中低潮滩盐沼植被分异的形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物分布格局和共存机制一直以来是生态学关注的核心问题之一。前人研究认为,高程是导致盐沼植物在较大尺度上呈带状分布的综合因素。然而,在中低潮滩高程相近的盐沼,物种之间也存在空间分异格局。因此,研究小尺度上物种空间分布格局的形成过程,不仅有助于进一步理解盐沼植被构建机制,也可为盐沼保护与恢复提供理论依据。本研究以长江口崇明东滩中低潮滩盐沼为研究对象,在大量野外调查和控制实验基础上,结合室内分析,得出以下主要结论:
     一、在中低潮滩,互花米草和海三棱藨草对水盐环境的不同适应与反馈,是近互花米草一侧海三棱蔗草生境被侵占的重要原因。
     在崇明东滩中低潮滩高程相近的区域,互花米草植被带的土壤盐度(电导率)为0.41±0.01S/m,显著高于海三棱藨草带的0.35±0.01S/m(P<0.05)。互花米草带土壤含水量约为45%,而海三棱藨草带的土壤含水量约为53%。海三棱藨草带及前沿带淹水频率较高,相对于光滩带,互花米草带的淹水频率较低。互花米草带的氧化还原电位为-21±2mV,海三棱藨草带的氧化还原电位为-27±3mV,光滩带的氧化还原电位为-65±7mV。
     在中低潮滩,互花米草拓植直接导致了互花米草以及附近区土壤盐度的显著增加。首先互花米草较好的消浪作用显著增加了沉积作用,而斑块内部因水动力较强,相对侵蚀,一定程度上减弱了斑块内上覆水与外界的交换;其次,蒸腾作用将较深土壤中的盐分运输到互花米草叶和茎部并被盐腺泌出体外,另外生长季互花米草植被带土壤温度较其他带高,导致土壤水分加速蒸发,使得表层土壤盐度增加,盐度增加抑制了相邻海三棱藨草向互花米草一侧的扩散和生长;在海三棱藨草分布前沿带淹水频率较高,土壤氧化还原电位较低,抑制了互花米草与海三棱藨草向海一侧的建植。其结果符合群落构建理论提出的环境筛选假说。
     二、两物种不同的繁殖策略和种间关系的差异,导致中低潮滩互花米草与海三棱藨草生物量分配的差异以及分布模式的不同。
     两物种的繁殖对策存在差异。互花米草带每个有性繁殖植株大约可产生1-2个地下分蘖,混生带有性繁殖植株大约产生2-3个地下分蘖。海三棱藨草带有性繁殖植株数是营养生长植株数的3-4倍,混生带有性繁殖植株是营养生长植株数的2-3倍,然而在其分布前沿带,营养生长植株数是有性繁殖植株数的8-10倍。
     二者有性繁殖和克隆生长的生物量投入不同。互花米草百粒重为0.45±0.01g;海三棱藨草带百粒重为0.80±0.01g。互花米草带对地下分蘖的投入大约是种子生产的2-3倍:海三棱藨草对种子生产的投入大约是根状茎投入的10-17倍。表明互花米草主要通过无性繁殖的方式进行种群更新;海三棱藨草在种间竞争压力下,主要采取有性繁殖策略,在环境压力下采取营养增殖策略,其符合贮存效应假说。在4-6月互花米草带相对生长速率约为0.025±0.003g/(g·day);海三棱蔗草带相对生长速率为0.030±0.001g/(g·day);在7-9月份,互花米草相对生长速率达0.034±0.003g/(g·day),显著大于海三棱藨草的同期生长速率(0.012±0.001g/(g·day))(P<0.05)。
     二者种间、种内竞争能力不同。互花米草种间竞争能力显著强于海三棱藨草(P<0.05)。但当淹水等环境压力增大时,互花米草种内竞争增强,而海三棱藨草种内表现为促进作用。因此,当环境压力对二者产生抑制时,互花米草种内竞争压力的增强,可能会减弱对海三棱藨草的排斥压力;但当环境相对友好或只对海三棱藨草产生抑制时,海三棱蔗草将被互花米草迅速替代。
     三、植被分异导致了土壤营养库的分异。互花米草带土壤营养库、土壤有机碳、氮积累速率显著高于海三棱藨草带,植被带次表层营养库较表层高,植物生长对营养库贡献显著。
     不同植被带土壤有机碳、氮含量不同,植被带次表层含量较表层高,光滩带次表层含量较表层低。在0-30cm土壤中,互花米草带土壤有机碳、氮库依次为:1129±76g/m2和145±5g/m2海三棱藨草带土壤有机碳、氮库依次为:640±63g/m2和99±6g/m2。
     互花米草带土壤有机碳、氮积累速率显著高于海三棱藨草带(P<0.05)。互花米草带有机碳的积累速率为:35.8±8.1g/(m2·yr),氮的积累速率为5.3±0.5g/(m2·yr);海三棱藨草带有机碳、氮积累速率分别为6.6±5.9g/(m2·yr)和1.2±0.4g/(m2·yr)。
     土壤有机碳、氮库的积累过程与植被之间存在反馈机制。在崇明东滩中低潮滩,发育年限相近的区域,土壤有机碳、氮库与物种生物量之间存在显著的正相关关系(P<0.05)。同时,由于碳氮积累差异,使得土壤中理化性质(盐度、Eh、粒度等)发生改变,从而导致物种分布范围发生改变,并与泥沙沉积过程相结合,影响植被结构。
     综合而言,在高程相近的中低潮滩,互花米草和海三棱藨草的空间分布格局首先取决于生境内环境因子,尤其是盐度、淹水、氧化还原电位等环境因子与植被的相互作用。同时生态位相近的物种由于生态位重叠发生竞争,导致竞争能力弱的海三棱藨草不断被排斥,因而形成了植被分异结构。本研究提取出来的主导因子,只限于高程相近的中低潮滩,是对更大尺度上潮滩植被分布机制的有益补充。
Species distribution and their coexistence mechanism have long been the focus of ecological research. Some previous studies considered elevation as the main factor that resulted in zonal distribution of salt marsh species at large scale. While in the low-middle tidal flat with quite low topographical gradients, zonal differentiation pattern also exists between species. Therefore, study of the mechanism of species spatial distribution will help to understand the colonization process of estuarine salt marsh vegetation and provide theoretical basis for salt marsh wetland management, protection and restoration. We investigated the transects across the tidal flat, Scirpus mariqueter front zone, Scirpus zone, mixed zone of Spartina alterniflora and Scirpus, and Spartina zone, measured biological and environmental factors, and analyzed the data with statistical methods. Based on our results, some main conclusions can be drawn:
