稀土掺杂超微材料的制备与上转换发光研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
千百年来,人们对一些有着令人着迷的奇特发光现象的天然矿石始终怀着执着的追求,将这些发光矿石称为“宝石”,以拥有并缀饰着它们来显耀自身的身价。这种对发光矿石的膜拜促进了人们对发光材料的认识、加工和研究。随着发光学理论的建立和发展,开发具有特定应用价值的发光材料成为可能。稀土化合物材料作为其中研究最广、性能优异的发光材料在二十世纪七、八十年代才曾是材料学和物理学的研究热点之一。近年来,材料的纳米化使材料在尺寸、结构畸变、局域化等方面形成了新的丰富的物理特性。这使得发光材料超微化、纳米化及其对发光特性与机制的影响的研究成为发光物理新的研究热点。稀土掺杂超微和纳米发光材料也成为该热点研究领域的重要部分。本论文着重研究稀土掺杂纳米化合物材料的光致上转换发光现象,分析纳米效应导致的稀土离子光谱特性与发光机制的特殊影响,探索发展一些可推广工业化生产的稀土掺杂超微化合物材料的制备方法,取得了一些重要进展。
     用共沉淀法制备Er~(3+)掺杂纳米Y_2O_3材料,研究了这种材料在808nm和488nm激光激发下的上转换发光。在808nm激光激发下,~4F_(9/2)→~4I_(15/2)和~2H_(11/2)、~4S_(3/2)→~4I_(15/2)上转换发射带的荧光强度均随激发功率的增加,但前者快于后者。基于速率方程分析认为,能量传递过程~4I_(9/2)+~4I_(11/2)→~4F_(9/2)+~4I_(13/2)是导致红光随激发功率增加而增加要快于绿光随激发功率增加而增加的根本原因。Er~(3+)掺杂纳米Y_2O_3材料在488nm激光激发下出现了多个上转换发射带。最强的上转换荧光带中心波长位于406nm,对应着~2P_(3/2)→~4I_(13/2)的辐射跃迁,为两光子过程。我们的研究表明,发展Er~(3+)掺杂纳米Y_2O_3陶瓷材料以实现可见到紫外上转换的四能级激光运转系统将是一个可行方案。
     采用燃烧法制备了不同尺寸的Er~(3+)掺杂Y_2O_3粉体材料,系统地研究了尺寸效应对Er~(3+)掺杂纳米Y_2O_3材料对Er~(3+)离子发光特性的影响。对488nm激光激发下的发射谱的分析发现,随着样品颗粒尺寸的减少,~4S_(3/2)能级和~H_(11/2)能级向基态发射的强度比减少,分析认为属于超敏跃迁的~2H_(11/2)能级与基态的荧光发射几率随粒子尺寸的减少而增加的幅度要大于~4S_(3/2)能级向基态的发射。对518nm激发下554nm的荧光衰减曲线的测试和分析发现,处于~4S_(3/2)激发态的Er~(3+)离子对之间的上转换能量传递几率随粒子尺寸的减少而增加。在980nm激光激发下,随着粒子尺寸减少,上转换强度下降,而上转换红绿荧光强度比随粒子尺寸的减少而增加。对980nm激光激发下的上转换发光研究还发现,随着粒子尺寸减少,“饱和”效应增强。
     制备出了微晶体的尺寸大约在10-12nm范围的Er~(3+),Yb~(3+)共掺氟氧化物透明纳米微晶玻璃。相对于玻璃样品,氟氧化物纳米微晶玻璃的上转换发光强度明显提高,纳米微晶玻璃中~2H_(11/2),~4S_(3/2)→~4I_(15/2)的绿色荧光和~4F_(9/2)→~4I_(15/2)的红色荧光强度相对于氟氧化物玻璃分别提高25倍和6倍。氟氧化物纳米微晶玻璃相对于氟氧化物玻璃,红、绿强度比发生了明显改变;分析认为纳米微晶体基质声子能量的降低和稀土粒子的聚集作用是导致纳米微晶玻璃上转换光谱特性的变化和上转换光强提高的主要原因。
     采用共沉淀法制备了Er~(3+)掺杂和Er~(3+)/Yb~(3+)共掺杂LaF_3超微材料,所制备的样品的颗粒呈球形,尺寸为250nm左右。Er~(3+)单掺杂样品中~4S_(3/2)能级和~4F_(9/2)能级的量子效率分别达到67.0%和71.9%。Yb~(3+)的引入极大地提高了上转换强度。分析发现,当Yb~(3+)离子浓度增加,不仅上转化敏化特性发生变化,也使得Er~(3+)-Er~(3+)离子间相互作用增强,并导致了Er~(3+)离子上转换荧光带的强度分布特性改变。
     首次采用燃烧-氟化法成功合成了Yb~(3+)/Er~(3+)和Yb~(3+)/Tm~(3+)共掺杂的氟化镥超微材料,所制备的粒子尺寸约为210nm。研究了该材料在980 nm激光激发下的上转换发光,观测到了对应着Er~(3+)离子的7种辐射跃迁的5个荧光带以及对应着Tm~(3+)离子的8种辐射跃迁的5个荧光带。所制备的Yb~(3+)/Tm~(3+)共掺杂的氟化镥超微材料具备良好的上转换蓝光发射特性。基于速率方程理论分析,认为Yb~(3+)对Tm~(3+)离子的直接合作敏化上转换机制是实现Tm~(3+)离子上转换的主要途径。
For thousands of years, people have been in persistent pursuit of some fascinatingluminescent natural ores. They call these ores "gems" and take pride in possessing andwearing them as ornaments to show off their wealth and social status. The high evaluation ofluminescent ores has helped to promote people's recognition, processing and exploration ofluminescent materials. With the establishment and the development of the theory ofluminescence, it has been possible to exploit luminescent materials with certain practicalvalues. Rare earth compounds, with their excellent properties, became one of the host spots inthe research fields of physics and material science in 1970s and 1980s. In recent years,nanonization has caused materials to form abundant new physic properties in size, structuredeformation and localization. This has led the investigation of the superfine and nanomaterials as well as the nano effect on luminescent properties and mechanisms to become newhot spots of luminescent physics, of which the investigation of rare earth doped superfine andnano materials constitutes important part. In this PHD dissertation, the up-conversion of rareearth doped nano compounds and the nano effect on spectral properties and luminescentmechanisms are investigated. Several preparation methods of rare earth doped superfineluminescent compounds which might be industrialized are explored. Some important progressis made.
