地质聚合物原位转化NaA分子筛制备机理研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质聚合物(Geopolymer)是一种由硅氧四面体和铝氧四面体聚合而成的具有非晶态或者准晶态的铝硅酸盐无机聚合物材料。由于其特殊的三维网络结构,地质聚合物具有强度高、耐腐蚀性、耐高温、施工性能优良等优点,它可广泛应用在建筑材料、冶金、固封核废料等领域。根据文献报道发现,地质聚合物网络凝胶体中有纳米晶体,而且地质聚合物的分子结构与沸石相似,因此研究地质聚合物与沸石分子筛的关系显得非常重要。
     偏高岭土与碱激发剂反应是制备和研究地质聚合物的经典体系,然而偏高岭土成分复杂,使得地质聚合物转化分子筛的反应机理非常复杂。本研究参照偏高岭土的组成,通过溶胶-凝胶法合成了与偏高岭土结构类似的高纯度的Al2O3-nSiO2粉体(n=1,2)。用合成的粉体制备了Na2O-Al2O3-2SiO2地质聚合物材料,利用SEM、HRTEM、XRD、FTIR、MAS NMR等测试手段,对Na2O-Al2O3-2SiO2地质聚合物及其原位转化的NaA分子筛的结构进行了研究;获得水热前后地质聚合物的组成与结构变化规律,并对地质聚合物转化成NaA分子筛的机理进行了初步研究;成功制备了致密的自支撑NaA分子筛膜,并探索该分子筛膜在海水淡化方面的应用。实验主要结论如下:
     (1)采用溶胶-凝胶法,制备了Al2O3-SiO2粉体和Al2O3-2SiO2粉体,通过纳米粒度分析仪(DTS)、SEM、XRD和MAS NMR等测试手段,考察Al2O3-SiO2粉体和Al2O3-2SiO2粉体的分子结构和碱激发活性。结果表明:Al2O3-SiO2粉体和Al2O3-2SiO2粉体均为无定形的高纯高活性粉体,具有类似偏高岭土的结构和性能,可以作为研究地质聚合物反应机理和制备NaA分子筛的理想前驱体材料。
     (2)根据NaA分子筛的理论配比设计地质聚合物体系的原料组成,考察了地聚合物材料的力学性能,以抗压强度为优化目标,研究了养护温度、养护时间、不同水玻璃模数、两种不同硅源的摩尔比对地质聚合物抗压强度的影响。确定了制备碱基地质聚合物最佳条件为:水玻璃模数为1.0,模数为1.0水玻璃中的硅与Al2O3-SiO2粉体中硅的摩尔比为1.0,养护温度为60℃,养护时间为6h。
     (3)主要研究了水热釜中水热母液的NaOH溶液浓度、水热母液的体积、水热时间、水热温度、不同水玻璃模数和不同硅源的摩尔比对地质聚合物转化成(?)aA分子筛结构和强度的影响,得出了地质聚合物原位转化NaA分子筛的最佳制备工艺:水热母液的NaOH溶液浓度为0mol/L,水热母液的体积为50ml,水热时间为6h,水热温度为90℃,水玻璃模数为1.0,水玻璃中硅源与Al2O3-SiO2粉体中硅源的摩尔比为1:1。
     (4)通过对Al2O3-SiO2粉体、Na2O-Al2O3-2SiO2地质聚合物和NaA分子筛的结构分析以及硅铝比和碱浓度等研究,发现Na2O-Al2O3-2SiO2地质聚合物与NaA分子筛晶体存在一个物质传递和结构遗传的关系,提出了以Al2O3-SiO2粉体和Na2SiO3溶液为原料的双硅源体系制备Na2O-Al2O3-2SiO2地质聚合物,再由Na2O-Al2O3-2SiO2地质聚合物转化NaA分子筛的反应机理。该反应机理分为解聚过程、缩聚过程和水热晶化过程。在解聚过程,Al2O3-SiO2粉体中Al-O键和Si-O键在OH-的作用下断裂形成[Al(OH)4]-和[OSi(OH)3]-,在解聚后期,[Al(OH)4]-和[OSi(OH)3]-反应生成五配位的铝硅酸盐中间体,这些带负电的中间体围绕钠离子经过缩聚反应形成初级凝胶;在缩聚过程中,[Al(OH)4]-和[OSi(OH)3]-在初始凝胶、固液界面和气孔周围的水合钠离子的水合层聚合形成以-Si-O-Al-O-为基本结构单元的聚合物凝胶,这些聚合物凝胶进一步形成了纳米有序结构,围绕这些纳米有序结构,硅氧四面体和铝氧四面体交替排列形成无定形的三维网络凝胶体。在水热晶化过程,Na2O-Al2O3-2SiO2地质聚合物中无定形三维网络凝胶体会以纳米有序结构(NaA晶核)为成核中心迅速转化为NaA分子筛晶体。
     (5)采用地质聚合物原位转化NaA分子筛的方法,成功制备了性能良好的自支撑NaA分子筛膜,对NaA分子筛膜的微观结构和分子结构进行了分析,探讨了在海化淡化方面的应用研究。结果表明:该方法制备的NaA分子筛膜表面致密、均匀,抗压强度达到57.6MPa,对于温度25℃,质量百分数为3.5%的NaCl溶液,随着膜厚从9.4m减少到2mm,水的通量从0.42增加至4.74kg·m-2·h-1。当膜厚超过9.4mm时,Na离子的截留率超过99.5%,而水的通量为0.42kg·m-2·h-1。随着渗透温度的增加,NaA分子筛膜在NaCl溶液中的水通量增加,当渗透温度为90℃时,膜厚为9.4mm NaA膜的水通量达到13.86kg·m-2·h-1。
Geopolymer is a type of aluminosilicate inorganic polymer material consists of tetrahedral [AlO4] and [SiO4] units, which is of amorphous to semicrystalline. Geopolymer is of high strength, corrosion resistance, excellent thermostability and workability, due to its three-dimensional network structures, and is suitable for use in a wide range of areas including construction, refractory and immobilized nuclear waste applications. The literatures show that geopolymers contain some nanocrystallines, furthermore, the molecular structure of geopolymers is similar to that of zeolite. Therefore, it is very important to study the relationship between geopolymers and zeolites and the reaction mechanism of zeolites transforming from geopolymers.
