催化剂掺杂改善LiBH_4-MgH_2的储氢特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的高速发展和对能源需求的日益增加,人类面临着化石能源枯竭和生态环境恶化的双重压力,因此开发绿色新能源意义重大。氢能是理想的能源载体,而储氢技术是实现氢能规模化应用的前提和基础。本论文首先综述了储氢材料的发展历史和研究现状,LiBH4和MgH2为代表的配位氢化物和金属氢化物因其较高的氢容量,是具有重要应用前景的储氢材料。但是这二类材料的吸放氢条件苛刻,动力学性能差的问题尚待解决。
     本论文针对MgH2和LiBH4存在的问题开展研究。首先采用高能球磨法及添加不同催化剂制备LiBH4-MgH2复合材料。进而研究了球磨工艺、催化剂种类及催化剂的添加量对LiBH4-MgH2复合体系放氢性能的影响。采用储氢性能测试仪测定了其放氢性能;运用X射线衍射、扫描电镜等方法表征材料在球磨及放氢后的组织结构。
     研究结果表明,LiBH4-MgH2复合体系的颗粒度随着球磨时间的增加而逐渐减小,使得放氢量和放氢动力学逐渐提高,但是当球磨时间增加到10小时后,LiBH4-MgH2复合体系的颗粒尺寸没有继续降低,反而有所增大,放氢量和放氢动力学也有所降低。在相同的球粉比和球磨时间下,振动式球磨比行星式球磨对提高LiBH4-MgH2复合体系的放氢动力学有更好的效果。
     对不同摩尔比的LiBH4-MgH2复合体系放氢性能的研究表明,其放氢量和放氢动力学随着MgH2含量的增加而增加。其放氢分为两个阶段进行,第一阶段主要为LiBH4放氢,第二阶段主要为MgH2放氢。而且放氢前后都有LiBH4存在,说明LiBH4第一步分解反应没有完全进行。
     过渡族金属单质Ni和Nb,氧化物TiO2和Nb2O5,以及氯化物NiCl2、FeCl2和YCl3均能改善LiBH4-MgH2复合体系的放氢性能。在本论文研究的催化剂中,Nb2O5和YCl3催化效果最好,使得LiBH4和MgH2的分解反应能够同步进行。Ni和Nb对LiBH4-MgH2复合体系的放氢量的催化效果不明显,而TiO2和Nb2O5对放氢量有相同的催化效果,YCl3的催化效果较明显,放氢量提高了2%。
     稀土氯化物LaCl3、CeCl3、NdCl3、SmCl3均能不同程度地提高LiBH4和MgH2的放氢量和放氢速率。LaCl3、CeCl3、NdCl3、SmCl3对MgH2放氢动力学的催化效果基本相同。就放氢量来说,NdCl3的催化效果要优于LaCl3、CeCl3、SmCl3。MgH2的放氢量和放氢速率随着温度的升高而增大。当温度达到350℃,其放氢量为7.5%,接近MgH2的理论储氢量。采用活性炭负载NdCl3能够有效提高NdCl3的分散度及提高NdCl3与MgH2的接触面积,从而有利于提高NdCl3对MgH2的催化作用。
     添加20wt%的NdCl3对不同摩尔比的LiBH4-MgH2复合体系都有较好的催化作用,摩尔比为1:2的LiBH4-MgH2在330℃下、1小时内能放出其理论氢容量的80%。而且,随着MgH2含量的增加,LiBH4的放氢量增加。
With the rapid development of the global economy and growing energy demand, our society is faced with the problems of fossil energy depletion and ecological environment deterioration. Thus, developing new green energy and researching materials for energy conversion have great significance. Hydrogen is the ideal energy in the future. However, hydrogen storage technology is a prerequisite for large-scale applications and infrastructure of hydrogen energy. In this paper, the history and the current state of the research on LiBH4 and MgH2 have been summarized. LiBH4 and MgH2, as the representations of complex hydrides and metal hydrides, respectively, are promising hydrogen storage materials due to their higher hydrogen storage capacity. However, the harsh condition and poor kinetics of their hydriding and dehydriding are need to be further studied.
     Improving the kinetics of LiBH4 and MgH2 is the significance of this thesis. Firstly, high energy ball milling and catalyst doping are used to obtain LiBH4-MgH2 composite materials. Secondly, the effects of ball milling process and catalysts on the hydrogen storage properties were investigated. Furthermore, the X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure of LiBH4-MgH2 system after ball milling and dehydriding.