     1. Adaptation and feed backs of Spartina and Scirpus to the soil environmental factors are important factors that hampered the distribution of Scirpus
     In the area with similar elevation at eastern Chongming Island, soil salinity expressed as conductivity in the Spartina alterniflora zone was0.41±0.01S/m, which was significantly higher than that in the Scirpus mariqueter zone with the value of0.35±0.01S/m. Soil moisture in the Scirpus zone was53%, which was significantly higher than that in the Spartina zone with the value of45%.
     The flooding frequency in the Scirpus zone and its frontier was higher than that in the Spartina zone. The Eh (redox potential) in the Spartina zone was-21±2mV, and was-27±3mV in the Scirpus zone. It was-65±7mV in the mudflat, which was significantly lower than that in the two vegetated zones. Therefore, at the area without significant elevation difference, soil salinity and moisture can be significantly different.
     In the intertidal zone, the invasion of Spartina directly led to the significant increase of soil salinity in their growing zone. One of the important reason was that Spartina secreted salt out through its salinity glands during its respiration. Meanwhile, the temperature in the Spartina zone during its growing period was higher than that in the other zones. As a result, the high temperature increased the water evaporation of sediment's surface and further increased the surface soil salinity. The increased soil salinity in the Spartina zone inhibited the landward growth of Scirpus. However, at the front of the Scirpus zone, the Eh was extremely low because of the frequent flooding, and it restrained the seaward establishment of Scirpus. This conclusion testified the environmental screening hypothesis in the community establishment theory.
     2. Different reproduction strategy and growth characteristics result in the better competitiveness of Spartina than Scirpus
     The Scirpus and Spartina had different reproductive strategy in different zones, and there were also different responses to environmental factors. The number of vegetative growing individuals was1-2times that of the sexual reproduction growing individuals in the Spartina zone, while it was2-3times in the mixed zone. The number of vegetative growing individuals and sexual reproductive growing individuals of the Scirpus was significantly different among the mixed zone, Scirpus zone and front zone. The number of sexual reproductive growing individuals was3-4times than that vegetative growing individualsin the Scirpus zone,2-3times in the mixed zone, and1:8-1:10at the frontier of the Scirpus zone.