     However, it is difficult to confirm the reaction mechanism of zeolites transforming from geopolymers because the chemical composition of metakaolin is very complex. High purity Al2O3-nSiO2powders (n=1,2) were synthesized by sol-gel method. The Na2O-2SiO2-Al2O3geopolymer materials were synthesized with synthetic powders. The structure of geopolymers and NaA zeolite transformed from these geopolymers were investigated by SEM、 HRTEM、XRD、FTIR and MAS NMR testing techniques. The composition and structure change rule of geopolymers and their hydrothermal products were obtained. The mechanism of NaA zeolites transformed from geopolymers was studied. The densification NaA membrane was successfully synthesized and used in desalination of seawater. The principal results are as follows:
     (1)Al2O3-SiO2powders and Al2O3-2SiO2powders were fabricated utilizing sol-gel method. Molecular structure and alkali-activated properties of these two powders were investigated by DTS、SEM、XRD and MAS NMR techniques. These results show that Al2O3-SiO2powders and Al2O3-2SiO2powders were amorphous and high reactivity powders. The properties and structure of these powders were similar to metakaolin. Al2O3-SiO2powders and Al2O3-2SiO2powders were ideal precursor materials used for the study of the reaction mechanism of geopolymerization and the preparation of NaA zeolites.
     (2)According to the theoretical proportion of NaA zeolite, the composition of raw materials of geopolymers was designed. The mechanical properties of geopolymers was studied. The optimum process parameters were determined by the compressive strength of the geopolymer products as the main criterion. The effects of curing temperature, curing time, different modulus of water glass and the molar ratios of two different Si sources on the compressive strength of geopolymers. The optimum process conditions of the preparation of geopolymers were determined as follows:the modulus of water glass was1.0; the molar ratios of the Si derived from sodium silicate(Na2O·SiO2) to the Si derived from Al2O3-SiO2powders was1:1; the curing temperature was60℃and curing time was6h.
     (3) The effects of the concentration of NaOH in hydrothermal mother liquid, the volume of hydrothermal liquid, hydrothermal time, hydrothermal temperature, different modulus of water glass and different molar ratios of Si source on the structure and strength of NaA zeolites converted from geopolymers. The optimum process conditions of the preparation of NaA zeolites derived from geopolymers are as flollows:the concentration of NaOH in hydrothermal mother liquid was0mol/L, the volume of hydrothermal mother liquid was50ml, the hydrothermal time was6h, the hydrothermal temperature was90℃, the modulus of water glass was1.0, the molar ratios of the Si derived from sodium silicate (Na2O·SiO2) to the Si derived from Al2O3-SiO2powders was1:1.
     (4) The structures of Al2O3-SiO2powders, Na2O-Al2O3-2SiO2geopolymers and NaA zeolite were analysed by HRTEM、SEM、FTIR、MAS NMR and BET techniques. Effects of the molar ratios of Si to Al and alkalinity on NaA zeolites derived from Na2O-Al2O3-2SiO2geopolymers. The relationship between Na2O-Al2O3-2SiO2geopolymers and NaA zeolites was mass transfer and genetic structure. Na2O-Al2O3-2SiO2geopolymers were synthesized by two silicon source system with Al2O3-SiO2powders and sodium silicate. Na2O-Al2O3-2SiO2geopolymers were converted into NaA zeolite after hydrothermal procedure. The reaction mechanism of NaA zeolites derived from geopolymers can be divided into depolymerization, condensation polymerization and hydrothermal crystallization processes. In depolymerization process, the Al-O and Si-O bonds derived from Al2O3-2SiO2powders were broken to form [Al(OH)4]-and [OSi(OH)3]-groups. The water glass contains a few polysilicate, except orthosilicates. In later stage of depolymerization process, pentacoordinate aluminosilicate intermidates were synthesized with [Al (OH)4]-and [OSi(OH)3]-groups, the pentacoordinate aluminosilicate intermidates formed the primary gel around Na+. In condensation polymerization process, the polycondensation of [Al(OH)4]-and [OSi(OH)3]-groups occurred to form polymer gels with the basic structure unit of-Si-O-Al-O-in the hydration layer of hydrated sodium ions which are located in initial gel, the interface between solid and liquid and pores. These gels converted into nano ordered structure. The amorphous three-dimensional network structures with tetrahedral [AlO4] and [SiO4] units generated around the nano ordered structure. In hydrothermal crystallization process, The amorphous three-dimensional network structures from Na2O-Al2O3-2SiO2geopolymers converted into NaA zeolite crystals.
