hydrogen storage materials[J]. J. Alloys Compd.,1997,253,1-9.
    [31] Bogdanovi B., Brand R. A., Marjanovi A., et al. Metal-doped sodium aluminiumhydrides as potential new hydrogen storage materials[J]. J. Alloys Compd.,2000,302,36-58.
    [32] Xiong R., Sang G., Yan X., et al. Separation and characterization of the active species inTi-doped NaAlH4[J]. Chem. Commun.,2013,49,2046-2048.
    [33] Chaudhuri S., Muckerman J. T. First-principles study of Ti-catalyzed hydrogenchemisorption on an Al surface: a critical first step for reversible hydrogen storage inNaAlH4[J]. J. Phys. Chem. B,2005,109,6952-6957.
    [34] Orimo S., Nakamori Y., Kitahara G., et al. Dehydriding and rehydriding reactions ofLiBH4[J]. J. Alloys Compd.,2005,404:427-430.
    [35] Züttel A., Wenger P., Rentsch S., et al. LiBH4a new hydrogen storage material[J]. J.Power Sources,2003,118,1-7.
    [36] Yu X. B., Grant D. M., Walker G. S. Low-temperature dehydrogenation of LiBH4through destabilization with TiO2[J]. J. Phys. Chem. C,2008,112,11059-11062.
    [37] Vajo J. J, Skeith S. L., Mertens F. Reversible storage of hydrogen in destabilizedLiBH4[J]. J. Phys. Chem. B,2005,109,3719-3722.
    [38] Zhao J., Ma H., Chen J. Improved hydrogen generation from alkaline NaBH4solutionusing carbon-supported Co–B as catalysts[J]. Int. J. Hydrogen Energy,2007,32,4711-4716.
    [39] Chen P., Xiong Z., Luo J., et al. Interaction of hydrogen with metal nitrides and imides[J].Nature,2002,420,302-304.
    [40] Zhang Y., Tian Q. The reactions in LiBH4–NaNH2hydrogen storage system[J]. Int. J.Hydrogen Energy,2011,36,9733-9742.
    [41] Hu J., Liu Y., Wu G., et al. Improvement of hydrogen storage properties of the Li–Mg–N–H system by addition of LiBH4[J]. Chem. Mater.,2008,20,4398-4402.
    [42] Hess N. J., Bowden M. E., Parvanov V. M., et al. Spectroscopic studies of the phasetransition in ammonia borane: Raman spectroscopy of single crystal NH3BH3as afunction of temperature from88to330K[J]. J. Chem. Phys.,2008,128,034508.
    [43] Liu L., Hu D., He T., et al. Lithium borohydride-melamine complex as a promisingmaterial for chemical hydrogen storage[J]. J. Alloys Compd.,2013,552,98-101.
    [44] Sun Q., Jena P., Wang Q., Marquez M. First-principles study of hydrogen storage onLi12C60[J]. J. Am. Chem. Soc.,2006,128,9741-9745.
    [45] Wu M., Wang Q., Sun Q., Jena P. Functionalized graphitic carbon nitride for efficientenergy storage[J]. J. Phys. Chem. C,2013,117,6055-6059.
    [46] Yildirim T., Ciraci S. Titanium-decorated carbon nanotubes as a potential high-capacityhydrogen storage medium[J]. Phys. Rev. Lett.,2005,94,175501
    [47] Yoon M., Yang S., Hicke C., Wang E., Geohegan D., Zhang Z. Calcium as the superiorcoating metal in functionalization of carbon fullerences for high-capacity hydrogenstorage[J]. Phys. Rev. Lett.,2008,100,206806.
    [48] Mauron P., Gaboardi M., Remhof A., et al. A. Hydrogen sorption in Li12C60[J]. J. Phys.Chem. C,2013,117,22598-22602.
    [49] Sano N., Taniguchi K., Tamon H. Hydrogen storage in porous single-walled carbonnanohorns dispersed with Pd-Ni alloy nanoparticles[J]. J. Phys. Chem. C,2014,118,3402-3408.
    [50] Dixit M., Maark T. A., Ghatak K., Ahuja R., Pal S. Scandium-decorated MOF-5aspotential candidates for room-temperature hydrogen storage: a solution for the clusteringproblem in MOFs[J]. J. Phys. Chem. C,2012,116,17336-17342.
    [51] Stergiannakos T., Tylianakis E., Klontzas E., et al. Hydrogen storage in novel Li-dopedcorrole metal-organic frameworks[J]. J. Phys. Chem. C,2012,116,8359-8363.