     The hundred grain weight (HGW) of Spartina was0.45±0.01g, while the HGW of Scirpus was0.80±0.01g. For Spartina, the biomass allocation to the production of rhizomes was2-3times that to the production of seeds. For Scirpus, the biomass investment to the seeds was10-17times compared to that to the rhizomes. The result showed that population regeneration of Spartina depended mainly on the asexual reproduction. For Scirpus, sexual reproduction probably was the main strategy when confronted with the interspecific competition. However, the asexual reproduction will increase with the increase of physical stress.
     From April to June, the relative growth rate (RGR) of Spartina was0.025±0.003g/g·day, and the RGR of Scirpus was0.030±0.001g/(g·day). From July to September, the RGR of Spartina was up to0.034±0.003g/(g·day), which was much greater than that of Scirpus (0.012±0.001g/(g·day)). The RGR of Scirpus from July to September was also significantly lower than that during the early growth period.
     Consequently, Spartina took over Scirpus with rapid RGR and shading to Scirpus. Under harsh conditions, the intraspecific competition of Spartina increased. However, facilitation was found among individuals of Scirpus. As a result, when environmental factors restrain the growth of both Spartina and Scirpus, coexistence of Spartina and Scirpus will be promoted; but if environmental factors just restrain the growth of Scirpus, Spartina will take over Scirpus rapidly.
     3. Vegetation difference result in different nutrient pools in the soil, with N and C storage in the Spartina community much higher than that in the Scirpus community
     The contents of carbon and nitrogen in soil were different among different zones. In vegetation zones, they were higher in the sub-surface layer than that in the surface layer. However, for mudflat, they were lower in subsurface layer than that in the surface layer. Carbon and nitrogen pools were1129±76g/m2and145±5g/m2respectively in the0-30cm layer of Spartina zone. In the Scirpus zone, carbon and nitrogen pools were640±63g/m2and99±6g/m2respectively.
     The accumulation rates of carbon and nitrogen were significantly greater in the Spartina zone than that in the Scirpus zone (P<0.05), and it was intermediate in the mixed zone compared to that in the Spartina and Scirpus zones. The accumulation rate of carbon (ARC) was35.8±8.1g/(m2·yr), and the accumulation rate of nitrogen (ARN) was5.3±0.5g/(m2·yr) in the Spartina zone. In the Scirpus zone, the ARC was6.6±5.9g/(m2·yr), and the ARN was1.2±0.4g/(m2·yr).
     Feedback existed between vegetation zonation and the accumulations of carbon and nitrogen. At eastern Chongming Island, the ages of different zones were very close with each other. There was significantly positive linear relationship between nutrient pools and biomass (P<0.05). Consequently, the different vegetation structure affected the accumulation of nutrient pools. The plants with high productivity facilitated nutrient retention in the soil. However, the increase of nutrient pools in soil also affected the vegetation zonation by modifying micro-topography, salinity, redox potential, and particle size, and finally affects vegetation zonation together with feedbacks in the sedimentation process.
     In conclusion, in the intertidal zone of eastern Chongming Island, the surface elevation was very homogeneous. We believed that the zonation between Spartina and Scirpus probably depended on the stress factors such as salinity, redox potential, and sediment and so on. The overlap of niches will result in competition between them. As a result, physical stress and species competition play interactively during vegetation zonation in the salt marsh. Since determination factors for dominant species are different across scales, the main factors controlling vegetation difference derived from this study at cohort and patch boundary scale are not controdictary with the conclusion that "elevation" is the determination factor of salt marsh vegetation zonation at larger scales.
引文
鲍芳,石福臣.2007.互花米草与芦苇耐盐生理特征的比较分析.植物研究,27:421-427.
    陈晖,刘敏,侯立军,许世远,闫惠敏,林啸.2009.崇明东滩海三棱藨草生物硅分布及季节变化.中国环境科学,29(1):73-77.
    陈吉余,王宝灿,虞志英.1989.中国海岸发育过程和演变规律.上海科技出版社.
    陈增奇,陈飞星,李占玲,陈奕.2005.滨海湿地生态经济的综合评价模型.海洋学研究,23:47-55.
    陈中义,高慧,吴涵,李博.2005.模拟遮荫对互花米草和海三棱草种子萌发及幼苗生长的影响.湖北农业科学,2:82-84.