     (5) Self-supporting NaA membrane was successfully synthesized by the method of NaA zeolite transformed from geopolymers. The microstructure and molecular structure of NaA membrane were analysed. It was investigated that the NaA membrane was used in desalination of seawater. These results show that the NaA membrane was densification uniformity, the compressive strength of NaA membrane was57.6MPa, in the NaCl solution with the mass percent of3.5%at the temperature of25℃,the water flux of NaA membrane increase from0.42to4.74kg·m-2·h-1with the film thichness of NaA membrane decreasing from9.4mm to2mm. The rejection rate of sodium ion was above99.5%, the water flux of NaA membrane was0.42kg·m-2·h-1, when the film thickness was9.4mm. The water flux of NaA membrane in NaCl solution increased with the decrease of pervaporation temperature. The water flux of NaA membrane with the film thickness of9.4mm, reached3.86kg·m-2·h-1at the pervaporation temperature of90℃.
引文
[1]J. Davidovits, Goepolymers:inorganic polymeric new materials [J]. Journal of Thermal Analysis,1991,37:1633-1656
    [2]J. Davidovits, Geopolymers:Man-made rock deosynthesis and the resulting development of very early high strength cement [J]. J. Materials Education,1994,16(2-3):91-139
    [3]M. A.Caldarone, F. Skalny. High-reactivity metakaolin:a new generation mineral admixture [J]. Concrete Inter.1994,6 (11):37-40
    [4]杨少明,陈秀琴.无机高分子材料及其应用[J].化学世界,1997,38(6):287-292
    [5]贾屹海.Na-粉煤灰地质聚合物制备与性能研究[D].北京:中国矿业大学,2009
    [6]Bell J L, Driemeyer P E, Kriven W M. Formation of ceramics from metakaolin-based geopolymers:Part Ⅰ—Cs-based geopolymer [J]. Journal of the American Ceramic Society,2009,92(1):1-8
    [7]Bell J L, Driemeyer P E, Kriven W M. Formation of ceramics from metakaolin-based geopolymers:Part Ⅱ—K-based geopolymer [J]. Journal of the American Ceramic Society,2009,92(3):607-615
    [8]Davidovits J. Global warming impact on the cement and aggregates industries [J]. World Resource Review,1994,6(2):263-278
    [9]Sang-Sook P, Hwa-Young K. Strength and microscopic characteristic of alkali-activated fly ash-cement [J]. Korean Journal of Chemical Engineering,2006,23(3):367-373
    [10]Fernandez-jimenez A, Garcia-Lodeiro I, Palomo A. Durability of alkali-activated fly ash cementitious materials [J]. Journal of Materials Science,2007,42:3055-3065
    [11]Hanzlicek T, Steinerova-Vondrakova M. Immobilization of toxic metals in solidified systems of siloxo-sial networks [J]. Journal of the American Ceramic Society,2006, 89(3):968-970
    [12]Zhang Y S, Sun W, Chen Q L, et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer [J]. Journal of Hazardous Materials,2007,143,206-213
    [13]Zhang J G, Provis J L, Feng D W. Geopolymers for immobilization of Cr+, Cd+ and Pb2+[J]. Journal of Hazardous Materials,2008,157:587-598
    [14]Davidovits J. Geopolymer Chemistry & Application [M]. Saint-Quentin, France: Institute geopolymer,2008
    [15]曹德光.偏高岭石基矿物键合材料合成机理与结构性能研究,华南理工大学博士论文[D].2005.