     Er~(3+) doped Y_2O_3 nano crystal is prepared with co-precipitation method. The up-conversionluminescence properties of Er~(3+) doped Y_2O_3 nano crystal with excitation of 808 nm and 488nm are investigated, respectively. It is found that under 808 um excitation the up-convertedred emission intensity of ~4F_(9/2)→~4I_(15/2) transition increases upon the excitation power morequickly than that of the green emission of ~2H_(11/2)(~4S_(3/2))→~4I_(15/2) transition. Based on rateequation, the up-conversion mechanism is discussed. It is believed that no-resonant energytransfer of ~4I_(9/2)+~4I_(11/2)—~4F_(9/2)+~4I_(13/2) play an important role in performing the redup-conversion emission, resulting that the red emission intensity increases upon the excitationpower more quickly than that of the green emission. Under 488 nm excitation, Er~(3+) dopedY_2O_3 nano crystal, Multiple up-converted emissions have been observed. The most intenseup-converted emission centered at 406 um, which corresponds to the ~2p_(3/2)→~4I_(13/2) transition,is a two-photon process. Our investigation suggests that realization of violet laser operationby a four-level system might be a feasible approach by developing Er~(3+):Y_2O_3 nano-crystalline ceramics.
     Er~(3+) doped Y_2O_3 nano crystals with different size are prepared using combustion method.Size effect on luminescence properties of Er~(3+) doped Y_2O_3 nano crystals is investigated. Theemission spectra under 488 nm excitation indicate that the ratio of the intensity of ~4S_(3/2)→~4I_(15/2)transition to that of ~2H_(11/2)→~4I_(15/2) decreases with the decrease of the particle size. It is believedthat the rate of hypersensitive transition of ~2H_(11/2)→~4I_(15/2) increases with the decrease of theparticle size more quickly than that of transition of ~4S_(3/2)→~4I_(15/2). The time dependence of the554 nm luminescence decay excited by 518 nm reveals that the rate of up-converting energytransfer occurring between two Er~(3+) ions in ~4S_(3/2) state increases with the decrease of theparticle size. The up-conversion luminescence of Er~(3+) doped Y_2O_3 nano crystals with differentsize pumped at 980 nm is investigated. As the particle size decreases, "saturation effect"becomes more serious.
     Transparent Er~(3+)/Yb~(3+) co-doped oxyfluoride glass ceramics is prepared, which containsnano crystalline with size of 10-12 nm. The up-conversion emission in oxyfluoride glassceramics is notably stronger than that in its glass counterpart. The green luminescenceintensity of the ~2H_(11/2)(~4S_(3/2))→~4I_(15/2) transition and the red luminescence intensity of ~4F_(9/2)→~4I_(15/2) transition in the glass ceramics are 26 and 6 times stronger than those in its glasscounterpart, respectively. The ratio of the red emission intensity to the green one also changesobviously. It is believed that the low phonon energy in nano crystalline and the assemblingeffect result in the enhancement of the up-conversion emission and the change of theup-conversion properties.
     Er~(3+) doped and Er~(3+)/Yb~(3+) co-doped superfine LaF_3 powders are prepared usingco-precipitation method. The sample shows sphere like particle with siz of about 250 nm. Thequantum efficiencies of ~4S_(3/2) and ~4F_(9/2) levels in Er~(3+) doped LaF_3 powders are 67.0% and71.9%, respectively. The introduction of Yb~(3+) largely improves the up-conversion intensity.With the enhancement of Yb~(3+) concentration the sensitizing properties change. On the otherhand, the Er~(3+)-Er~(3+) interaction is reinforced as Yb~(3+) concentration increases. These lead to thevariation of the intensity distribution among the up-converted emission bands.
     Er~(3+)/Yb~(3+) and Tm~(3+)/Yb~(3+) co-doped superfine powders are prepared with a combustionsynthesis method followed with fluorization process for the first time. The fabricated particlesize is about 210 um. Under 980 nm excitation, five up-converted luminescence bandsattributed to seven transitions of Er~(3+) ion and five up-converted luminescence bands attributedto eight transitions of Tm~(3+) ion are observed. The Tm~(3+)/Yb~(3+) co-doped superfine powderspresent strong blue emission. On the basis of rate equation discussion, it is believed that directcooperation sensitization mechanism from Yb~(3+) to Tm~(3+) is a main way performing the up-converted emission.