     It was found that with increase of the milling time, the particle size of LiBH4-MgH2 was decreased markedly while the dehydrogenation capacity and kinetics were also improved. However, the sample milled more than 10 hours could not lead to smaller particle size and better dehydrogenation properties. It was also found that vibration ball milling have the better effect than the planetary milling on the dehydriding kinetics of LiBH4-MgH2 with the same milling time and ratio of ball to powder.
     With respect to the LiBH4-MgH2 composite with different mole ratios, the capacity and the kinetics of dehydrogenation was enhanced with increase of the MgH2 content. The dehydrogenation was composed of two steps while the first step is decomposition of LiBH4 and the second is MgH2. However, the decomposition of LiBH4 is not fully carried out in the first step.
     It was found that the transition metal elemental Ni and Nb, oxides TiO2 and Nb2O5, chlorides NiCl2, FeCl2 and YCl3 all can improve the dehydrogenation property of LiBH4-MgH2. Nb2O5 and YCl3 have the best catalytic effect, which lead to the simultaneous decomposition of MgH2 and LiBH4. The catalytic effects of Ni and Nb on dehydriding capacity of LiBH4-MgH2 were not obvious. The TiO2 and Nb2O5 have similar catalytic effect. However, the YCl3 has better catalytic effect, which increased 2wt% of the dehydrogenation capacity.
     LaCl3, CeCl3, NdCl3 and SmCl3 all can enhance the dehydriding capacity of LiBH4 and MgH2, in which the NdCl3 has the best effect to enhance the dehydrogenation capacity of MgH2. With the temperature increasing, the dehydriding capacity of MgH2 increased. The dehydrogenation capacity reached 7.5wt% at 350℃, which closes to the theoretical hydrogen storage capacity of MgH2. Dispersion of NdCl3 in activate carbon increase the contact area of NdCl3 and MgH2 and thus enhance the catalytic effect of NdCl3 on dehydriding kinetics of MgH2.
     The addition of 20wt% of NdCl3 has better catalytic effects on the LiBH4-MgH2 composite with different mole ratios. LiBH4-MgH2(molar ratio 1:2) can release 80% hydrogen of their theoretical capacity at 330℃. Moreover, with the increasing of the content of MgH2, the dehydriding capacity of LiBH4 increased.
引文
[1]袁华堂,高学平张允什等.我国金属氢化物的研究[J].化学通报,1999(11):7-11.
    [2]大角泰章.储氢合金[J].外国金属加工,1995(3):29-37
    [3]王毅,邱晓航,申泮文等.镁基储氢材料研究新进展[J].化学通报,2004,5:327-332
    [4]刘红,韩莹,程运阶等.储氢合金的性质及发展趋势[J].沈阳航空工业学报,2000,17(1):38-41
    [5]房文斌,张文丛,于振兴等.镁基储氢材料的研究进展[J].中国有色金属学报,2002,12(5):853-863
    [6]相丽.国外储氢材料的研究现状[J].新材料产业,2007,3:54-60
    [7]黄亚继,张旭.氢能开发和利用的研究[J].能源工程,2003,2:33-36
    [8]刘啸锋,马光,李银娥.储氢材料的研究与进展[R].中国.成都:第二届中国储能与动力电池及其关键材料学术研讨与技术交流会,2007,11:161-164
    [9] Ye Y., Ahn C. C., Witham C., et al.Hydrogen adsorption and cohesive energy of single-Walled carbon anotubes,Appl. Phys. Let.,1999,74(16):2307-230
    [10]陈军,朱敏.高容量储氢材料研究进展[J].中国材料进展,2005,28(5):2-9
    [11]胡子龙.贮氢材料[M].北京:化学工业出版社,2002
    [12] SehlaPbaeh L., Zuttel A. Hydrogen storage materials for mobile application[J]. Nature,2001,414:353-358
    [13] Stan G, Cote WM. Low Temp. Phys., 1999,110:539~544
    [14] Caner T, Cornish L. Eng. Failure Anal., 2001,8:113~121