    [16]Pro vis J L, Lukey G C, Van Deventer J S J. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results [J]. Chemistry of Materials, 2005,17:3075-3085
    [17]Zhang B, Mackenzie K J D, Brown I W M. Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate [J]. Journal of Materials Science, 2009,44:4668-4676
    [18]Cui X M, He Y, Liu L P, et al. NaA zeolite synthesis from geopolymer precursor [J]. Materials Research Society Communications,2012,1(1):49-51
    [19]马鸿文,杨静,任玉峰,等.矿物聚合物材料:研究现状与发展前景[J].地学前沿,2002,9(4):397-407
    [20]代新祥,文梓云.土壤聚合物水泥[J].新型建筑材料,2001,(6):34-35
    [21]张书政,龚克成.地聚合物[J].材料科学工程学报,2003,21(3):430-436
    [22]曹德光.偏高岭石基矿物键合材料合成机理与结构性能研究[D].广州:华南理工大学,2005
    [23]曹德光,苏达根,路波,等.偏高岭土-磷酸基矿物键合材料的制备与结构表征[J].硅酸盐学报,2005,33(11):1386-1389
    [24]Perera D S, Hanna J V, Davis J, et al. Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials [J].2008,43:6562-6566
    [25]Davidovits J. Goepolymers and geopolymeric materials [J]. Journal of Thermal Analysis, 1989,35(2):429-441
    [26]Davidovits J. Chemistry of geopolymeric systems, terminology [C]. Geopolymer'99 International Confereence, France,1999
    [27]Provis J L, Duxson P, Van Deventer J S J, et al. The role of mathematical modeling and gel chemistry in advancing geopolymer technology [J]. Chemical Engineering Research and Design,2005,83(7):853-860
    [28]Xu H, Van Deventer J S J. The geopolymerisation of alumino-silicate minerals [J]. International journal of mineral processing,2000,59(3):247-266
    [29]Palomo A, Grutzeck M W, Blanco M T. Alkali-activated fly ashes:A cement for the future [J]. Cement and Concrete Research,1999,29(8):1323-1329
    [30]Roy D M. Alkali-activated cements Opportunities and challenges [J]. Cement and Concrete Research,1999,29(2):249-254
    [31]Buchwald A, Schulz M. Alkali-activated binders by use of industrial by-products [J]. Cement and Concrete Research,2005,35(5):968-973
    [32]Medri V, Fabbri S, Ruffini A, et al. SiC-based refractory paints prepared with alkali-aluminosilicate binders [J]. Journal of the European Ceramic Society,2011, 31(12):2155-2165
    [33]Vaidya S, Allouche E N. Strain sensing of carbon fiber reinforced geopolymer concrete [J]. Materials and Structures,2011,44(8):1467-1475
    [34]Latella B A, Perera D S, Escott T R, et al. Adhesion of glass to steel using geopolymer [J]. Journal of Materials Science,2006,41(4):1261-1264
    [35]Pernica D, Reis P N B, Ferreira J A M. Effect of test conditions on the bending strength of a geopolymer-reinforced composite[J]. Journal of Materials Science,2010, 45(3):744-749
    [36]Li W M, Xu J Y. Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading [J]. Materials Science and Engineering A,2009,505(1-2):178-186
    [37]Zhang Y J, Wang Y C, Xu D L, et al. Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin [J]. Materials Science and Engineering A, 2010,527(24-25):6574-6580
    [38]Natali A, Manzi S, Bignozzi M C. Novel fiber-reinforced composite materials based on sustainable geopolymer matrix [J]. Procedia Engineering,2011,21:1124-1131
    [39]Wang H L, Li H H, Yan F Y. Reduction in wear of metakaolinite-based geopolymer composite through filling of PTFE [J]. Wear,2005,258(10):1562-1566
    [40]He P G, Jia D C, Lin T S, et al. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites [J]. Ceramics International 2010,36(4),1447-1453
    [41]Bell J L, Driemeyer P E, Kriven W M. Formation of ceramics from metakaolin-based geopolymers:Part Ⅰ—Cs-based geopolymer [J]. Journal of the American Ceramic Society,2009,92(1):1-8
    [42]Bell J L, Driemeyer P E, Kriven W M. Formation of ceramics from metakaolin-based geopolymers:Part Ⅱ—K-based geopolymer [J]. Journal of the American Ceramic Society,2009,92(3):607-615
    [43]Xie N, Bell J L, Kriven W M. Fabrication of structural leucite glass-ceramics from potassium-based geopolymer precursors [J]. Journal of the American Ceramic Society, 2010,93(9):2644-2649
    [44]Xu H, Van Deventer J S J. Geopolymerization of multiple minerals [J]. Minerals Engineering,2002,15(12):1131-1139
    [45]Feng D W, Pro vis J L, Van Deventer J S J. Thermal activation of albite for the synthesis of one-part mix geopolymers [J]. Journal of the American Ceramic Society,2012, 95(2):565-572
    [46]Xu H, Van Deventer J S J. Effect of source materials on geopolymerization [J]. Industrial and Engineering Chemistry Research,2003,42(8):1698-1706
    [47]Phair J W, Van Deventer J S J. Characterization of fly-ash-based geopolymeric binders activated with sodium Aluminate [J]. Industrial and Engineering Chemistry Research, 2002,41(17):4242-4251
    [48]Van Jaarsveld J G S, Van Deventer J S J, Lukey G C. The characterization of source materials in fly ash-based geopolymers [J]. Materials Letters,2003,57(7):1272-1280
    [49]Goretta K C, Chen N, Gutierrez-Mora F, et al. Solid-particle erosion of a geopolymer containing fly ash and blast-furnace slag [J]. Wear,2004,256(7-8):714-719
    [50]Hu M Y, Zhu X M, Long F M. Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives [J]. Cment and Concrete Composites,2009 31(10):762-768
    [51]Buchwald A, Hohmann M, Posern K, et al. The suitability of thermally activated illite/smectite clay as raw materials for geopolymer binders [J]. Applied Clay Science, 2009,46(3):300-304
    [52]Detphan S, Chindaprasirt P. Preparation of fly ash and rice husk ash geopolymer [J]. Internationa] Journal of Minerals, Metallurgy and materials,2009,16(6):720-726
    [53]崔学民,邱树恒,曹德光,等.水对碱矿渣胶凝材料介电性能的影响[J].硅酸盐学报.2007,35(6):791-795
    [54]Liu L P, Cui X M, He Y, Yu J L, Study on the dielectric properties of phosphoric acid-based geopolymers [J]. Materials Science Forum,2011,663:538-541
    [55]Cui X M, Liu L P, He Y, Chen J Y, Zhou Ji, A novel aluminosilicate geopolymer materials with low dielectic loss [J]. Materials Chemisty and Physics 2011,64:1-4.
