基于太阳能电池增效的红光转换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机和环境污染形势日趋严峻,太阳能以其清洁、无污染、取之不尽、用之不竭的特点,已经成为人们关注的焦点。因此,将太阳光直接转换成电能的太阳能电池成为人们研究的重要方向。太阳能电池转光剂能将太阳能电池所不能利用的太阳光转换到太阳能电池能够响应波段,从而增加电池对太阳光的利用,实现电池光伏增效。由此,本文通过燃烧法合成了能够将紫外至蓝光区的光转换成红光的CaAl_(12)O_(19):Mn~(4+),Ge~(4+)红色转光材料;采用硝酸盐分解法制备了不但能够将紫外至蓝光区的光转换成红光,而且可以将绿光区的光转换成红光的CaAl_(12)O_(19):Mn~(4+),Cr~(3+)红色转光材料;采用化学沉淀法制备出能够将蓝光,绿光,以及红外光转换成红光的LiYF_4:Er~(3+),Ho~(3+)协同转光材料。
     首先,鉴于大多数太阳能电池对太阳中强度最大的蓝光以及能量最高的紫外光、紫光吸收利用效率低,我们选用能够吸收紫外至蓝光区段的转光材料CaAl_(12)O_(19):Mn~(4+)为基质,实现其将紫外至蓝光区段光转换成发射峰值在657nm处红光,从而满足大多数太阳能电池的利用要求。为了提高了CaAl_(12)O_(19):Mn~(4+)转光材料的红光发射效率,我们采用掺杂Ge~(4+)离子,后退火处理等手段,使发光效率提高了81%。我们还优化了Ge~(4+)离子的掺杂量以及退火温度等参数,并对其发光机理进行深入的分析。
     在此基础上,我们还尝试将绿色转光列入研究范围内,即在CaAl_(12)O_(19):Mn~(4+)中掺入能够吸收绿光,并将绿光转换成红光的Cr~(3+)离子,进一步扩展转光频谱范围。我们还优化了Mn~(4+)离子与Cr~(3+)离子的掺杂浓度,并讨论了两种发光中心之间的关系及其对发光的影响。
     红外光是太阳光中比重最大的部分,高达52%以上,而太阳能电池在此区域只能利用很少的部分。利用上转换材料可实现太阳能电池对此区域光子的利用。然而,上转换效率极低,致使转光效果不明显,达不到太阳能电池增效目的。为此,我们制备一种新型的协同转光材料LiYF_4:Er~(3+),Ho~(3+),不但可以通过斯托克斯位移将蓝绿光转换为太阳能可利用的红光,还能实现红外光的上转换,使红外光转换成太阳能电池可利用的红光,更重要的是,在高低频率光的相互作用下,两个转光过程发生的协同作用,实现其转换效率的非线性叠加。
With the emergence of energy crisis and environmental pollution,solar energy has received considerable attention because it is a green, safe and inexhaustible energy. Solar cells will be widely used in many fields. Photoluminescent materials could covert the sunlight into the responding region of solar cell. Those materials could change the current situation of low efficiency of solar cells, increasing the ulitility of sunlight. In this paper, CaAl_(12)O_(19):Mn~(4+),Ge~(4+) which can convert ultraviolet light (UV), violet light and blue light to red light have been prepared by a combustion method. CaAl_(12)O_(19):Mn~(4+),Cr~(3+) which could convert ultraviolet light (UV), violet light, blue light and green light to red light have been prepared by solid-state reaction method accompanying thermal decomposition of nitrate assisted with wet chemical mixing route. LiYF4:Er~(3+),Ho~(3+), a new kind cooperated down and up-conversion material, which can convert blue light, green light and infrared light to red light, have been prepared by a method of co-precipitation.
     Since most of the solar cells couldn’t absorb the ultraviolet, violet and blue light efficiently, we choose CaAl_(12)O_(19): Mn~(4+) phosphor to convert the light of high energy into 657nm red emission. With the introduction of Ge~(4+) and the annealing treatment, the red emission intensity in CaAl_(12)O_(19):Mn~(4+) phosphor increases by 81% under 330 nm UVA excitation. The concentration of Ge~(4+) and annealing temperature has been optimized in our experiment. And the luminescence mechanism has been discussed.
     CaAl_(12)O_(19):Mn~(4+),Cr~(3+) which can not only convert ultraviolet violet and blue light to red light, but also convert green light to red light, has been investigated. The concentration of Mn~(4+) and Cr~(3+) has optimized in our experiment. And the luminescence mechanism has been also discussed.