引文
[1] 徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004:2
    [2] 肖志国,蓄光型发光材料及其制品[M].北京:化学工业出版社,2002:1
    [3] 张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社,2005:68
    [4] 徐叙瑢.发光学的回顾与进展[J].物理与工程,2001,11(2):1-5
    [5] 苏锵.20世纪稀土科技发展的回顾与前瞻[J].稀土信息,2001,(2):5-9
    [6] 李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003:1
    [7] 刘行仁.我国稀土发光材料可科学技术发展回顾与展望[J].世界科技研究与发展,2003,25(1):79-84
    [8] 张霞,张庆礼,苏静,王召兵,孙敦陆,邵淑芳,江海河,殷绍唐.稀土激光晶体研究进展[J].人工晶体学报,2005,34(4):693-698
    [9] 徐长远,王永生,黄最明等.发光材料研究进展[J].光电子技术与信息,1997,10(1):8-12
    [10] 张婷婷,夏军利,石磊.EDFA研究的新进展[J].现代电子技术,2004,(4):62-66
    [11] 郑昌琼,冉均国.新型无机材料[M].北京:科学出版社,2003:40
    [12] 杨应国,胡小华,袁曦明.纳米稀土发光材料的研究与展望[J].矿业快报,2004,426(12):5-7
    [13] 周永慧,林君,于敏,张洪杰.喷雾热解法制备发光材料研究进展[J].发光学报,2002,23(5):503-508
    [14] 杨丙成,关亚风,谭峰.超痕量分析中的激光诱导荧光检测[J].化学进展,2004,16(6):871-878
    [15] S. Hendy. Light scattering in transparent glass ceramics[J]. Appl. Phys. Lett., 2002, 81(7): 1171-1173
    [16] P.A. Tick, N.F. Borrelli, I.M. Reaney. The relationship between structure and transpa-rency in glass-ceramic materials, Opt. Mater. 2000, 15 (1): 81-91
    [17] 李强,高濂,严东生,稀土化合物纳米荧光材料研究的新进展,无机材料学报,2001,16(1):17-22
    [18] R. N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko. Optical properties of manganes-doped nanocrystals of ZnS[J]. Phys. Rev. Lett., 1994, 72(3): 416-419
    [19] R. N. Bhargava, D. Gallagher, T. Welker. Doped nanocrystals of semiconductors-a new class of luminescent materials[J]. J. Lumin., 1994, 60&61(3): 275-280
    [20] A. Bol, A. Meijerink. Long-lived Mn~(2+) emission in nanocrystalline ZnS:Mn~(2+) [J]. Phys. Rev. B, 1998, 58(24): R15997-16000
    [21] A. A. Bol, R. V. Beek, A. Meijerink. On the incorporation of trivalent rare earth ions in Ⅱ—Ⅵ semiconductor nanocrystals [J]. Chem. Mater., 2002, 14(3): 1121-1126
    [22] E.T. Goldburt, B. Kulkami, R.N. Bhargava, J. Taylorb, M. Liberab. Size dependent efficiency in Tb doped Y_2O_3 nanocrystalline phosphor [J]. J. Lumin., 1997, 72-74 (1): 190-192
    [23] Diane K. Williams, Huabiao Yuan, Brian M. Tissue, Size dependence of the luminescence spectra and dynamics of Eu~(3+): Y_2O_3 nanocrystals, J. Lumin., 1999, 83-84 (1): 297-300
    [24] Hongshang Peng, Hongwei Song, Baojiu Chen, Shaozhe Lu, Shihua Huang. Spectral difference between nanocrystalline and bulk Y_2O_3:Eu~(3+)[J]. Chem. Phys. Lett. 2003, 370(3-4): 485-489
    [25] zhang Wei-Wei, Xu Mei, Zhang Wei-Ping, Yin Min, Qi Ze-Ming, Xia Shang-Da and Claudine Garapon. Site-selective spectra and time-resolved spectra of nanocrystalline Y_2O_3:Eu [J]. Chem. Phys. Lett. 2003, 376(3-4): 318-323
    [26] R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein and P. Perriat. Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles, J. Lumin., 2003, 102-103 (1): 445-450
    [27] R. Bazzi, M.A. Flores, C. Louis, K. Lebbou, W. Zhang, C. Dujardin, S. Roux, B. Mercier, G. Ledoux, E. Bernstein, P. Perriat, and O. Tillement. Synthesis and properties of europium-based phosphors on thenanometer scale: Eu_2O_3, Gd_2O_3:Eu, and Y_2O_3:Eu [J]. J. Colloid Interface Sci., 2004, 273 (1): 191-197
    [28] C. Louis, K. Lebbou, M.A. Flores-Gonzalez, R. Bazzi, B. Hautefeuille, B. Mercier, S. Roux, P. Perriat, C. Olagnon, O. Tillement. Correlation of the structure and the luminescence properties of Eu~(3+)-doped Gd_2O_3 oxide between fiber single crystal and the nano-size powders [J]. Journal of Crystal Growth, 2004, 265 (3-4): 459-465
    [29] Pramod K. Sharma, M. H. Jilavi, R. Nass and H. Schmidt. Tailoring the particle size from μm→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria[J]. J. Lumin., 1999, 82 (3): 187-193
    [30] Qiang Li, Lian Gao and Dongsheng Yan. EFFECTS OF GRAIN SIZE ON WAVELENGTH OF Y_2O_3:Eu~(3+) EMISSION SPECTRA[J]. Nanostructured Materials, 1995, 8(7): 825-831
    [31] R. S. Meltzer, S. P. Feofilov, B. Tissue and H. B. Yuan. Dependence of fluorescence lifetimes of Y_2O_3:Eu~(3+) nanoparticles on the surrounding medium[J]. Phys. Rev. B 1999, 60(20): R14012-14015
    [32] J. C. Boyer, F. Vetrone, J. A. Capobianco,, A. Speghini, and M. Bettinelli. Variation of Fluorescence Lifetimes and Judd-Ofelt Parameters between Eu~(3+) Doped Bulk and Nanoerystalline Cubic Lu_2O_3[J]. J. Phys. Chem. B., 2004; 108(52): 20137-20143