    [56]Van Jaarsveld J G J, Van Deventer J S J, Lorenzen L. The potential use of geopolymeric materials to immobilize toxic metals:part Ⅰ. theory and applications [J]. Minerals Engineering,1997,10(7):659-669
    [57]Van Jaarsveld J G J, Van Deventer J S J, Schwartzman A. The potential use of geopolymeric materials to immobilize toxic metals:part Ⅱ. material and leaching characteristics [J]. Minerals Engineering,1999,12(1):75-91
    [58]Zhang J G, Provis J L, Feng D W. Geopolymers for immobilization of Cr6+, Cd2+and Pb2+[J]. Journal of Hazardous Materials,2008,157(2-3):587-598
    [59]Zheng L, Wang C W, Wang W, et al. Immobilization of MSWI fly ash through geopolymerization:effects of water-wash [J]. Waste Management,2011,31(2):311-317
    [60]Hanzllcek T, Steinerova-Vondrakova M. Immobilization of toxic metals in solidified systems of siloxo-sial networks [J]. Journal of the American Ceramic Society,2006, 89(3):968-970
    [61]Zhang Y S, Sun W, Chen Q L, et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer [J]. Journal of Hazardous Materials,2007,143(1-2):206-213
    [62]Hanzlicek T, Steinrova M, Straka P. Radioactive metal isotopes strabilized in a geopolymer matrix:determination of a leaching extract by a radiotracer method [J]. Journal of American Ceramic Soceity,2006,89(11):3541-3543
    [63]徐南平,邢卫红,赵宜江.无机膜分离技术与应用.北京:化学工业出版社,2003.
    [64]Temuujin J, Minjigmaa A, Rickard W, et al. Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers [J]. Applied Science Clay,2009, 46(3):265-270
    [65]Zhang Z H, Yao X, Zhu H J. Potential application of geopolymers as protection coating for marne concrete:Ⅱ. Microstructure and anticorrosion mechanism [J]. Applied Clay Science,2010,49(1):7-12
    [66]Zhang Z H, Yao X, Zhu H J. Potential application of geopolymers as protection coating for marne concrete:I. Basic properties [J]. Applied Clay Science,2010,49(1):1-6
    [67]Temuujin J, Minjigmaa A, Rickard W, et al. Fly ash based geopolymer thin coating on metal substrate and its thermal evalution [J]. Applied Science Clay,2010, 180(1):748-252
    [68]Temuujin J, Rickard W, Lee M, et al. Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings [J]. Journal of Non-Crystalline solids,2011, 357(5):1399-1404
    [69]Prudhomme E, Michaud P, Joussein E, et al. In situ inorganic foams prepared from various clays at low temperature [J]. Applied Clay Science,2011,51(1-2):15-22
    [70]Okada K, Imase A, Isobe T, et al. Capillary rise properties of porous geopolymers preparaed by an extrusion method using polylactic acid fibers as the pore formers [J]. Journal of the European Ceramic Society,2011,31(4):461-467
    [71]Okada K, Ooyama A, Isobe T. Water retention properties of porous geopolymers for use in cooling applications [J]. Journal of the European Ceramic Society,2009, 29(10):1917-1923
    [72]商云帅.以高岭土为原料沸石分子筛的合成及其氮氧吸附性能研究.大连理工大学博士学位论文,2009.
    [73]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [74]陈晓燕.粉煤灰纳米沸石复合颗粒功能化设计及其污水氮磷去除初步研究[D].浙江大学硕士学位论文,2011.
    [75]曾伟.通过数据分析定向合成AlPO4-5 [D].吉林大学硕士学位论文,2005.
    [76]王有刚.拜尔法种分母液生产4A沸石工艺研究[D].西安建筑科技大学硕士学位论文,2010.
    [77]王禹.新型磷酸锌及磷酸钒晶体的合成与表征[D].吉林大学硕士学位论文,2005.
    [78]侯志扬.新型磷酸钛及磷酸锰晶体的溶剂热合成与表征[D].吉林大学硕士学位论文,2006.
    [79]石磊.Mn(Ⅱ)取代磷酸铝和磷酸锰微孔化合物的水热合成与表征[D].吉林大学博士学位论文,2005.
    [80]徐景炎.(Al)EU-1和(B、Ce)EU-1沸石的合成与表征研究[D].太原理工大学硕士学位论文,2007.
    [81]孟河.具有开放骨架结构磷酸铁单晶的合成与性能研究[D].吉林大学博士学位论文,2005.
    [82]J. B. Higgins, R. B. Lapierre, J. L. Schlenker, et al., Zeolites.,1988,8,446.