     52% sunlight is in the infrared region. Only a little of infrared light could be absorbed by most of solar cells. At present,upconversion materials can convert the infrared light to the red emission. However, the enhancement of efficiency of electroluminescent is not obvious because of low efficiency of up-conversion. Hence, LiYF4:Er~(3+),Ho~(3+), a new kind material cooperated down and up conversion has been prepared. This material not only converts blue light and green light to red light by stokes shift, but also converts infrared light to red light by up-conversion. What’s more, the efficiency of cooperated down and up-conversion is larger than the total of stokes shift and up-conversion, due to the nolinear superposition.
引文
[1] A. E. Becquerel, C. R. Hebd. Séanc. Acad. Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques [J]. Sci., 1839, 9:145-149; A. E. Becquerel, C. R. Hebd. Séanc. Acad. Mémoire sur les effetsélectriques produits sous l'influence des rayons solaires [J]. Sci., 1839, 9:561-567.
    [2] Russell S. Ohl, Little Silver, NJ. Electrical translating device utilizing silicon [P]. US Patent: 2402839, 1946.
    [3] D. M. Chapin, C. S. Fuller, G. L. Pearson. A new silicon p-n junction photocell for converting solar radiation into electrical power [J]. J. Appl. Phys., 1954, 25:676.
    [4] S. Tomi?, N. M. Harrisona, T. S. Jones. Absorption characteristics of intermediate band solar cell [J]. AIP Conf. Proc., 2010, 1199:499-500.
    [5] Joseph M. Luther, Jianbo Gao, Matthew T. Lloyd, Octavi E. Semonin, Matthew C. Beard, Arthur J. Nozik. In?uence of the bridging atom on the performance of a low-bandgap bulk heterojunction solar cell [J]. Adv. Mater., 2010, 22:367–370.
    [6] Karsten B. Krueger, Paul E. Schwenn, Ke Gui, Almantas Pivrikas ,Paul Meredith, Paul L. Burn. Morphology dependent electron transport in an n-type electron accepting small molecule for solar cell applications [J]. Appl. Phys. Lett., 2011, 98:083301.
    [7]赵玉文.太阳能电池进展[J].物理, 2004, 2:99-105.
    [8] N. B. Chaure, J. Young, A. P. Samantilleke. Electro-deposition of p-i-n CuInSe2 multi-layers for photovoltaic applications [J]. Solar Energy Materials and Solar Cells, 2004, 81:125-133.
    [9] G. Khrypunov, A. Romeo, F. Kurdesau, D. L. B?tzner, H. Zogg, A. N. Tiwari, Recent developments in evaporated CdTe solar cells [J]. Sol. Energy Mater. Sol. Cells, 2006, 90:664-677.
    [10]李愿杰,唐茜,黎兵,冯良恒,曾广根,蔡亚平,郑家贵,蔡伟,张静全,李卫,雷智,武莉莉. CdS/CdTe叠层太阳电池的制备及其性能[J].半导体学报, 2007 28(5):722-725.
    [11] T. Trupke, M. A. Green, P. Würfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light [J]. J. App. Phys., 2002, 92:4117.
    [12]辻高辉著,权荣硕,鲜于七星译.太阳能电池[M].北京,机械工业出版社, 1989年.
    [13] XIE GuiXiang, LIN JianMing, WU JiHuai, LAN Zhang, LI QingHua, XIAO YaoMing, YUE GenTian, YUE HaiFeng, HUANG MiaoLiang. Application of upconversion luminescence in dye-sensitized solar cells [J]. Chinese Sci. Bull, 2011, 56:96-101.
    [14] W. G. J. H. M. van Sarka. Enhancement of solar cell performance by employing planar spectral converters [J]. Appl. Phys. Lett., 2005,87:151117.
    [15] P. Gibart, F. Auzel, J. C. Guillaume, K. Zahraman. Below brand-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion [J]. Jpn. J. Appl. Phys., 1996, 35: 4401.
    [16] A. Shalav, B. Richards, T. Trupke, H. Güdel. Application of NaYF4:Er~(3+) up-converting phosphors for enhanced near-infrared silicon solar cell response [J]. Appl. Phys. Lett., 2005, 86: 013505.
    [17] B. S. Richards, A. Shalav. Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion [J]. IEEE Trans. Electron Devices, 2007, 54:2679.