    [33] X. Y. Chen, H. Z. Zhuang, and G. K. Liu, S. Li and R. S. Niedbala. Confinement on energy transfer between luminescent centers in nanocrystals[J]. J. Appl. Phys., 2003, 94 (9): 5559-5565
    [34] 李丹,吕少哲,张继森,刘俊业,王海宇,孙聆东,黄世华.Eu~(3+):Y~2O_3纳米微粒的尺寸效应和表面态效应的研究[J].发光学报,2000,21(2):134-136
    [35] 李艳红,洪广言.溶胶—凝胶法合成Gd_2O_3:Eu纳米晶及荧光性质的研究,长春理工大学学报[J].2004,27(4):4-6
    [36] Chang Hee Lee, Kyung Youl Jung, Joong Gill Choi, Yun Chan Kang. Nano-sizedY_2O_3:Eu phosphor particles prepared by spray pyrolysis[J]. Mater. Sci. Eng. B, 2005, 116(1): 59-63
    [37] Chuan He, Yongfeng Guan, Lianzeng Yao, Weili Cai, Xiaoguang Li, Zhen Yao. Synthesis and photoluminescence of nano-Y_2O_3:Eu~(3+) phosphors[J]. Mater. Res. Bull., 2003, 38(6): 973-979
    [38] 谢平波,张慰萍,尹民.纳米Ln_2O_3:Eu(Ln=Gd,Y)荧光粉的燃烧法合成及其光致发光性质[J].无机材料学报,1998,13(1):53-58
    [39] Xia Li, Hong Liu, Jiyang Wang, Hongmei Cui, Shunliang Yang and I.R. Boughton. Solvothermal synthesis and luminescent properties of YAG:Tb nano-sized phosphors[J]. J. Phys. Chem. Solids, 2005, 66 (1) 201-205
    [40] 徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004:330
    [41] Weiping Zhang, Pingbo Xie, Changkui Duan, Kuo Yan, Min Yin, Liren Lou, Shangda Xia and Jean-Claude Krupa. Preparation and size effect on concentration quenching of nanocrystalline Y_2SiO_5:Eu[J]. Chem. Phys. Lett. 1998, 292(1-2): 133-136
    [42] R.N. Bhargava. "Quantum-confined atoms": novel luminescent centers for future Ⅱ-Ⅵ devices[J]. J. Crystal Growth, 2000, 214-215(1): 926-930
    [43] 张吉林,洪广言.稀土纳米发光材料研究进展[J].发光学报,2005,26(3):285-293
    [44] 陈晓波,张光寅,宋增福.稀土化合物材料上转换发光与激光的研关与进展[J].光谱学与光谱分析,1995,15(3):1-6
    [45] N. Bloembergen, Solid State Infrared Quantum Counters[J]. Phys. Rev. Lett. 1959, 2(1-3): 84-85
    [46] F. E. Auzel. Material and device using double-pumped phosphors with energy transfer Proc. IEEE[J]. 1973, 61(6): 758-760
    [47] L. F. Johnson, H. J. Guggertheim. Infrared-pumped Visible Laser[J]. Appl. Phys. Lett., 1971, 19(2): 44-47
    [48] J. S. Chivian, W. E. Case, and D. D. Eden. The photon avalanche: A new phenomenon in Pr~(3+)-based infrared quantum counters[J]. Appl. Phys. Lett., 1979, 35(2): 124-125
    [49] Hanno Scheife, Gunter Huber, Ernst Heumann, Sebastian Bar, and Eugen Osiac. Advances in up-conversion lasers based on Er~(3+) and Pr~(3+)[J]., Opt. Mater. 2004, 26: 365-374
    [50] Philipp Egger, Jurg Hulliger. Optical materials for short wavelength generation[J]. Coordination Chemistry Reviews, 1999, 183: 101-115
    [51] F. Auzel. Upconversion and Anti-Stokes Processes with f and d Ions in Solids[J]. Chem. Rev. 2004, 104: 139-173
    [52] F. Heine, E. Heumann, T. Danger, T. Schweizer, G. Huber, and BTH Chai. Green upconversion continuous wave Er~(3+):LiYF_4 Laser at RoomTemperature[J]. Appl. Phys. Lett., 1994. 63(4): 383-384
    [53] Grubb S.G., Bennett K. W., Cannon R. S. and Humer W.F., CW room temperature blue Upeonversion Fiber Laser[J]. Electron. Lett., 1992, 28: 1243-1244
    [54] Ernst Heumann, Sebastian Bar, Katja Rademaker, Gunter Huber, Stuart Butterworth, Andreas Diening, and Wolf Seelert, Semiconductor-laser-pumped high-power upconversion laser[J]. Appl. Phys. Lett., 2006, 88(2): 061108-1-3
    [55] E. D'owning, L. Hesselink, J. Ralston, and R. Macfarlane[J]. A three-color solid-state three dimensional[J]. Science, 1996, 273, 1185-1189
    [56] 徐时清,马红萍,张在宣,沈为民,姜中宏.三维立体显示用稀土掺杂氧卤碲酸盐玻璃[J].稀有金属材料与工程,2005,34(7):1173-1176
    [57] van de Rijke, H. Zijlmans, S. Li, T. Vail, A.K. Rap, R. S. Niedbala. and H. J. Tanke. Up-converting phosphor reporters for nucleic acid microaarrays[J]. Nat. Biotechnol., 2001, 19(3): 273-276
    [58] Corstjens P., Zuiderwijk M., Brink A., Li S., Feindt H., Niedbala R.S., and Tanke H. Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: A rapid, sensitive DNA test to identify human papillomavirus type 16 inflection [J]. Clin. Chem., 2001. 47(11): 1885-1893
    [59] Harnpl J., Hall M., Mufti. N. A., Yao, Y. M., MacQueen D. B.,. Wright W. H. and Cooper D. E. Upconverting phosphor, reporters in immunochromatographic assays[J]. Analytical Biochem., 2001, 288(2): 176-187