    陈中义,李博,陈家宽.2005a.长江口崇明东滩土壤盐度和潮间带高程对外来种互花米草生长的影响.长江大学学报(自然科学版),1:6-9.
    陈中义,李博,陈家宽.2005b.互花米草与海三棱藨草的生长特征和相对竞争能力.生物多样性,2:130-136.
    邓自发,安树青,智颖飙,周长芳,陈琳,赵聪蛟,方淑波,李红丽.2006.外来种互花米草入侵模式与爆发机制.生态学报,26:2678-2686.
    丁丽,徐建益,陈家宽,汤臣栋.2011.崇明东滩互花米草生态控制与鸟类栖息地优化.人民长江,23:122-124.
    董斌,吴迪,宋国贤,谢一民,裴恩乐,王天厚.2010.上海崇明东滩震旦鸦雀冬季种群栖息地的生境选择.生态学报,16:4351-4358.
    冯士筰,李凤岐,李少菁.1999.海洋科学导论,高等教育出版社.
    郭笃发.2005.黄河三角洲滨海湿地土地覆被和景观格局的变化.生态学杂志,24:907-912.
    韩震,恽才兴,戴志军,刘瑜,张宏.2009.淤泥质潮滩高程及冲淤变化遥感定量反演方法研究——以长江口崇明东滩为例.海洋湖沼通报,1:12-18.
    何文姗,陆健健.2001.高浓度悬沙对长江口水域初级生产力的影响.中国生态农业学报,9:24-27.
    何彦龙,李秀珍,马志刚,孙永光,贾悦.2010.崇明东滩盐沼植被成带性对土壤因子的响应.生态学报,30(18):4919-4927.
    贺宝根,王初,周乃晟,许世远.2008.长江河口崇明东滩周期性淹水区域水流的基本特征.地球科学进展,3:276-283.
    侯立军,陆健健,刘敏,许世远.2006.长江口沙洲表层沉积物磷的赋存形态及生物有效性.环境科学学报,3:488-494.
    黄华梅,张利权.2007.上海九段沙互花米草种群动态遥感研究.植物生态学报,31:75-82.
    吉晓强,何青,刘红,T. Ysebaert.2010.崇明东滩水文泥沙过程分析.泥沙研究,1:46-57.
    解晶,王卿,贾昕,吴千红.2008.崇明东滩芦苇(Phragmitesaustralis)群落中昆虫群落季节动态的初步研究.复旦学报(自然科学版),5:633-638.
    李富荣,陈俊勤,陈沐荣,虞依娜,陈蕾伊,李静,彭少麟.2007.互花米草防治研究进展.生态环境,6:1795-1800.
    李加林.2006.基于MODIS的沿海带状植被NDVI/EVI季节变化研究——以江苏沿海互花米草盐沼为例.海洋通报,6:9 1-96.
    李强,安传光,徐霖林,马长安,赵云龙.2010.崇明东滩潮沟浮游动物数量分布与变动.海洋与湖沼,2:214-222.
    李瑞利,石福臣,张秀玲,诸明.2007.天津沿海滩涂互花米草种群生殖分株数量特征及生殖分配研究.植物研究,27(1):99-106.
    李晓文,肖笃宁,胡远满.2001.辽河三角洲滨海湿地景观规划各预案对指示物种生境适宜性的影响.生态学报,21:550-560.
    李行,周云轩,况润元.2010.上海崇明东滩岸线演变分析及趋势预测.吉林大学学报(地球科学版),40(2):417-424.
    李勇,刘敏,陆敏,侯立军,林啸.2010.崇明东滩芦苇湿地氧化亚氮排放.环境科学学报,12:2526-2534.
    梁霞,张利权,赵广琦.2006.芦苇与外来植物互花米草在不同COz浓度下的光合特性比较.生态学报,3:842-848.
    路兵,蒋雪中.2013.滩涂围垦对崇明东滩演化影响的遥感研究.遥感学报,2:335-350.
    吕芝香.1992.互花米草幼苗在不同浓度NaCl溶液中的生长和溶质的积累.武汉植物学研究,2:117-122.
    马琳,杜建飞,闫丽丽,陈建民,李想.2011.崇明东滩湿地降水化学特征及来源解析.中国环境科学,11:1768-1775.