    [15] Pan L, Sander M. B., Huang X Y, et al. Microporous metal organic materials:Promising candidates as sorbents for hydrogen storage[J]. J. Am. Chem. Soc.,2004,126(5):1308-1309
    [16]陈人杰,吴锋.有机液体氢化物贮氢新技术的研究[A]. 2003青年氢能论坛论文集[C],北京:2003,152-155
    [17]申伴文.氢与氢能[M].天津:南开大学出版社,2000:83
    [18]袁华堂等.大力开发镁基储氢合金[J].促进清洁能源技术发展.中国新能源网.2002
    [19]吴广新.镁基储氢合金吸放氢热力学和动力学研究[D].上海大学博士学位论文,2009
    [20] Stampfer J F, Holley C E, Suttle J F. The Magnesium-Hydrogen System[J]. Journal of the American Ceramic Society, 1960,82(14):3504-3508
    [21] Reiser A, Bogdanovic B, Schlichte K.The application of Mg-based metal-hydrides as heat energy storage systems[J]. International Journal of Hydrogen Energy, 2000,25(5):425-430
    [22] Vigeholm B, Kjoller J, Larsen B, Pedersen A S. Formation and decomposition of magnesium hydride[J]. Journal of the Less Common Metals, 1983,89(1):135-144
    [23] Li L, Akiyama T, Yagi J. Effect of hydrogen pressure on the combustion synthesis of Mg2NiH4[J]. Intermetallics, 1999,7(2):201-205
    [24] Akiyama T, Tazaki T A, Takahashi R, et al. Kinetics of hydrogen absorption and desorption of magnesium nickel alloy[J]. Intermetallics,1996,4(8):659-662
    [25] Huot J, Liang G, Boily S, et al. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride[J]. Journal of Alloys and Compounds. 1999,128(293-295):495-500
    [26] Von Zeppelin F, Reule H, Hirscher M. Hydrogen desorption kinetics of nanostructured MgH2 composite materials[J]. Journal of Alloys and Compounds, 2002,330-332:723-726
    [27] Zuttel A, Rentisch S, et a1. Hydrogen storage properties of LiBH4[J]. J Alloys Compd,2003,515:356-357
    [28] Bogdanovich B., Schiwickardi M.. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage material[J]. Journal of Alloys and Compounds, 19971(9):253-254
    [29]贝雅耀. LiAlH4-LiNH2复合材料的储氢特性研究[D].浙江大学硕士学位论文, 2008
    [30] Sandrock G., Gross K., Thomas G.. Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates[J]. Journal of Alloys and Compounds, 2002,339:299-308
    [31] Jensen C.M., Zidan R., Maries N., et al. Advanced titanium doping of sodium aluminum hydride: segue to a practical hydrogen storage material?[J]. International Journal of Hydrogen Energy, 1999, 24:461-465
    [32] Sun D.L., Srinivasan S.S., Chen G.R., et al. Rehydrogenation and cycling studies of dehydrogenated NaA1H4[J]. Journal of Alloys and Compounds, 2004,373:265-269
    [33] Gou X.L., Xu L.N., Li W.Y, et al. Mat. Sci. Forum,2005, 2437:475-479
    [34] Wang P., Jensen C.M.. Preparation of Ti-doped sodium aluminum hydride from mechanical milling of NaH/Al with off the-shelf Ti powder[J]. Journal of Physical Chemistry B, 2004,108:15827-15829
    [35]王新华,肖学章,陈立新等.掺Ti球磨NaH/Al复合物的微结构和储氢特性[J],高等学校化学学报, 2006,27:1360-1362
    [36] Brinks H.W., Pnorby B.C., Hawback,et al. The decomposition of LiA1D4 studied by in-situ X-ray and neutron diffraction[J]. Journal of Alloys and Compounds, 2003,351:222-227
    [37] Chen J., Kuriyama N., Xu Q., et al. Reversible hydrogen storage via Titanium-catalyzed LiA1H4 and Li3A1H6[J]. The Journal of Physical Chemistry B, 2001,105:11214-11220
    [38] Liu Shu-Sheng, Sun Li-Xian, Zhang Yao, et al. Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4[J]. International Journal of Hydrogen Energy, 2009,19(34):8079-8085