    [60] 刘政威,佘仲明.能量上转换功能材料及其制作的防伪标记材料[P].中国专利:ZL00113404.3,2004-2-11
    [61] 王君,赵刚,张朝红,张向东,张冠,温福宇,潘志军,张鹏.转光剂掺杂新型纳米TiO_2催化剂的制备及利用可见光降解反应艳蓝KN-R染料的研究[J].环境科学学报,2006,23(3):426-432
    [62] 王君,赵刚,张朝红,张向东,张冠,羌岳峰,妈腾,李莹,张鹏.稀土上转光剂掺杂纳米TiO_2催化可见光降解甲基紫[J].染料与染色,2006,23(3):40-44
    [63] Siguo Xiao, Xiaoliang Yang, Zhengwei Liu and X. H. Yan. Strong red up-conversion in Er~(3+) doped zinc oxide powder prepared by fluoride salt decomposition method[J]. Opt. Mater., 2006, 28: 285-288
    [64] H.X. Zhang, C.H. Kam, Y. Zhou, X.Q. Han, S. Buddhudu, Y.L. Lam. Visible up-conversion luminescence in Er~(3+):BaTiO_3 nanocrystals[J]. Opt. Mater., 2000, 15: 47-50
    [65] Daisuke Matsuura. Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y_2O_3 nanocrystals[J]. Phys. Lett., 2002, 81 (24): 4526-4525
    [66] Amitava Patra, Christopher S. Friend, Rakesh Kapoor, and Paras N. Prasad. Effect of crystal nature on upconversion luminescence in Er~(3+):ZrO_2 nanocrystals[J]. Appl. Phys. Lett., 2003, 83(2): 283-286
    [67] J. A. Capobianco, F. Vetrone, J.C. Boyer, A. Speghini, M. Bettinelli. Visible upconversion of Er~(3+) doped nanocrystalline and bulk Lu_2O_3[J]. Opt. Mater. 2002, 259-268
    [68] Hai Guo, Ning Dong, Min Yin, Weiping Zhang, Liren Lou, and Shangda Xia. Visible Upconversion in Rare Earth Ion-Doped Gd_2O_3 Nanocrystals[J]. J. Phys. Chem. B., 2004, 108(50): 19205-19209
    [69] Ana Maria Pires, Osvaldo Antonio Serra, Marian Rosaly Davolos. Yttrium oxysulfide nanosized spherical particles doped with Yb and Er or Yb and Tm: efficient materials for up-converting phosphor technology field[J]. J. of Alloys and Compds, 2004, 374: 181-184
    [70] J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, M. Zambelli, M. Bettinelli. Investigation of the upconversion processes irmanocrystalline Gd_3Ga_5O_(12):Ho~(3+)[J]. J. Lumin. 106 (2004) 263-268
    [71] John A. Capobianco, Fiorenzo Vetrone, J. Christopher Boyer, Adolfo Speghini and Marco Bettinelli. Ehancement of Red Emission (~4F_(9/2)→~4I_(15/2)) via Upconversion in Bulk and Nanocrystalline Cubic Y_2O_3:Er~(3+)[J]. J. Phys. Chem. B 2002, 106: 1181-1187
    [72] L.A. Diaz-Torres, E. De la Rosa, P. Salas, H. Desirena. Enhanced cooperative absorption and upconversion in Yb~(3+) doped YAG nanophosphors[J]. Opt. Mater. 2005, 27 (7): 1305-1310
    [73] M. Clara Goncalves, Lufs F. Santos, Rui M. Almeida. Rare-earth-doped transparent glass ceramics[J]. C. R. Chimie, 2002, 5: 845-854
    [74] 张军杰,段忠超,何冬兵,戴世勋,胡丽丽.频率上转换掺稀土氧氟纳米微晶玻璃的研究进展[J].激光与光电子学进展,2005,42(6):2-7
    [75] Wang Y., Ohwaki J. New transparent vitroceramics codoped with Er~(3+) and Yb~(3+) for eficient frequency upconversion[J]. Appl. Phys. Lett. 1993, 63: 3268-3271
    [76] Y. KAWAMOTO, R. KANNO, J. QIU. Upconversion luminescence of Er~(3+) in transparent SiO_2-PbF_2-ErF_3 glass ceramics[J]. J. Mater. Sci., 1998, 33: 63-67
    [77] Setsuhisa Tanabe, Hideaki Hayashi, Teiichi Hanada, Noriaki Onodera. Fluorescence properties of Er~(3+) ions in glass ceramics containing LaF_3 nanocrystals[J]. Opt. Mater., 2002, 19: 343-349
    [76] Xvsheng Qiao, Xianping Fan, Jin Wang, Minquan Wang. Luminescence behavior of Er~(3+) ions in glass-ceramics containing CaF_2 nanocrystals[J]. J. Non-Cryst. Solids., 2005, 351: 357-363
    [77] Xianping Fan, Jin Wang, Xvsheng Qiao, Minquan Wang, Jean-Luc Adam, and Xianghua Zhang. Preparation Process and Upconversion Luminescence of Er~(3+)-Doped Glass Ceramics Containing Ba_2LaF_7 Nanocrystals[J]. J. Phys. Chem. B 2006, 110: 5950-5954
    [78] Daqin Chen, Yuansheng Wang, Yunlong Yu, En Ma, Lihua Zhou. Microstructure and luminescence of transparent glass ceramic containing Er~(3+):BaF_2 nano-crystals[J]. J. Solid State Chem., 2006, 179, 532-537
    [79] 黄世华.离子中心的发光动力学[M].北京:科学出版社,2002:5
    [80] Alexander A. Kaminskii, Laser Crystals[M]. Sringer-Verlag Berlin Heidelberg New York, 1981: 10
    [81] 中国科学院吉林物理所、中国科学技术大学《固体发光》编写组.固体发光[M].长春:内部出版,1976:376
    [82] 余宪恩.实用发光材料与光致发光机理[M].北京:中国轻工业出版社,1997:97-142
    [83] B. R. Judd. Optical Absorption Intensities of Rare-Earth Ions[J]. Phys. Rev. 1962(127): 750-761