    [83]周聪.MFI型沸石分子筛薄膜的水热合成及其性质表征[D].吉林大学硕士学位论文,2008.
    [84]宋江伟.沸石分子筛的无模板合成以及多孔沸石粒子的组装与催化性能研究[D].吉林大学博士学位论文,2008.
    [85]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978.
    [86]徐如人,庞文琴,屠昆岗等.沸石分子筛的结构与合成[M].吉林:吉林大学出版社,1987.
    [87]苗倩.高岭土原料NaA分子筛及膜的制备与应用[D].大连理工大学硕士学位论文,2009.
    [88]赵修松,王清遐,李宏愿.沸石合成进展[J].化工进展,1994,(3):32-35.
    [89]陈红梅.NaY分子筛合成的研究[D].大连理工大学硕士学位论文,2007.
    [90]武行洁.L沸石的特种合成路线的探索[D].太原理工大学硕士学位论文,2009.
    [91]Davis M E. Ordered Porous materials for emerging applications[J]. Nature, 2002,417:813-821
    [92]J. B. Higgins, R. B. Lapierre, J. L. Schlenker, et al., Zeolites[M].1988
    [93]陈艳丽.沸石Beta分子筛膜的合成与表征及其性质研究[D].吉林大学博士学位论文,2009.
    [94]申少华.廉价矿物原料水热法制备沸石分子筛的形成机理与晶体生长模型研究[D].中南大学博士学位论文,2001.
    [95]周志明.高钛型高炉渣渣钛分离研究[D].重庆大学博士学位论文,2004.
    [96]付泽春.广西资源沸石水热制备Y型沸石[D].湖南科技大学硕士学位论文,2007.
    [97]梁德声.利用紫外拉曼光谱研究LTA和FAU分子筛晶化机理[D].吉林大学硕士学位论文,2008.
    [98]郭尚伟.膨润土微波辐射法合成4A沸石[D].广西大学硕士学位论文,2006.
    [99]赵秀芳.13X分子筛的工艺研究[D].中南大学硕士学位论文,2005.
    [100]杨立玲.以伊利石合成4A沸石分子筛的实验研究[D].西安科技大学硕士学位论文,2005.
    [101]Mingos D M P. Microwave syntheses of inorganic materials[J]. Adv. mater.,1993,5 (11):857-859.
    [102]张磊,王正阳,邹向宇,等.辽宁石油化工大学学报:微波水热法合成A型分子筛[J].2006,26(4):60-61.
    [103]Xu W, Dong J, Li, et al. A noval method for the preparation of zeolites ZSM-5 [J]. J. Chem. Soe. Chem.Commun.,1990:775-756.
    [104]Xu W Y, Li J Q, Li W Y, et al. Nonaqeous synthesis of ZSM-35 and ZSM-5[J]. Zeolites, 1989,9:468-473.
    [105]Davis M E, Lobo R F. Zeolite and Molecular Sieve synthesis al..Chem. Mater.,1992, 4:756-768.
    [106]马淑杰,刘孔凡,崔美珍等.A型沸石的生成机理[J].高等学校化学学报,‘1984,5(2):158-162.
    [107]徐如人,李守贵.沸石分子筛的生成机理与品体生长(V)-L型沸石晶体生长动力学[J].高等学校化学学报,1983,4(1):1-6.
    [108]施其宏,曹建湘,徐经纬.A型分子筛-催熟合成技术及其动力学研究[J].湘潭大学自然科学学报.1986,(4):44-53.
    [109]Gabelica Z, et al. Zeolites Synthesis, Structure, Technology and Application Abstract,1984:20
    [110]曹勇.STPP对环境影响的研究进展(Ⅰ)[J].日用化学工业,1997,(5):29-31.
    [111]曹勇.STPP对环境影响的研究进展(Ⅱ[J].日用化学工业,1997,(6):30-31.
    [112]胡宏杰,王立卓.世界洗涤剂无磷化的进程与展望[J].矿产保护与利用,1994,(1):35-39.
    [113]陆用海.洗衣粉中STPP代用问题浅见[J].日用化学工业,1995,(4):36-39.
    [114]吴杰,秦永宁,马智.分子筛合成工艺中原料高岭土及其焙烧特性研究[J].非金属矿,2004,27(6):25-26,29
    [115]吴杰,秦永宁,马智.由煤系高岭土合成小晶粒NaY分子筛及其应用[J].化学工业与工程,2006,23(1):18-20
    [116]韩淑芸,高金锋.4A沸石分子筛的合成,结构与性能研究[J].青岛大学学报(自然科 学版),1997,10(3):31-36
    [117]刘福生,鲍黎裕.4A沸石分子筛制备及其影响因素[J].非金属矿,2001,24(5):13-16
    [118]罗玉长,罗鹤鹏.4A沸石分子筛晶体生长过程[J].无机盐工业,1996,(2):1-4[119] Duxson P, Fernandez-Jimenez A, lukey G C, et al. Geopolymer technology:the current state of the art [J]. Journal of Mater Science,2007,42:2917-2933
    [120]Divya.Khale,Rubina.Chaudhary.Mechanism of geopolymerization and factors influencing its development:review[J]. Journal of Materials Science.2007,42:729-746.