    [52] Guo J. H., Zhang H., Liu Z. P., Cheng X. L. Multiscale study of hydrogen adsorption,diffusion, and desorption on Li-doped phthalocyanine covalent organic frameworks[J]. J.Phys. Chem. C,2012,116,15908-15917.
    [53] Xiang Z., Cao D., Wang W., Yang W., Han B., Lu J. Postsynthetic lithium modification ofcovalent-organic polymers for enhancing hydrogen and carbon dioxide storage[J]. J. Phys.Chem. C,2012,116,5974-5980.
    [54] Pefoute E., Kemner E., Soetens J. C., Russina M., Desmedt A. Diffusive motions ofmolecular hydrogen confined in THF clathrate hydrate[J]. J. Phys. Chem. C,2012,116,16823-16829.
    [55] Matsumoto Y., Grim R. G., Khan N. M., et al. Investigation the thermodynamic stabilitiesof hydrogen and methane binary gas hydrates[J]. J. Phys. Chem. C,2014,118,3783-3788.
    [56] Sloan E. D., Koh C. A. Clathrate hydrates of natural gases, CRC Press: New York,2008.
    [57] Kelbar T., Pal S., Kanhere D. G. Density functional investigations of electronic structureand dehydrogenation reactions of Al-and Si-substituted magnesium hydride[J]. Chem.Phys. Chem.,2008,9,928-934.
    [58] Liu X., McGrady G. S., Langmi H. W., Jensen C. M. Facile cycling of Ti-doped LiAlH4for high performance hydrogen storage[J]. J. Am. Chem. Soc.,2009,131,5032-5033.
    [59] Liu Y., Liang C., Zhou H., Gao M., Pan H., Wang Q. A novel catalyst precursor K2TiF6with remarkable synergetic effects of K, Ti, and F together on reversible hydrogen storageof NaAlH4[J]. Chem. Comm.,2011,47,1740-1742.
    [60] Wan Q., Li P., Li Z., Zhai F., Qu X., Volinsky A. A. Improved hydrogen storageperformance of MgH2-LiAlH4composite by addition of MnFe2O4[J]. J. Phys. Chem. C,2013,117,26940-26947.
    [61] Lozano G. A., Ranong C. N., Bellosta von Colbe J. M., et al. Optimization of hydrogenstorage tubular tanks based on light weight hydrides[J]. Int. J. Hydrogen Energy,2012,37,2825-2834.
    [62] Chaudhuri S., Graetz J., Ignatov A., Reilly J. J., Muckerman J. T. Understanding the roleof Ti in reversible hydrogen storage as sodium alanate: A combined experimental anddensity functional theoretical approach[J]. J. Am. Chem. Soc.,2006,128,11404-11415.
    [63] Wang Y., Zhang F., Stumpf R., Lin P., Chou M. Y. Catalytic effect of near-surface alloyingon hydrogen interaction on the aluminum surface[J]. Phys. Rev. B,2011,83,195419.
    [64] Balde C. P., Stil H. A., van der Eerden A. M. J., et al. Active Ti species in TiCl3-dopedNaAlH4. Mechanism for catalyst deactivation[J]. J. Phys. Chem. C,2007,111,2797-2802.
    [65] Du A. J., Smith S. C., Lu G. Q. The catalytic role of an isolated-Ti atom in thehydrogenation of Ti-doped Al (001) surface: An ab initio density functional theorycalculation[J]. Chem. Phys. Lett.,2007,450,80-85.
    [66] Chaudhuri S., Muckerman J. T. First-principles study of Ti-catalyzed hydrogenchemisorption on an Al surface: a critical first step for reversible hydrogen storage inNaAlH4[J]. J. Phys. Chem. B,2005,109,6952-6957.
    [67] Bogdanovi B., Felderhoff M., Kaskel S., et al. Improved hydrogen storage properties ofTi-doped sodium alanate using titanium nanoparticles as doping agents[J]. Adv. Mater.,2003,15,1012-1015.
    [68] Zhang X., Liu Y., Pang Y. P., et al. Significantly improved kinetics, reversibility andAcycling stability for hydrogen storage in NaAlH4with the Ti-incorporated metal organicframework MIL-125(Ti)[J]. J. Mater. Chem. A,2014,2,1847-1854.
    [69] Nielsen T. K., Javadian P., Polanski M., et al. Nanoconfined NaAlH4: prolific effectsfrom increased surface area and pore volume[J]. Nanoscale,2014,6,599-607.
    [70] Bogdanovi B., Felderhoff M., Pommerin A., et al. Advanced hydrogen storage materialsbased on Sc-, Ce-, and Pr-doped NaAlH4[J]. Adv. Mater.,2006,18,1198-1201.