    [39] Ismail M., Zhao Y., Yu X.B., et al. Effects of NbF5 addition on the hydrogen storage properties of LiAlH4[J]. International Journal of Hydrogen Energy, 2010,6(35):2361-2367
    [40] Suttisawat Y, Rangsunvigit P, Kitiyanan B., et al. Catalytic effect of Zr and Hf on hydrogen desorption/absorption of NaAlH4 and LiAlH4[J]. International Journal of Hydrogen Energy, 2007,32:1277-1285
    [41] Easton D.S., Schneibel J.H., Speakman S.A.. Factors affecting hydrogen release from lithium alanate (LiAH4)[J]. Journal of Alloys and Compounds, 2005,398:245-248
    [42] Resan M., Hampton M. D., Lomness J. K., et al. Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4[J]. International Journal of Hydrogen Energy, 2005,30:1417-1421
    [43] Balema V.P, Wiench J.W, Dennis K.W, et al. Titanium catalyzed solid-state transformations in LiA1H4 during high-energy ball-milling[J]. Journal of Alloys and Compounds, 2001,329:108-114
    [44] Zheng X.P., Qu X.H., Humail LS., et al. Effects of various catalysts and heating rates on hydrogen release from lithium alanate[J]. International Journal of Hydrogen Energy, 2007,32: 1141-1144
    [45] Chen P, Xiong Z.T., Luo J.Z., et al. Interaction of hydrogen with metal nitrides and imides[J]. Nature, 2002,420(21):302-304
    [46] Chen P, Xiong Z.T, Luo J.Z., et al. Interaction between Lithium Amide and Lithium Hydride[J]. The Journal of Physical Chemistry B, 2003,107:10967-10970
    [47] Isobe S., Ichikawa T., Hanada N., et al. Journal of Alloys and Compounds, 2005,404-406: 439-442
    [48] Luo W.F.. LiNH2-MgH2: a viable hydrogen storage system[J]. Journal of Alloys and Compounds, 2004,381:284-287
    [49] Luo W., Sickafdose S.. Thermodynamic and structural characterization of the Mg-Li-N-H hydrogen storage system[J]. Journal of Alloys and Compounds, 2006,407: 274-281
    [50] Leng H., Ichikawa T, Hino H.. New Metal-N-H mystem composed of Mg(NH2)2 and LiH for Hydrogen Storage[J]. The Journal of Physical Chemistry B, 2004,108:8763-8765
    [51] Pinkerton F.E.. Decomposition kinetics of lithium amide for hydrogen storage materials[J]. Journal of Alloys and Compounds, 2005,400:7682
    [52] Ichikawa T., Isobe S., Hanada N., et al. Lithium nitride for reversible hydrogen storage[J]. Journal of Alloys and Compounds, 2004,365:271-276
    [53] Blanchard D., Brinks H. W., Hauback B. C., et al. Desorption of LiAlH4 with Ti- and V-based additives[J]. Materials Science and Engineering B, Volume 108, Issues 1-2, 25 April 2004,1-2(108):54-59
    [54] Ares Fernandez J.R., Aguey-Zinsou F., Elsaesser M., et al. Mechanical and thermal decomposition of LiAlH4 with metal halides[J]. International Journal of Hydrogen Energy, Volume 32, Issue 8, June 2007,8(32):1033-1040
    [55] Xiong Z.T., Chen P, Wu G.T, et al. Investigations into the interaction between hydrogen and calcium nitride[J]. Journal of Materials Chemistry, 2003,13:1676-1680
    [56] Xiong Z.T., Wu G.T, Hu J.J., et al. Ternary Imides for Hydrogen Storage,Advanced Materials, 2004,16:1522-1525
    [57] Xiong Z.T., Hu J.J., Wu G.T., et al. Thermodynamic and kinetic investigations of thehydrogen storage in the Li-Mg-N-H system[J]. Journal of Alloys and Compounds, 2005,398:235-239.