    [121]Xu H, Van Deventer J S J. The geopolymerisation of alumino-silicate minerals [J]. International journal of mineral processing,2000,59(3):247-266
    [122]Palomo A, dela Fuente J I L. Alkali-activated cementitous materials:Alternative matrices for the immobilization of hazardous waste:Part Ⅰ, Sabilisation of boron[J]. Cement and Concrete Research,2003,33(2):281-288
    [123]Aiello R, Barrer R M, Kerr I S. In molecular sieve zeolites; Americal Society: Washington, DC,1971.
    [124]Provis J L, Duxson P, Lukey G C, et al. Statistical thermodynamic model for Si/Al ordering in amorphous aluminosilicates [J]. Chemistry of Materials,2005, 17(11):2976-2986
    [125]Zheng G J, Cui X M, Zhang W P, et al. Preparation of geopolymer precursor by sol-gel method and their characterization [J]. Journal of Materials Science,2009, 44(15):3991-3996
    [126]Cui X M, Liu L P, Zheng G J, et al. Characterization of chemosynthetic Al2O3-2SiO2 geopolymers [J]. Journal of Non-Crystalline solids,2010,356(2):72-76
    [127]郑广俭.无定形Al2O3-2SiO2粉体制备及地质聚合反应机理研究[D].广西大学博士学位论文,2011.
    [128]张伟鹏.溶胶-凝胶法合成Al2O3-2Si02粉体及其应用研究[D].广西大学硕士学位论文,2008.
    [129]Provis J L, Duxson P, Van Deventer J S J. The role of particle technology in developing sustainable construction materials [J]. Advanced Powder Technology,2011,21(1):2-7
    [130]Duxson P, Lukey G C, Speparovic F, et al. Effect of alkali cations on aluminum incorporation in geopolymeric gels [J]. Industrial and Engineering Chemistry Research, 2005,44(4):832-839
    [131]Weng L, Sagoe-Crentsil K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis:Part Ⅰ. low Si/Al ratio systems [J]. Journal of Materials Science,2007,42(9):2997-3006
    [132]Van Jaarsveld J G J, Van Deventer J S J. Effect of the alkali metal activator on the properties of fly ash-based geopolymers [J]. Industrial and Engineering Chemistry Research,1999,38(10):3932-3941
    [133]Detphan S, Chindaprasirt P. Preparation of fly ash and rice husk ash geopolymer [J]. International Journal of Minerals, Metallurgy and materials,2009,16(6):720-726
    [134]Provis J L, Duxson P, Lukey G C, et al. Modeling speciation in highly concentrated alkaline silicate solutions [J]. Industrial and Engineering Chemistry Research,2005, 44(23):8899-8908
    [135]Panagiotopoulou C, Kontori E, Perraki T. Dissolution of aluminosilicate minerals and by-products in alkaline media [J]. Journal of Materials Science,2007,42(9):2967-2973
    [136]Lee W K W, Van Deventer J S J. Effects of Anions on the formation of aluminosilicate gel in geopolymers [J]. Industrial and Engineering Chemistry Research,2002, 41(18):4550-4558
    [137]Phair J W, Van Deventer J S J. Effect of silicate activator pH on the leaching and material characteristics of wasre-based inorganic polymers [J]. Minerals Engineering, 2001,14(3):289-304
    [138]Xu H, Van Devente J S J. Ab initio calculations on the five-membered alumino-silicate framework rings models:implications for dissolution in alkaline solutions [J]. Computer and Chemistry,2000,24(3-4):391-404
    [139]Hajimohammadi A, Provis J L, Van Deventer J S J. Effect of alumina release rate on the mechanism of geopolymer gel formation [J]. Chemistry of Materials,2010, 22(18):5199-5208
    [140]White C E, Provis J L, Proffen T, et al. Density functional modeling of the loacal structure of kaolinite subjected to thermal dehydroxylation [J]. Journal of physics and chemistry A,2010,114(14):4988-4996
    [141]Kani E N, Allahverdi A. Effects of curing time and temperature on the strength development of inorganic polymeric binder based on natural pozzolan [J]. Journal of Materials Science,2009,44(12):3088-3097
    [142]Sagoe-Crentsil K, Weng L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis:Part Ⅱ. High Si/Al ratio systems [J]. Journal of Materials Science,2007,42(9):3007-3014
    [143]Xu H, Van Deventer J S J, Lukey G C. Effect of alkali metals on the prepferential geopolymerization of stilbite/kaolinite mixtures [J]. Industrial and Engineering Chemistry Research,2001,40(17):3749-3756
    [144]Zhang Y S, Jia Y T, Sun W, et al. Study of ion cluster reorientation process of geopolymerisation reaction using semi-empirical AM1 calculation [J]. Cement and Concrete Research,2009,39(12):1174-1179
    [145]Xu H, Van Deventer J S J. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars [J]. Colloids and surfaces A:Physicochemical and Engineering Aspects,2003,216(1-3):27-44
    [146]Rattanasak U, Chindaprasirt P, Suwanvitaya P. Development of high volume rice husk ash alumino silicate composites [J]. International Journal of Minerals, Metallurgy and Materials,2010,17(5):654-659
    [147]Duxson P, Mallicoat S W, Lukey G C, et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers [J]. Colloid and Surfaces A:Physicochemical and Engineering Aspects,2007,292(1):8-20
    [148]Sindhunata, Provis J L, Lukey G C, et al. Structural evolution of fly ash based geopolymers in alkaline Environments [J]. Industrial and Engineering Chemistry Research,2008,47(9):2991-2999
    [149]郑水林,李杨,许霞.煅烧时间对煅烧高岭土物化性能影响的研究[J].非金属矿,2002,25(2):11-12
    [150]诸华军,姚晓华,苏东,等.煅烧制度对偏高岭土胶凝活性的影响[J].非金属矿,2007,30(3):6
    [151]王雪静,张甲敏,李晓波,等.高岭土和煅烧高岭土的微观结构研究[J].中国非 金属矿工业导刊,2007,63(05):18-20
    [152]王春梅,杨立荣,蔡基伟,等.煅烧制度及激发剂对偏高岭土活性的影响[J].武汉理工大学学报,2009,31(7):126-130
    [153]Burton A W, Ong K, Rea T, et al. On the estimation of average crystallite size of zeolites from the scherrer equation:A critical evalution of its application to zeolites with one-dimensional pore syntems [J]. Microporous and Mesoporous Materials,2009, 117(1-2):75-90.