    [18] J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, R. E. I. Schropp. Enhanced near-infrared response of a-Si:H solar cells with b-NaYF_4:Yb~(3+) (18%), Er~(3+)(2%) upconversion phosphors [J]. Sol. Energy Mater. Sol. Cells, 2010, 94:2395.
    [19] S. Fischer, J. C. Goldschmidt, P. L(?)per, G. H. Bauer, R. Brüggemann, K. Kr(?)mer, D. Biner, M. Hermle, S. W. Glunz1. Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization [J]. J. App. Phys., 2010, 108:044912.
    [20] M. Liu, Y. L. Lu, Z. B. Xie, G. M. Chow. Enhancing near-infrared solar cell response using upconverting transparentceramics [J]. Sol. Energy Mater. Sol. Cells, 2011, 95:800.
    [21] X. D. Zhang, X. Jin, D. F. Wang, S. Z. Xiong, X. H. Geng, Y. Zhao. Synthesis of NaYF_4: Yb, Er nanocrystals and its application in silicon thin film solar cells [J]. Phys. Status Solidi C, 2010, 7:1128.
    [22] X. F. Liang, X. Y. Huang, Q. Y. Zhang. Gd_2(MoO_4)_3:Er~(3+) Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response [J]. J. Fluoresc., 2009, 19:285.
    [23] J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, H. U. Güdel. Anomalous power dependence of sensitized upconversion luminescence [J]. Phys. Rev. B, 2005, 71:125123.
    [24] F. Auzel. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104:139.
    [25] D. Chemisana. Building integrated concentrating Photovoltaics: A review [J]. Renew. Sus. Energ. Rev., 2011, 15:603-611.
    [26] C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov, V. D. Rumyantsev. A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns [J]. IEEE Trans. Electron Devices, 2001, 48:840-844.
    [27] T. Markvart, L. Castaner编,梁骏吾等译.太阳能电池:材料、制备工艺及检测[M].北京,机械工业出版社, 2009年.
    [28] P. Laporta, S. Taccheo, S. Longhi, O. Svelto, C. Svelto. Erbium-ytterbium microlasers: optical properties and lasing characteristics [J]. Opt. Mater., 1999, 11:269.
    [29] R. T. Wegh, H. Donker, K. D. Oskam,A. Meijerkink. Visible quantum cutting in LiGdF_4: Eu~(3+) through downconversion [J]. Science, 1999, 289:663.
    [30] B. S. Richards, A. Shalav. Enhancing the Near-Infrared Spectral Response of Silicon Optoelectronic Devices via Up-Conversion [J]. Ieee T. Electron Dev. 2007, 54: 2679-2684
    [31] T. Trupke, M. A. Green, P. Würfel. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J. Appl. Phys., 2002, 92:1668.
    [32] A.C. Pan, C. del Canizo, E.Canovas, N.M. Santos, J.P. Leitao, A. Luque. Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots [J].Solar Energy Materials & Solar Cells, 2010, 94:1923–1926.
    [33]刘光华,孙洪志,李红英.稀土材料与应用[M].北京:化学工业出版社,2005.
    [34]欧得华,黄慧民,邓淑华.长余辉发光材料研究进展[J].稀有金属快报, 2005, 24(6): 6-13.
    [35]林元华.长余辉蓄光陶瓷的合成、性能及机理研究[D].硕士论文,北京:清华大学,2001.
    [36] Yuanhua Lin, Zilong Tang, Zhongtai Zhang. Preparation of a new long afterglow blue-emitting Sr_2MgSi_2O_7-based photoluminescent phosphor [J]. Journal of Materials Science Letters, 2001, 20(16): 1505–1506.
    [37]王晓欣,林元华,张中太. Eu, Dy共添加的Sr_2MgSi_2O_7基长余辉发光材料[J].硅酸盐学报, 2002, 30(2):216–219.
    [38]姜洪义,陈伟. Sr_2MgSi_2O_7基新型长余辉发光材料的合成与性能[J].武汉理工大学学报, 2003, 25(11): 5~7.
    [39] Xiangfu Wang, Siguo Xiao, Xiaoliang Yang, J. W. Ding. Highly efficient cooperative up-conversion of Yb~(3+) in NaYF_4 [J]. J. Mater. Sci., 2008, 43:1354–1356.