    [58] Xiong Z.T., Hu J.J., Wu G.T., et al. Hydrogen absorption and desorption in Mg-Ni-N-H system[J]. Journal of Alloys and Compounds, 2005,395: 209-212
    [59] Züttel A, Rentisch S. Hydrogen storage properties of LiBH4[J]. J Alloys Compd, 2003,515:356-357
    [60] Züttel A, Borgschulte A, Orimo S. Tetrahydroborates as new hydrogen storage material[J]. Scripta materialia, 2007,56(10):823-828
    [61] Schlesinger H I, Brown H C. J. Am. Chem. Soc, 1940,62(12):3429-435
    [62] SouliéJ, Renaudin G, Yvon K, et al. J. Alloys Compd, 2002,346:200—205
    [63] Orimo S, Nakamori Y, Ohba N, et al. Experimental Studies on Intermediate Compound of LiBH4[J]. Appl Phys Lett, 2006,89:219-220
    [64] Mosegaard L, M.ller B, J.rgensen J E, et al. J Alloys Compd., 2007,446:301 -305
    [65] Kang J K, Kim S Y, Han Y S, et al. Appl. Phys. Lett., 2005,87(11):111904
    [66] Fedneva E M, Alpatova V L, Mikheeva V I. Metal oxide modified lithium borohydrides for reversible hydrogen[J]. Inorg Chem, l964,9(6):826
    [67] Stasinevich D S, Egorenko G A. Hydrogen storage properties of LiBH4[J]. Inorg Chem, 1968,13(3):341
    [68] Adam F Gross, John J Vajo, Sky L Vanatta, et a1. Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds[J]. J Phys Chem C, 2008, 112(14):5651
    [69] Zhang Yao, Zhanga Wansheng, Wanga Aiqin, et a1. LiBH4 nanoparticles supported by disordered mesoporous carbon: Hydrogen storage performances and destabilization mechanisms[J]. International Journal of Hydrogen Energy, 2007,32:16
    [70] Yu X B, Wu Z, Chen Q R, et a1. Improved hydrogen storage properties of LiBH4 destabilized by carbon[J]. Appl Phys Lett, 2007,90(3):4106
    [71] Wang Peijun, Fang Zhanzhao, Ma Laipeng, et a1. Effect of SWNTs on the reversible hydrogen storage properties of LiBH4-MgH2 composite[J]. International Journal of Hydrogen Energy, 2008,33:5611
    [72] Li H.W., Orimo S, Nakamori Y, et a1. Materials designing of metal borohydrides: Viewpoints from thermodynamical stabilities[J]. J Alloys Compd, 2007,315:446-447
    [73] Hagemann Hans, Moise Longhini, Jakub W Kaminski, et a1. LiSc(BH4)4: A novel salt of Li+ and discrete Sc(BH4)3 complex anions[J]. J Phys Chem A, 2008,112:7551
    [74] Ming Au, Arthur R Jurgensen. Modified lithium borohydrides for reversible hydrogen storage[J]. J Phys Che B. 2006,110:706
    [75] Yu X B, Grant D M, Walker G S. Low-temperature dehydrogenation of LiBH4 through destabilization with TiO2[J]. JPhys Chem C, 2008,112:11059
    [76] Kostka J., Lohstroh W., Fiehtner M., et a1. Diborane releasefrom LiBH4 Silicagel mixtures and the effect of additive[J]. J Phys Chem C,2007,111:14026
    [77] Ming Au, Arthur R Jurgensen, et a1. Stability and reversi-bility of lithium borohydrides doped by metal halides andhydrides[J]. J Phys Chem C, 2008,112:18661
    [78] Yin Lichang, Wang Ping, Fang Zhanzhao, et a1. Thermodynamically tuning LiBH4 by fluorine anion doping for hydrogen storage: A density functional study[J]. Chem PhysLett, 2008,450:318
    [79] Kang Xiang dong, Wang Ping, Ma Laipeng, et a1. Reversiblehydrogen storage in LiBH4 destabilized by milling with Al[J]. Appl Phys A,2007,89:963
    [80] Kazutoshi Miwa,Nuko Ohba, Shin-ichi Towata, First-principles study on lithium borohydride LiBH4[J]. Phys Rev, 2004,69:24
    [81] Reilly J J , Wiswall R H. Inorg. Chem., 1967,6(12):2220-2223
    [82] Vajo J. J., Skeith S. L., Mertens F. J. Reversible storage of hydrogen in destabilized LiBH4[J]. Phys. Chem. B, 2005,109(9):3719-3722
    [83] Effect of Nb2O5 Content on Hydrogen Reaction Kinetics of MgH2[J]. J. Alloys and Compounds, 2004, 242:3641