    [84] G. S. Ofelt. Intensities of Crystal Spectra of Rare-Earth Ions[J]. J. Chem. Phys. 1962(37): 511-520
    [85] C. K. Jorgensen and B.R. Judd. Hypersensitive pseudo-quadrupole transitions in lanthanides[J]. Mol. Phys. 1964, 8: 281-290
    [86] E. WOLF. PROGRESS IN OPTICS(VOLUEXIV)[M]. ELSEVIER NORTH-HOLLAND, NEW YORK, 1964: 119
    [87] L. A. Riseberg and H. W. Moos. Multiphonon Orbit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals[J]. Phys. Rev. 1968, 174: 429-438
    [88] L. A. Riseberg, W. B. Gandrud, and H. W. Moos. Multiphonon Relaxation of Near-Infrared Excited States of LaCl_3:Dy~(3+)[J]. Phys. Rev., 1967, 159: 262-266
    [89] Dexter D. L., A Theory of Sensitized Luminescence in Solids[J]. J Chem Phys, 1953, 21(5): 836-850
    [90] 黄世华.离子中心的发光动力学[M].北京:科学出版社,2002:55
    [91] 黄世华.离子中心的发光动力学[M].北京:科学出版社,2002:60
    [92] Toru Miyakawa and D. L. Dexter. Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids[J]. Phys. Rev. B, 1970, 1: 2961-2969
    [93] 章健,王士维,安丽琼,刘敏,陈立东.980 nm LD激发下Yb~(3+),Er~(3+):Y_2O_3纳米晶粉体的上转换发光[J].发光学报,2005,26(5):798-793
    [94] Riseberg L A. The relevance of nonradiative transitions to solid state lasers, in NATO Advanced Study Institute Series, Seties B: Physics(Vol.62), Radiationless Processes[M]. Plenum Press, New York, 1980: 369-407
    [95] Silver J, Martinez-Rubio M I, Ireland T G, et al. The effect of particle morphology and crystallite size on the upeonversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors[J]. Phys. Chem. B, 2001, 105: 948-953
    [96] Siguo Xiao, Xiaoliang Yang, X.H. Yan. Zhengwei Liu. Violet up-converted emission in Er~(3+):Y_2O_3 nanocrystals[J]. Phys. Lett. A, 2005(343): 90-94
    [97] Carlton L. Pope, B. R. Reddy, S. K. Nash-Stevenson. Efficient violet upconversion singal from a fluoride fiber doped with eribium[J]. Opt. Lett., 1997, 22(5): 295-297
    [98] 郝艳霞,扬绪杰,陆路德,汪信.硬脂酸法制备纳米ZrO2[J].材料导报,2002,16(1):69-72
    [99] Xuesheng Chen, Timothy Nguyen, Qui Luu and B. Di Bartolo, Concentration dependence of visible up-conversion luminescence in the laser crystal Gd_3Ga_5O_(12) doped with erbium[J]. J. Lumin., 85(4): 295-299
    [100] Xuelu Zou, Hisayoshi Toratani, Dynamics and mechanisms of upconversion proeesse in Yb~(3+) sensitized Tm~(3+) and Ho~(3+)-doped fluorzircoaluminate glasses[J]. J. Non-Crst. Solids., 1995, 181 (2): 87-99
    [101] J. Y. Allain, M. Monerie, H. Poignant. Room temperature CW tuunable green up-conversion holmium fibre laser[J]. Electron. Lett., 1990, 26(4): 261-263
    [102] Jianren Lu, Ken-ichi Ueda, Hideki Yagi, Takagimi Yanagitani, Yasuhiro Akiyama and Alexander A. Kaminskii. Neodymium doped yttrium aluminum garnet (Y_3Al_5O_(12)) nanocrystalline ceramics—a new generation of solid state laser and optical materials[J]. J Alloys and Compd. [J]. 341(1-2): 220-225
    [103] 王小坤,曾智江,朱三根,龚海梅.激光陶瓷的研究进展[J].中国陶瓷工业,2006,13(2):42-46
    [104] J. Kong, D. Y. Tang, B. Zhao, et al. 9.2 W diode-end-pumped Yb:Y_2O_3 ceramic laser[J]. App. Phys. Lett. 2005, 86: 16116-1-3
    [105] 邱关明,耿秀娟,陈永杰等.纳米稀土发光材料的光学特性及软化学制备[J].中国稀土学报[J].2003,21(2):109-113
    [106] 于锡娟,宋慧宇,苏庆德,谢平波.纳米CeO_2:Er荧光粉的光声光谱和荧光光谱研究[J].中国稀土学报[J].2003,21(1):93-97
    [107] T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno T. Isobe and M. Senna. Relationship between optical properties and crystallinity of nanometerY_2O_3:Eu phosphor[J]. App. Phys. Lett. 2000, 76(12): 1549-1551
    [108] Zeming Qi, Chaoshu Shi, Weiwei Zhang Weiping Zhang and Tiandou Hu, Local structure and luminescence of nanocrystalline Y_2O_3:Eu[J]. App. Phys. Lett. 2000, 81(15): 2857-259
    [109] Gino Tessari, Marco Bettinelli), Adolfo Speghini, David AjO, Giorgio Pozza, Laura E. Depero, Brigida Allieri, Luigi Sangaletti. Synthesis and optical properties of nanosized powders: lanthanide-doped Y_2O_3[J]. Appl. Sur. Sci. 1999, 144-145: 686-689
    [110] Stefano Polizzi, Stefania Bucella, Adolfo Speghini, Fiorenzo Vetrone, Rafik Naccache, John C. Boyer, and John A. Capobianco. Nanostructured Lanthanide-Doped Lu_2O_3 Obtained by Propellant Synthesis[J]. Chem. Mater. 2004, 16: 1330-1335
    [111] Boyer J. C., Vetrone F. Capobianco, J. A., Speghini, A., Bettinelli M. Variation of Fluorescence Lifetimes and Judd-Ofelt Parameters between Eu~(3+) Doped Bulk and Nanocrystalline Cubic Lu_2O_3 [J]. J. Phys. Chem. B., 2004: 108(52): 20137-20143