    [40] Xiangfu Wang, Siguo Xiao, Yanyan Bu, Xiaoliang Yang, J. W. Ding. Visible photon-avalanche upconversion in Ho~(3+) singly dopedβ?NaY_(1.5)Ho_(0.5)F_6 under 980 nm excitation [J]. Opt. Lett., 2008, 33:22.
    [41]苏静,张庆礼,谷长江,孙敦陆,邵淑芳,殷绍唐.共沉淀法YAG:Nd~(3+)纳米粉体的制备、结构与光谱性能研究[J].功能材料, 2005, 36:717.
    [42]张占辉,王育华,都云昆. BaMgAl10O17:Eu2+荧光粉的化学共沉淀法合成及其发光性质[J].功能材料, 2004, 5: 33.
    [43] X. Wang, Y. Bu, S. Xiao, X. Yang, J. W. Ding. Upconversion in Ho~(3+)-doped YbF3 particle prepared by coprecipitation method [J]. Appl. Phys. B., 2008, 93: 801–807.
    [44] Xiaoliang Yang, Siguo Xiao, J. W. Ding, X. H. Yan. Luminescence properties of rare earth doped YF3 and LuF3 nanoparticles [J]. J. App. Phys., 2008, 103:93101.
    [45] Siguo Xiao, J. W. Ding, and X. H. Yan. Up-conversion in Yb~(3+), Tm~(3+) co-doped lutetium fluoride particles prepared by a combustionfluorization method [J]. J. Phys. Chem. C., 2007, 111: 8161-8165.
    [46]裴晓将,侯延冰,徐征,赵谡玲,滕枫.水热法合成稀土氟化物材料YLiF_4:Er,Tm,Yb的上转换发光特性[J].光谱学与光谱分析, 2005, 25:819-823.
    [47]赵谡玲,侯延冰,裴晓将,徐征.水热法合成YLiF_4∶Er~(3+)的上转换发光[J].中国稀土学报, 2006, 24:152-157.
    [48]聂秋林,袁求理,徐铸德.水热合成CdS纳米晶体的形貌控制研究[J].物理化学学报, 2003, 19:1138-1142.
    [49]林君,苏锵.溶胶─凝胶法及其在稀土发光材料合成中的应用[J].稀土, 1994, 15:42-46.
    [50]匡文兴,范以宁,姚凯文,陈开东,陈懿.溶胶-凝胶法制备Ce-Mo复合氧化物超细粒子催化剂[J].催化学报, 1997, 18:157-159.
    [51]张俊英,张中太,唐子龙,郑子山,林元华.溶胶-凝胶法合成BaMgAl10O17粉末[J].硅酸盐学报, 2002, 30:121-124.
    [52]翟永清,刘元红,孟媛,张少阳.微波法合成红色长余辉发光材料Gd22_OS∶Eu,Mg,Ti及其发光特性[J].光谱学与光谱分析, 2007, 27:634-638.
    [53]宋春燕,刘应亮,张静娴,黄浪欢,袁定胜,容建华,石春山,雷炳富.微波法合成橙红色长余辉磷光粉Gd22_OS:Sm~(3+) [J].暨南大学学报, 2003, 05:93-94.
    [54]康明,刘军,孙蓉,尹光福,王兴明,燕文清.微波法合成红色荧光粉CaCO_3:Eu~(3+) [J].光谱学与光谱分析, 2010, 1:225-229.
    [55] Jikai Yang, Siguo Xiao, Jianwen Ding, Xiaoliang Yang, XiangfuWang. Preparation and photoluminescence properties of SrY_2O_4:Yb~(3+),Er~(3+) powders [J]. Journal of Alloys and Compounds, 2009, 474:424–427; Qiang Ren-feng, Xiao Si-guo, Yang Xiao-liang, Ding Jian-wen, Zhu Chu-qiao. Luminescence Properties of Fe~(3+) and Ce~(3+) co-dopedγ-LiAl2_O [J]. Chinese Joural of luminescence, 2009, 30:7-11.
    [56] Wei Shu, R.F. Qiang, Siguo Xiao, Xiaoliang Yang, J.W. Ding. Enhanced red emission inLiAl_5O_8:Fe~(3+) phosphor by B~(3+) doping [J]. Journal of Alloys and Compounds, 2011, 509:3886–3888.
    [57]徐叙瑢,苏勉增主编.发光学与发光材料[M].北京:化学工业出版社, 2004.
    [58]孙家跃,杜海燕.固体发光材料[M].北京:化学工业出版社, 2003.