    马振兴.1998.天津滨海湿地生态系统及其资源特征.海洋通报,2:72-77.
    马志刚,李秀珍,何彦龙,郭文永,孙永光,贾悦.2010.崇明东滩小尺度植被分异的环境因子分析.长江流域资源与环境,19(2):130-134.
    梅雪英,张修峰.2007.崇明东滩湿地自然植被演替过程中储碳及固碳功能变化.应用生态学报,4:933-936.
    潘宇,李德志,袁月,徐洁,高锦瑾,吕媛媛.2012.崇明东滩湿地芦苇和互花米草种群的分布格局及其与生境的相关性.植物资源与环境学报,21(4):1-9.
    钱晓雍,沈根祥,黄丽华,顾海蓉,Pugliese, M.2010.崇明东滩旱作农田土壤磷素流失及其影响因素.生态与农村环境学报,4:334-338.
    钱晓雍,沈根祥,黄丽华,王寿兵.2010.崇明东滩地区砂质旱田氮磷径流流失特征研究.水土保持学报,2:112-117.
    山宝琴,贺学礼,段小圆.2009.毛乌素沙地密集型克隆植物根围AM真菌多样性及空间分析.草业学报,18(2):146-154.
    施文或,葛振鸣,王天厚,周晓,周立晨.2007.九段沙湿地植被群落演替与格局变化趋势.生态学杂志,2:165-170.
    石冰,马金妍,王开运,巩晋楠,张超,刘为华.2010.崇明东滩围垦芦苇生长、繁殖和生物量分配对大气温度升高的响应.长江流域资源与环境,4:383-388.
    史本伟,杨世伦,罗向欣,徐晓君.2010.淤泥质光滩-盐沼过渡带波浪衰减的观测研究以长江口崇明东滩为例.海洋学报(中文版),2:174-178.
    宋国元,赵敏,曹同.2008.长江口冲积岛植物群落演替现状.植物研究,1:114-123.
    孙书存,蔡永立,刘红.2001.长江口盐沼海三棱藨草在高程梯度上的生物量分配(英文).植物学报,2:178-185.
    唐承佳,陆健健.2003.长江口九段沙植物群落研究.生态学报,2:399-403.
    滕吉艳,史贵涛,薛文杰,宋国贤,汤臣栋.2010.崇明东滩大气湿沉降酸性特征.环境化学,4:649-653.
    田凤玲,李晓明.2003.辽东湾北岸滨海湿地生态系统现状及其利用建议.水资源保护,5:21-22.
    童春富,章飞军,陆健健.2007.长江口海三棱藨草带生长季大型底栖动物群落变化特征.动物学研究,28(6):640-646.
    童春富.2012.长江河口潮间带盐沼植被分布区及邻近光滩鱼类组成特征.生态学报,32:6501-6510.
    汪承焕.2009.环境变异对崇明东滩优势盐沼植物生长、分布与种间竞争的关系.博士学位论文,复旦大学.
    汪青,刘敏,侯立军,程书波.2010.崇明东滩湿地CO2、CH4和N20排放的时空差异.地理研究,5:935-946.
    王东辉,张利权,管玉娟.2007.基于CA模型的上海九段沙互花米草和芦苇种群扩散动态.应用生态学报,12:2807-2813.
    王亮,李静,杨娟,张彤,蔡永立.2008.河口潮滩湿地景观格局变化及其受圈围开发影响的分析——以崇明东滩为例.安徽农业科学,23:10131-10134.
    王卿.2011.互花米草在上海崇明东滩的入侵历史、分布现状和扩张趋势的预测.长江流域资源与环境,6:690-696.
    王睿照,张利权.2009.水位调控措施治理互花米草对大型底栖动物群落的影响.生态学报,29(5):2639-2645.
    吴自银,金翔龙,曹振轶,李家彪,郑玉龙,尚继宏.2010.东海陆架沙脊分布及其形成演化,中国科学D辑,2:188-198.
    肖德荣,张利权,祝振昌,田昆.2011.上海崇明东滩互花米草种子产量与活性对刈割的响应.生态环境学报,11:1681-1686.
    谢志发,何文珊,刘文亮,陆健健.2008.不同发育时间的互花米草盐沼对大型底栖动物群落的影响.生态学杂志,27(1):63-67.
    徐国万,曹豪.1989.互花米草生物量年动态及其与滩涂生境的关系.植物生态学与地植物学学报,3:230-235.