    [71] Anton D. L. Hydrogen desorption kinetics in transition metal modified NaAlH4[J]. J.Alloys and Compd.,2003,356,400-404.
    [72] Schüth F., Bogdanovi B., Felderhoff M. Light metal hydrides and complex hydridesforhydrogen storage[J]. Chem. Commun.,2004,2249-2258.
    [73] Wang J., Ebner A. D., Zidan R., et al. Synergistic effects of co-dopants on thedehydrogenation kinetics of sodium aluminum hydride[J]. J. Alloys and Compd.,2005,391,245-255.
    [74] Suttisawat Y., Rangsunvigit P., Kitiyanan B., et al. Effect of co-dopants on hydrogendesorption/absorption of HfCl4and TiO2doped NaAlH4[J]. Int. J. Hydrogen Energy,2008,33,6195-6200.
    [75] Wang P., Kang X. D., Cheng H. M. Exploration of the nature of active Ti species inmetallic Ti-doped NaAlH4[J]. J. Phys. Chem. B,2005,109,20131-20136.
    [76] Sun D., Kiyobayashi T., Takeshita H. T., et al. X-ray diffraction studies of titanium andzirconium doped NaAlH4: elucidation of doping induced structural changes and theirrelationship to enhanced hydrogen storage properties[J]. J. Alloys and Compd.,2002,337,L8-L11.
    [77] Muller E., Sutter E., Zahl P., Ciobanu C. V., Sutter P. Short-range order of low-coverageTi/Al(111): implications for hydrogen storage in complex metal hydrides. Appl. Phys.Lett.,2007,90,151917.
    [78] Pitt M. P., Vullum P. E., S rby M. H., et al. Hydrogen absorption kinetics of thetransition-metal-chloride-enhanced NaAlH4system[J]. J. Phys. Chem. C,2012,116,14205-14217.
    [79] Born M., Huang K. Dynamical theory of crystal lattices[M]. Oxford: Clarendon Press,1954.
    [80] Hartree D. R. The wave mechanics of an atom with a non-Coulomb central field. Part I.Theory and methods[C], Mathematical Proceedings of the Cambridge PhilosophicalSociety. Cambridge University Press,1928,24,89-110.
    [81] Fock V. Approximation method for the solution of the quantum mechanical multibodyproblems[J]. Zeitschrift fur Physik,1930,61,26-148.
    [82] Hohenberg P., Kohn W. Inhomogeneous electron gas [J]. Phys. Rev.,1964,136, B864.
    [83] Kohn W., Sham L. J. Self-consistent equations including exchange and correlationeffects[J]. Phys. Rev.,1965,140, A1133.
    [84]陈刚.氧化物团簇、碳管与小分子相互作用的计算研究[D].中国科学院物理研究所,2002.
    [85]王建川.几个化学储氢材料中缺陷形成、扩散和H2解离的第一性原理研究[D],中南大学,2012.
    [86] Kohn W., Sham L. J. Quantum density oscillations in an inhomogeneous electron gas[J].Phys. Rev.,1965,137,1697.
    [87] Von Barth U., Hedin L. A local exchange-correlation potential for the spin polarized case[J]. J. Phys. C: Solid State Physics,1972,5,1629.
    [88] Gunnarsson O., Lundqvist B. I., Wilkins J. W. Contribution to the cohesive energy ofsimple metals: Spin-dependent effect[J]. Phys. Rev. B,1974,10,1319.
    [89] Rajagopal A. K., Callaway J. Inhomogeneous electron gas[J]. Phys. Rev. B,1973,7,1912.
    [90] Perdew J. P., Chevary J. A., Vosko S. H., et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J].Phys. Rev. B,1992,46,6671.
    [91] Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple[J].Phys. Rev. Lett.,1996,77,3865.
    [92] Becke A. D. Density-functional exchange-energy approximation with correct asymptoticbehavior[J]. Phys. Rev. A,1988,38,3098.
    [93]谢希德,陆栋.固体能带理论[M].复旦大学出版社,2007.
    [94] Kresse G., Furthmüller J. Software VASP, Vienna (1999)[J]. Phys. Rev. B,1996,54,169.
    [95] Kresse G., Marsman M., Furthmüller J. Vienna ab-initio simulation package (VASP): Theguide[EB/OL]. http://cms.mpi.univie.ac.at/vasp/2013.
    [96] Sobereva.过渡态、反应路径的计算方法及相关问题[EB/OL].http://simulation.haotui.com/.