    [59]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社, 2005.
    [60]张希艳,卢利平,柏朝晖,刘全生,杨魁胜.稀土发光材料[M].北京:国防工业出版社, 2005.
    [61]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社, 2003.
    [62] T. Murata, T. Tanoue, M. Iwasaki, K. Morinaga, T. Hase. Fluorescence properties of Mn4+ in CaAl_(12)O_(19) compounds as red-emitting phosphor for white LED [J]. J. Lumin., 2005, 114:207–212.
    [63] Y. X. Pan, G. K. Liu. Enhancement of phosphor efficiency via composition modification [J]. Opt. Lett., 2008, 33:1816-1818.
    [64] Vijay Singh, V. Natarajan , Jun-Jie Zhu. Luminescence and EPR investigations of Mn activated calcium aluminate prepared via combustion method [J]. Opt. Mater., 2007, 30:468–472.
    [65] M.G. Brik, Y. X. Pan,G. K. Liu. Spectroscopic and crystal field analysis of absorption and photoluminescence properties of red phosphor CaAl_(12)O_(19):Mn4+ modified by MgO [J]. Journal of Alloys and Compounds, 2011, 509: 1452-1456.
    [66] A. Bergstein, W. B.White. Manganese-Activated Luminescence in SrAl_(12)O_(19) and CaAl_(12)O_(19) [J]. J. Electrochem. Soc., 1971, 118:1166-1171.
    [67] M. F. H. Schuurmans, J. M. F. Van Dijk. On radiative and non-radiative decay times in the weak coupling limit [J]. Physica B., 1984, 123:131-155.
    [68] Zhaogang Nie, Jiahua Zhang, Xia Zhang, Xinguang Ren, Weihua Di, Guobin Zhang, Danhong Zhang, X.J. Wang. Spectroscopic investigation of CaAl_(12)O_(19):M~(3+) upon UV/vacuum–UV excitation: a comparison with SrAl_(12)O_(19): M~(3+) (M= Pr, Cr) [J]. J. Phys.: Condens. Matter, 2007, 19:076204.
    [69] P. Xie, S. C. Rand. Visible cooperative upconversion laser in Er:LiYF_4. Opt. Lett., 1992, 17:17.
    [70] D. Lo, V. N. Makhov, N. M. Khaidukov, J. C. Krupa, J. Y. Gesland. Upconverted VUV luminescence of Nd~(3+) and Er~(3+) doped intoLiYF_4 crystals under XeF-laser excitation [J]. Journal of Luminescence, 2004, 106:15–20.
    [71] Venkataramanan Mahalingam, Fiorenzo Vetrone, Rafik Naccache, Adolfo Speghini, John A. Capobianco. Colloidal. Tm~(3+)/Yb~(3+)-doped LiYF_4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation [J]. Adv. Mater., 2009, 21:4025–4028.
    [72]G. ?zen, B. DiBartolo. Energy transfer and thermalization in LiYF_4:Tm,Ho [J]. Appl. Phys. B, 2000, 70:189–193.
    [73]赵谡玲,侯延冰,徐征.不同波长激发下YLiF_4:Er~(3+),Tm~(3+),Yb~(3+)的发光[J].发光学报, 2006 , 27:191-195.
    [74] A. Brenier, J. Rubin, R. Moncorge, C. Pedrin. Excited-state dynamics of the Tm~(3+) ions and Tm~(3+)-Ho~(3+) energy transfers in LiYF_4 [J]. J. Phys. France, 1989, 50:1463-1482.
    [75] J. Rubin, A. Brenier, R. Moncorge, C. Pedrini. Er~(3+)-Ho~(3+) energy transfer mechanisms at roomtemperature in YLiF_4 single crystals [J]. J. Physique, 1987, 48:1761-1777.
    [76] Yunfeng Bai, Kun Yang, Yuxiao Wang, Xueru Zhang, Yinglin Song. Enhancement of the upconversion photoluminescence intensity in Li+ and Er~(3+) codoped Y2O3 nanocrystals [J]. Optics Communications, 2008, 281:2930–2932.
    [77] Jianhu Yang, Nengli Dai, Shixun Dai, Lei Wen, Lili Hu, Zhonghong Jiang. Enhancement of upconversion luminescence in Er~(3+) doped tellurite glasses due to the introduction of PbCl_2 [J]. Chemical Physics Letters, 2003, 376:671–675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700