    [154]刘粤惠.刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003:189-196
    [155]徐慧.高岭土热分解期间莫来石形成的两个阶段[J].国外耐火材料,2004,29(4):47-52
    [156]Kim B M, Cho Y K, Yoon SY, et al. Mullite whiskers derived from kaolin[J]. Ceramics International,2009,35(2):579-583.
    [157]Satoshi S, Contreras C, Juarez H, et al. Homogeneous precipitation and thermal phase transformation of mullite ceramic precursor [J]. International Journal of Inorganic Materials,2001,3(7):625-632.
    [158]Rocha J, Klinowski J. 29Si and 27Al magic angle-spinning NMR studies of the thermal transformation of kaolinite [J]. Physics and Chemistry of Minerals,1990,17(2):179-182.
    [159]He H P, Hu C, Guo J G, et al. 29Si, 27Al magic-angle-spinning nuclear magnetic resonance (MAS NMR) studies of kaolinite and its thermal transformation products [J]. Chinese Journal of geochemistry,1995,14(1):78-82
    [160]Rocha J, Klinowski J. Solid-State NMR Studies of the Structure and Reactivity of Metakaolinite [J]. Angewandte Chemie International Edition,1990,29(5):553-554
    [161]Framery E, Mutin P H.29Si MAS-NMR Study of Silica Gels and Xerogels:Influence of the Catalyst [J]. Journal of Sol-Gel Science and Technology,2002,24(3):191-195
    [162]Duxson P, Provis J L, Lukey G C, et al. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels [J]. Langmuir,2005,21(7):3028-3036
    [163]Yao J F, Dan L, Zhang X Y. Cubes of Zeolite A with an Amorphous Core [J]. Angew. Chem. Int. Ed.2008,47:8397-8399
    [164]Xu H, Van Deventer J S J. Microstructural characterization of geopolymers synthesized from kaolinite/stilbite mixtures using XRD, MAS NMR, SEM/EDX, TEM/EDX, and HREM [J]. Cement and Concrete Research,2002,32(11):1705-1716
    [165]Provis J L, Van Deventer J S J. Geopolymerisation kinetics.1. In situ energy-dispersive X-ray diffractometry [J]. Chemical Engineering Science,2007,62(9):2309-2317
    [166]Provis J L, Van Deventer J S J. Geopolymerisation kinetics.2. Reaction kinetic modeling [J]. Chemical Engineering Science,2007,62(9):2318-2329
    [167]Dent Glasser L S, Lachowski E E, Cameron G G, J. Appl. Chem. Biotechnol.1977, 27:39-49
    [168]Yang Z Z, Liu Y M, Yu C L, Gu X H, Xu N P. Ball-milled NaA zeolite seeds with submicron size for growth of NaA zeolite membranes, Journal of Membrane Science, 2012,392-393:18-28.
    [169]Kondo M, Komori M, Kita H, Okamoto K I. Tubular-type pervaporation module with zeolite NaA membrane[J], Journal of Membrane Science,1997,133:133-141.
    [170]Pera-Titus M, Mallada R, Llorens J, et al., Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system [J]. Journal of Membrane Science, 2006,278:401-409.
    [171]Cho C H, Oh K Y, Kim S K, et al., Pervaporative seawater desalination using NaA zeolite membrane:Mechanism of high water flux and high salt rejectin [J]. Journal of Membrane Science,2011,371:226-238.
    [172]He Y, Cui X M, Mao J, et al., The hydrothermal transformation of solid geopolymers into zeolites [J]. Microporous and Mesoporous Materials,2012,161:187-192.
    [173]Pearce G K, SWRO pre-treatment:markets and experience, Filtration,2010, 47(4):30-33
    [174]Khawaji AD, Kutubkhanah I K, Wie J. Advances in seawater desalination technologies. Desalination 2008,221:47-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700