    徐映雪,邵景力,杨文丰,王卫东,崔亚莉,宋庆春.2006.基于RS和GIS的鸭绿江口滨海湿地分类及变化.现代地质,3:500-504.
    闫芊,何文珊,陆健健.2006.崇明东滩湿地植被演替过程中生物量与氮含量的时空变化.生态学杂志,9:1019-1023.
    闫芊,陆健健,何文珊.2007.崇明东滩湿地高等植被演替特征.应用生态学报,5:1097-1101.
    杨洁,余华光,徐凤洁,马明睿,由文辉.2013.崇明东滩围垦区草本植物群落组成及物种多样性.生态学杂志,32:1748-1755.
    雍学葵,张利权.1992.海三棱藨草种群的繁殖生态学研究.华东师范大学学报(自然科学版),4:94-99.
    于砚民.2000.长江口地区湿地生态环境调查与保护对策.首都师范大学学报(自然科学版)21(3):81-87.
    袁兴中,何文珊.1999.长江口九段沙湿地生物资源及其变化趋势研究.环境与开发,2:1-3.
    张东,杨明明,李俊祥,陈小勇.2006.崇明东滩互花米草的无性扩散能力.华东师范大学学报(自然科学版),2:130-135.
    张利权,雍学葵.1992a.海三棱藨草种群的物候与分布格局研究.植物生态学与地植物学学报,1:43-51.
    张利权,雍学葵.1992b.海三棱蔗草种群的密度与生物量动态.植物生态学与地植物学学报,4:317-325.
    张晓龙,李培英,李萍,徐兴永.2005.中国滨海湿地研究现状与展望.海洋科学进展,1:87-95.
    张修峰,梅雪英,童春富,陆健健.2006.长江口岛屿沙洲湿地陆向发育过程中表层沉积物氮营养盐的变化.生态学报,4:1116-1121.
    张绪良.2003.莱州湾南岸滨海湿地生物多样性及保护.海洋开发与管理,6:65-67.
    张艳楠,李艳丽,王磊,陈金海,胡煜,付小花,乐毅全.2012.崇明东滩不同演替阶段湿地土壤有机碳汇聚能力的差异性及其微生物机制.农业环境科学学报,31(3):631-637.
    赵广琦,张利权,梁霞.2005.芦苇与入侵植物互花米草的光合特性比较.生态学报,7:1604-1611.
    赵美霞,李德志,潘宇,吕媛媛,高锦瑾,程立丽.2012.崇明东滩湿地芦苇和互花米草N、P利用策略的生态化学计量学分析.广西植物,6:717-722.
    郑宗生,周云轩,蒋雪中,沈芳.2007.崇明东滩水边线信息提取与潮滩DEM的建立.遥感技术与应用,1:35-38.
    郑宗生,周云轩,李行,况润元.2010.基于遥感及数值模拟的崇明东滩冲淤与植被关系探讨.长江流域资源与环境,12:35-41.
    朱燕玲,过仲阳,叶属峰,栗小东,王丹.2011.崇明东滩海岸带生态系统退化诊断体系的构建.应用生态学报,2:513-518.
    祝振昌,张利权,肖德荣.2011.上海崇明东滩互花米草种子产量及其萌发对温度的响应.生态学报,6:1574-1581.
    宗玮,林文鹏,周云轩,芮建勋.2011.基于遥感的上海崇明东滩湿地典型植被净初级生产力估算.长江流域资源与环境,11:1355-1360.
    Adams, P.1990. Salt marsh Ecology, Cambridge, UK:Cambridge University Press. pp:1-461.
    Adler, P.B., Raff, D.A., Lauenroth, W.K.2001.The effect of grazing on the spatial heterogeneity of vegetation.Oecologia,128:465-479.
    Alhdad, G. M., Seal, C.E., Al-Azzawi, M. J., Flowers, T. J.2013. The effect of combined salinity and waterlogging on the halophyte Suaeda maritima:The role of antioxidants. Environmental and Experimental Botany,87:120-125.
    Alpert, P.1991. Nitrogen sharing among ramets increases clonal growth in Fragaria chiloensis. Ecology,72:69-80.
    Alvarez, M.E., Cushman, J.H.2002. Community-level consequences of a plant invasion:effects on three habitats in coastal California. Ecological Applications,12(5):1434-1444.