    [84] Ulrike B?senberg, Stefania Doppiu, et al. Hydrogen sorption properties of MgH2-LiBH4 composites[J]. Acta Materialia, 2007,55:3951-3958
    [85] Vajo J. J., Salguero T. T., Gross A. F., et al. Thermodynamic destabilization and reaction kinetics in light metal hydride systems[J], J Alloys Compd, 2007,55:446-447
    [86] William Osborn, Tippawan Markmaitree, Leon L. Shaw. Evaluation of the hydrogen storage behavior of a LiNH2+MgH2 system with 1:1 ratio[J]. Journal of Power Sources, 2007,172,376-378
    [87] Mao J. F., Guo Z. P., Liu H. K., et al.Reversible hydrogen storage in titanium-catalyzedLiAlH4-LiBH4 system[J]. J. Alloys and Compounds, 2009,487:434-438
    [88] Jae-Hag Lim, Jae-Hyeok Shim, Young-Su Lee. Dehydrogenation behavior of LiBH4/CaH2 composite with NbF5[J]. Scripta Materialia, 2008,59:1251-1254
    [89] Zhang Yao, Tian Qi-Feng, Liu Shu-Sheng. The destabilization mechanism and de/re-hydrogenation kinetics of MgH2-LiAlH4[J]. Hydrogen storage system Journal of Power Sources, 2008,185:1514-1518
    [90] Tobias E. C. Price, David M. Grant. Vincent Legrand. Enhanced kinetics for the LiBH4:MgH2 multi-component hydrogen storage system-The effects of stoichiometry and decomposition environment on cycling behaviour[J]. International Journal of Hydrogen Energy, 2010(35)4154-4161
    [91] Michael U. Niemann, Sesha S. Srinivasan, Ashok Kumar. Processing analysis of the ternary LiNH2-MgH2-LiBH4 system for hydrogen storage[J]. International Journal of Hydrogen Energy, 2009,(34):8086-8093
    [92] Xia G. L., Guo Y. H., Wu Z., et al. Enhanced hydrogen storage performance of LiBH4-Ni composite[J]. J Alloys and Compd, 2009,479:545-548
    [93] Yu X. B., Grant D. M., Walker G. S.. Low temperature dehydrogenation of LiBH4 through destabilization with TiO2[J]. J. Phys. Chem. C, 2008,112:11059-11062
    [94] Yao Zhang, Wan-Sheng Zhang, Mei-Qiang Fan, et al. Enhanced hydrogen storage performance of LiBH4-SiO2-TiF3 composite,[J]. J. Phys. Chem. C, 2008,112:4005-4010
    [95] Aguey Zinsou K.F., Ares Fernandez J.R., Klassen T., et al. Effect of Nb2O5 on MgH2 properties during mechanical milling[J]. International Journal of Hydrogen Energy, 2007,32:2400-2407
    [96] Nikola Novakovic, Jasmina Grbovic Novakovic, Ljiljana Matovic, et al. Ab initio calculations of MgH2, MgH2: Ti and MgH2:Co compounds[J]. International Journal of Hydrogen Energy, 2010),35:598-608
    [97] Xie, L. Liu Y., Wang Y.T., et al. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3[J]. Acta Materialia, 2007,55:4585-4591
    [98] Fan Mei-Qiang, Sun Li-Xian, Zhang Yao, et al. The catalytic effect of additive Nb2O5 on the reversible hydrogen storagep erformances of LiBH4-MgH2 composite[J]. International journal Hydrogen Energy,2008,33:74-80
    [99] Wang Pei-Jun, Fang Zhan-Zhao, et al. Effect of SWNTs on the reversible hydrogen storage properties of LiBH4-MgH2 composite[J]. International journal Hydrogen Energy, 2008,33:5611-5616
    [100] Zheng Xueping, An Fuqiang, Wang Guoqing et al. Effect of catalyst LaCl3 on hydrogenstorage properties of lithium alanate (LiAlH4)[J]. International Journal of Hydrogen Energy, 2007,18(32):4957-4960
    [101] Sun Tai, Zhou Bo, Wang Hui, et al. Dehydrogenation properties of LaCl3 catalyzed NaAlH4 complex hydrides[J]. Journal of Alloys and Compounds, 2009,1-2(467):413-416
    [102] Gennari F.C., Puszkiel J.A.. Enhanced hydrogen sorption kinetics of Mg50Ni–LiBH4 composite by CeCl3 addition[J]. Journal of Power Sources, 2010,10(195):3266-3274

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700