    [97] K stner J. and Sherwood P. Superlinearly converging dimer method for transition statesearch[J]. J. Chem. Phys.,2008,128,014106.
    [98] Heyden A., Bell A. T., and Keil F. J. Efficient methods for finding transition states inchemical reactions: Comparison of improved dimer method and partitioned rationalfunction optimization method[J]. J. Chem. Phys.,2005,123,224101.
    [99] Henkelman G., Jónsson H. A dimer method for finding saddle points on high dimensionalpotential surfaces using only first derivatives[J]. J. Chem. Phys.,1999,111,7010.
    [100] Sheppard D., Xiao P., Chemelewski W., Johnson D. D., and Henkelman G. A generalizedsolid-state nudged elastic band method[J]. J. Chem. Phys.,2012,136,074103.
    [101] Sheppard D. and Henkelman G. Paths to which the nudged elastic band converges[J]. J.Comp. Chem.,2011,32,1769-1771.
    [102] Sheppard D., Terrell R., and Henkelman G. Optimization methods for finding minimumenergy paths[J]. J. Chem. Phys.,2008,128,134106.
    [103] Henkelman G., Uberuaga B. P., and Jónsson H. A climbing image nudged elastic bandmethod for finding saddle points and minimum energy paths[J] J. Chem. Phys.,2000,113,9901-9904.
    [104] Henkelman G. and Jónsson H. Improved tangent estimate in the nudged elastic bandmethod for finding minimum energy paths and saddle points[J]. J. Chem. Phys.,2000,113,9978-9985.
    [105] Graetz J, Reilly J J, Johnson J, et al. X-ray absorption study of Ti-activated sodiumaluminum hydride[J]. Appl. Phys. Lett.,2004,85,500-502.
    [106] Araújo C. M., Li S., Ahuja R., et al. Vacancy-mediated hydrogen desorption inNaAlH4[J]. Phys. Rev. B,2005,72,165101.
    [107] Liu J, Ge Q. A first-principles analysis of hydrogen interaction in Ti-doped NaAlH4surfaces: Structure and energetics[J]. J. Phys. Chem. B,2006,110,25863-25868.
    [108] L vvik O. M., Opalka S. M. Density functional calculations of Ti-enhanced NaAlH4[J].Phys. Rev. B,2005,71,054103.
    [109] Chaudhuri S., Graetz J., Ignatov A., et al. Understanding the role of Ti in reversiblehydrogen storage as sodium alanate: A combined experimental and density functionaltheoretical approach[J]. J. Am. Chem. Soc.,2006,128,11404-11415.
    [110] Go E. P., Thuermer K., and Reutt-Robey J. E. H adsorption and the formation of alaneoligomers on Al(111)[J]. Surf. Sci.,1999,437,377-385.
    [111] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wavemethod[J]. Phys. Rev. B,1999,59,1758.
    [112] Kittel C. Introduction to solid state physics[M], John Wiley&Sons: New York,1996.
    [113] Lide D. R. Handbook of physics and chemistry[M], CRC Press: New York,2001.
    [114] Wang J., Du Y., Kong Y., et al. The effect of Ti atom on hydrogenation of Al(111)surface: First-principles studies[J]. Int. J. Hydrogen Energy,2010,35,609-613.
    [115] Kubas G. J. Fundamentals of H2binding and reactivity on transition metals underlyinghydrogenase function and H2production and storage[J]. Chem. Rev.2007,107,4152-4205.
    [116] Kubas G. J., Metal dihydrogen and σ-bond complexes[M], Kluwer Academic/PlenumPublishers, New York,2001.
    [117] Bader R. F. Atoms in molecules-a quantum theory[M], Oxford University Press, Oxford,1990.
    [118] Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm withoutlattice bias[J]. J. Phys.: Condensed Matter,2009,21,084204.
    [119] Aeberhard P. C., Williams S. R., Evans D. J., et al. Ab initio nonequilibrium moleculardynamics in the solid superionic conductor LiBH4[J]. Phys. Rev. Lett.,2012,108,095901.
    [120] Tekin A., Caputo R., Züttel A. First-principles determination of the ground state struc-ture of LiBH4[J]. Phys. Rev. Lett,2010,104,215501.
    [121] Jeon K. J., Moon H. R., Ruminski A. M., et al. Air-stable magnesium nanocompositesprovide rapid and high-capacity hydrogen storage without using heavy-metal catalysts[J].Nature Materials,2011,10,286-290.