    [112] 罗遵度,黄艺东.固体激光材料光谱物理学[M].福州:福建科学技术出版社,2003:133-134
    [113] Schuumams M F H, Van Dijk J M F., On radiative and non-radiative decay times in the weak coupling limit[J]. Physica B, 1984, 123: 131-155
    [114] M. D. Shinn, W.A. Sibley, M.G. Drexhage and R.N. Brown. Optical transitions of Er~(3+) ions in fluorozirconate glass[J]. Phys. Rev. B, 1983, 27(11): 6635-6648
    [115] M. J. Weber, Probabilities for Radiative and Nonradiative Decay of :Er~(3+) in LaF_3[J]. Phys. Rev., 1967, 157(2): 262-272,
    [116] P. Kisliuk, W. F. Krupke, J. B. Gruber, Spectrum of Er~(3+) in single crystals of Y_2O_3[J]. J. Chem. Phys., 1964, 40(12): 3606-3610
    [117] 张思远,毕宪章.稀土光谱理论[M].长春:吉林科技出版社,1991:187
    [118] A Tamura, K Higeta and T Ichinokawa, Lattice vibrations and specific heat of a small particle[J]. J. Phys. C: Solid State Phys., 1982, 15: 4975-4991
    [119] J. A. Capobianco, F. Vetrone, T. D'Alesio, G. Tessari, A. Speghini and M. Bettinelli, Optical Spectroscopy of Nanocrystalline Cubic Y_2O_3:Er~(3+) Obtained by Combustion Synthesis[J]. Phys. Chem. Chem. Phys., 2000, 2: 3203-3207
    [120] R. F. Bartholomew, B.L. Butler, H. L. Hoover, C. K. Wu, Infrared Spectra of Water containing Glass[J]. J. Am. Ceram. Soc., 1980, 63: 481-485
    [121] M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel and M. P. Hehlen. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev. B, 2000, 61: 3337-3346
    [122] J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Gudel, Anomalous power dependence of sensitized upconversion luminescence[J]. Phys. Rev. B, 2005, 71: 125123-1-9
    [123] Hongshang Peng, Hongwei Song, Baojiu Chen, Jiwei Wang, Shaozhe Lu, Xianggui Kong, and Jiahua Zhang. Temperature dependence of luminescent spectra and dynamicsin nanocrystalline Y_2O_3:Eu~(3+)[J]. J. Appl. Phys., 2003, 118(7): 3277-3282
    [124] 彭洪尚,宋宏伟,陈宝玖,王绩伟,吕少哲,孔祥贵,李殿超.变温下Y_2O_3:Eu~(3+)纳米晶的荧光光谱和动力学过程[J].物理学报,2002,51(12):2875-2880
    [125] J. M. F. Van Dijk, and M. F. H. Schuurmans, On the nonradiative and radative decay and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions[J]. J. Chem. Phys., 1983, 78(9): 5317-5323
    [126] Peter A. Tanner and Ka Leung Wong. Synthesis and Spectroscopy of Lanthanide Ion-doped Y_2O_3[J]. J. Phys. Chem. B 2004, 108: 136-142
    [127] Jianbei Qiu, Yoji Kawamoto, Junjie Zhang. Highly efficient green up-conversion luminescence of Nd~(3+)-Yb~(3+)-Ho~(3+)codopcd fluorite-type nanocrystals in transparent glass ceramics[J]. J. Appl. Phys., 2002, 92(9): 5163-5168
    [128] Xiao Zhang, Xingrcn Liu, Jean Pierre Jouart, Gerard Mary. Red laser-induced upconversion mechanisms in Ho~(3+) doped LaF_3[J]. J. Lumin. 1998, 78: 289-293
    [129] D. J. Ehrich, P. F. Moulton, R. M. Dsgood. Optically pumped Ce: LaF_3 laser at 286nm. Opt. Lett. [J]. 1980, 5(8): 339-341
    [130] S. Kuck. Laser-related spectroscopy of ion doped crystals for tunable solid-state lasers[J]. Appl. Phys. B, 2001, 72: 515-562
    [131] M. J. Weber. Selective Excitation and Decay of Er~(3+) Fluorescence in LaF_3[J]. Phys. Rev. 1967, 156: 231-241
    [132] D.C. Yeh, W.A. Sibley, M. Suscavage, and M.G. Drexhage[J]. J. Appl. Phys. 1987, 62(1): 266-275
    [133] R. Reisfeld, G. Katz, C. Jacoboni, R. de Pape, M.G. Drexhage, R.N. Brown, and C.K. Jorgensen. Optical transition probabilities of Er~(3+) in fluoride glasses[J]. J. Solid State Chem., 1982, 41: 253-261
    [134] Edward D. Reed, Jr. and H. Warren Moos. Multiphonon, Relaxation of Excited States of Rare-Earth Ions in YVO_4, YAsO_4, and YPO_4[J]. Phys. Rev. B, 1973, 8: 980-987
    [135] X. B. Chen, C. J. He, W. M. Du, Z. F. Song, M. X. Li. Dynamic up-conversion population processes of erbium-doped pentaphosphate crystal[J]. J. Appl. Phys., 2002, 92(7): 3425-3435
    [136] E. Zych, M. Karbowiak, K. Domagala, S. Hubert. Analysis of Eu emission from different sites in Lu_2O_3[J]. J. Alloys. Comp., 2002, 341(1-2): 381-384
    [137] Allan Zalkin, D. H. Templeton, The Crystal Structures of YF3 and Related Compounds, J. Am. Chem. Soc.[J]. 1953; 75(10): 2453-2458.