    [122] Zheng M. M., Chen G. Surface step enhanced H2splitting on Ti-doped Al(111) surface[J]. Chem. Phys. Lett.,2013,565,86-91
    [123] Sloan E. D., Koh C. A. Clathrate hydrates of natural gases, CRC Press: New York,2008.
    [124] Lozano G. A., Ranong C. N., Bellosta von Colbe J. M., et al. Optimization of hydrogenstorage tubular tanks based on light weight hydrides[J]. Int. J. Hydrogen Energy,2012,37,2825-2834.
    [125] Lubarda V. A. On the effective lattice parameter of binary alloys[J]. Mech. Mater.,2003,35,53-68.
    [126] Harrison J. F. Electronic structure of diatomic molecules composed of a first-rowtransition metal and main-group element (H-F)[J]. Chem. Rev.,2000,100,679-716.
    [127] Allred A. L., Rochow E. G. A scale of electronegativity based on electrostatic force[J]. J.Inorg. Nucl. Chem.,1958,5,264-268.
    [128] Zheng M. M., Li S. J., Su Y., et al. Catalytic properties of near-surface alloy oftransition metal in aluminum: a density functional theory study of structural andelectronic properties[J]. J. Phys. Chem.C,2013,117,25077-25089.
    [129] Stumpf R. H-induced reconstruction and faceting of Al surfaces[J]. Phys. Rev. Lett.,1997,78,4454.
    [130] Chaudhuri S., Graetz J., Ignatov A., Reilly J. J., Muckerman J. T. Understanding the roleof Ti in reversible hydrogen storage as sodium alanate: A combined experimental anddensity functional theoretical approach[J]. J. Am. Chem. Soc.,2006,128,11404-11415.
    [131] Tiwary Y., Fichthorn K. A. Mechanisms of atomic diffusion on the flat, stepped, andfaceted surfaces of Al (110)[J]. Phys. Rev. B,2010,81,195421
    [132] Mills G., Jónsson H., Schenter G. K. Reversible work transition state theory: applicationto dissociative adsorption of hydrogen[J]. Surf. Sci.,1995,324,305-337.
    [133] Chen G., Gong X. G., Chan C. T. Theoretical study of the adsorption of H2on (3,3)carbon nanotubes[J]. Phys. Rev. B,2005,72,045444.
    [134] Chan S. P., Chen G., Gong X. G, Liu Z. P. Chemisorption of hydrogen molecules oncarbon nanotubes under high pressure[J]. Phys. Rev. Lett.,2001,87,205502.
    [135] Popescu M., Velea A. Rigidity boolchand intermediate phases in nanomaterials,optoelectronic materials and devices[M]. INOE Publishing House,6,2009.
    [136] BaldéC. P., Stil H. A., van der Eerden, et al. Active Ti species in TiCl3-doped NaAlH4.mechanism for catalyst deactivation. J. Phys. Chem. C2007,111,2797-2802.
    [137] Zheng M. M., Ren T. Q., Chen G., et al. Improved interaction of hydrogen on transition-metaldoped Al (100) stepped surface[J]. J. Phy. Chem. C,2014,118,7442-7450.
    [138] Henkelman G., Jónsson, H. Improved tangent estimate in the nudged elastic bandmethod for finding minimum energy paths and saddle points. J. Chem. Phys.,2000,113,9978-9985.
    [139] Jonsson H, Mills G, Jacobsen K W. Nudged elastic band method for finding minimumenergy paths of transitions[J].1998.
    [140] Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band methodfor finding saddle points and minimum energy paths[J]. J. Chem. Phys.,2000,113,9901-9904.
    [141] Hofmann S, Csanyi G, Ferrari A C, et al. Surface diffusion: the low activation energypath for nanotube growth[J]. Phys. Rev. Lett.,2005,95,036101.
    [142] Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimumenergy paths[J]. J. Chem. Phys.,2008,128,134106.
    [143] Sheppard D, Xiao P, Chemelewski W, et al. A generalized solid-state nudged elasticband method[J]. J. Chem. Phys.,2012,136,074103.
    [144] Peng Q, Chen G, Kang L, et al. First-principles study of the H2splitting processes onpure and transition-metal-doped Al(111) surfaces[J]. Int. J. Hydrogen Energy,2011,36,12742-12752.
    [145] Bogdanovi B., Schwickardi M. Ti-doped NaAlH4as a hydrogen-storage material–preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction withsodium hydride[J]. Appl. Phys. A,2001,72,221-223.
    [146] Walters R. T., Scogin J. H. A reversible hydrogen storage mechanism for sodium alanate:the role of alanes and the catalytic effect of the dopant[J]. J. Alloys Compd.,2004,379,135-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700