    [138] O. Guillot-Noel, B. Bellamy, B. Viana and D. Gourier. Correlation between rare-earth oscillator strengths and rare-earth-valence-band interactions in neodymium-doped YMO_4(M=V, P, As)., Y_3A_(15)O_(12), and LiYF_4 matrices[J]. Phys. Rev. B, 1999, 60(3): 1668-1677
    [139] Fiorenzo Vetrone, J. Christopher Boyer, John A. Capobianco, Adolfo Speghini and Marco Bettinelli. NIR to Visible Upconversion in Nanocrystalline and Bulk Lu_2O_3:Er~(3+)[J]. J. Phys. Chem. B 2002, 106(22), 5622-5628
    [140] Shiyu Shen, James R. Durig. On the vibrational spectra and structural parameters of some XN_3molecules (X=H, F, Cl, Br) [J]. J. Mol. Struct. 2003, 661-662: 49-64
    [141] M.L. Hair. Hydroxyl Groups on Silica Surface[J]. J. Non-Cryst. Solids, 1975, 19: 299-309
    [142] 苏静,张庆礼,谷长江,孙敦陆,邵淑芳,殷绍唐.共沉淀法YAG、Nd:YAG纳米粉体的制备、结构与光谱性能研究[J].功能材料,2005,36(5):717-722
    [143] Q. Y. Zhang, T. Li, Z. H. Jiang hina, X. H. Ji and S. Buddhudu. 980 nm laser-diode-excited intense blue upconversionin Tm~(3+)/Yb~(3+)-codoped gailate-bismuth-lead glasses[J]. Appl. Phys. Lett., 2005, 87: 171911-1-3
    [144] Guanshi Qin, Weiping Qin, Changfeng Wu, Shihua Huang, Dan Zhao, Jisen Zhang, Shaozhe Lu. Infrared-to-ultraviolet up-conversion luminescence from AlF_3: 0.2%Tm~(3+), 10%Yb~(3+) particles prepared by pulsed laser ablation[J]. Solid State Commun., 2003, 125: 377-379
    [145] Meisong Liao, Shunguang Li, Hongtao Sun, Yongzheng Fang, Lili Hu, Junjie Zhang. Upconversion properties of Tm~(3+)/Yb~(3+) codoped fluorophosphate glasses with low phonon density of states[J]. Mater. Lett., 2006, 60: 1783-1785
    [146] Xiaojiang Pei, Yanbing Hou, Suling Zhao, Zheng Xu, Feng Teng. Frequency upconversion of Tm~(3+) and Yb~(3+) codoped YLiF_4 synthesized by hydrothermal method[J]. Mater. Chem. Phys., 2005, 90: 270-274
    [147] B. Jacquier, C. Linare's, R. Mahiou, J.L. Adam, E. De'noue and J. Lueas. Efficient blue upconversion in Tm~(3+) and Pr~(3+) doped BIGaZYbTZr glasses J. Lumin.[J]. 1994, 60-61: 175-178
    [148] T. Miyakawa and D. L. Dexter, Cooperative and stepwise excitation of luminescence: Trivalent rare earth ions in Yb~(3+)-sensitized crystals[J]. Phys. Rev. B, 1970, 1: 70-80
    [149] F. Auzel. Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions[J]. Phys. Rev. B 1976, 13: 2809-2817
    [150] Amitava Patra, Sujata Saha, Marcio A.R.C. Alencar, Nikifor Rakov b, Glauco S. Maciel. Blue upconversion emission of Tm~(3+)-Yb~(3+) in ZrO_2 nanocrystals: Role of Yb~(3+) ions[J]. Chem. Phys. Lett., 2005, 407: 477-481
    [151] Fabiano Pandozzi, Fiorenzo Vetrone, John-Christopher Boyer, Rafik Naccache, John A. Capobianco, Adolfo Speghini, and Marco Bettinelli, A Spectroscopic Analysis of Blue and Ultraviolet Upconverted Emissions from Gd_aGa_5O_(12):Tm~(3+), Yb~(3+) Nanocrystals[J]. J. Phys. Chem. B, 2005, 109: 17400-17405
    [152] Y. Guyot, R. Moncorge, L. D. Merkle, A. Pinto, B. Mclntosh and H. Verdun. Luminescence properties of Y_2O_3 single crystals doped with Pr~(3+) or Tm~(3+) and codoped with Yb~(3+), Tb~(3+) or Ho~(3+) ions[J]. Opt. Mater., 1996, 5: 127-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700