    Alvarez, R.J., Jimenez, C.F.J., Roca, M.J., Ortiz, R.2007. Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities.Estuarine, Coastal and Shelf Science,73:510-526.
    Apaydin, Z., Kutbay, H.G., Ozbucak, T., Yalcin, E., Bilgin, A.2009. Relationships between vegetation zonation and edaphic factors in a salt marsh community (Black Sea coast). Polish Journal of Ecology,57(1):99-112.
    Armstrong, J., Armstrong, W., Beckett, P.M.1992. Phragmites australis:Venturi-and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytologist,120:197-207.
    Asaeda, T., Hai, D.N., Manatunge, J., Williams, D., Roberts, J.2005. Latitudinal Characteristics of Below- and Above-ground Biomass of Typha:a Modelling Approach. Annals of Botany, 96:299-312.
    Avis, A.M., Lubke, R.A.1996. Dynamics and succession of coastal dune vegetation in the Eastern Cape, South Africa. Landscape and Urban Planning,34(1):237-254.
    Barot, S., Gignoux, J.2004. Mechanisms promoting plant coexistence:can all the proposed processes be reconciled? Oikos,106:185-192.
    Bazihizina, N., Barrett-Lennard, E. G., Colmer, T. D.2012. Plant growth and physiology under heterogeneous salinity. Plant and Soil,354:1-19.
    Bengtsson, J., Fagerstrom, T., Rydin, H.1994.Competition and co-existence in plant communities. Trends in Ecology and Evolution,9:246-250.
    Bennett, S.J., Barrett-Lennard, E.G., Colmer, T.D.2009. Salinity and waterlogging as constraints to salt land pasture production:A review. Agriculture, Ecosystems and Environment,129: 349-360.
    Bertness, M. D.1991. Zonation of Spartina Patens and Spartina alterniflora in New England Salt Marsh. Ecology,72:138-148.
    Bertness, M.D., Ellison, A.M.1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs,57:129-147.
    Bertness, M.D., Leonard, G.H.1997. The role of positive interactions in communities:Lessons from intertidal habitats. Ecology,78:976-989
    Bertness, M.D., Shumway S.W.1993. Competition and facilitation in marsh plants. American Naturalist,142:718-724.
    Bockelmann, A. C., Neuhaus R.1999. Competitive exclusion of Elymus athericus from a high-stress habitat in a European salt marsh. Journal of Ecology,87:503-513.
    Bockelmann,A.C., Bakker, J. P., Neuhaus, R., Lage, J.2002. The relation between vegetation zonation, elevation and inundation frequency in a Wadden Sea salt marsh. Aquatic Botany, 73:211-221.
    Boorman, L.A., Hazelden, J., Boorman, M.2001. The effect of rates of sedimentation and tidal submersion regimes on the growth of salt marsh plants.Continental Shelf Research,21: 2155-2165.
    Booth, B.D., Larson, D.W.1999. Impact of language, history, and choice of system on the study of assembly rules. In Weiher E, Keddy PA (eds), Ecological assembly rules:perspectives, advances, retreats. Cambridge University Press, Cambridge, UK, pp 206-229.
    Bornman, T.G., Adams, J.B., Bate, G.C.2008. Environmental factors controlling the vegetation zonation patterns and distribution of vegetation types in the Olifants Estuary, South Africa. South African Journal of Botany,74:685-695.
    Bradley, P.M., Morris, J.T.1991a. The influence of salinity on the kinetics of NH4+ uptake in Spartina alterniflora.Oecologia,85:375-380.
    Bradley, P.M., Morris, J.T.1991b. Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. Journal of Experimental Botany,42: 1525-1532.
    Cacador, I., Tiberio, S., Cabral, H.N.2007. Species zonation in Corroios salt marsh in the Tagus estuary (Portugal) and its dynamics in the past fifty years. Hydrobiologia,587:205-211.
    Caraco, T.,Kelly, C.K.1991. On the adaptive value of physiological integration in clonal plants. Ecology,72:81-93.
    Castillo, J.M.L., Mateos-Naranjo, E., Nieva, F.J., Figueroa, E.2008. Plant zonation at salt marshes of the endangered cordgrassSpartinamaritima invaded by Spartina densiflora. Hydrobiologia, 614:363-371.
    Charpentier, A., Stuefer, J.F.1999. Functional specialization of ramets in Scirpus maritimus Splitting the tasks of sexual reproduction, vegetative growth, and resource storage. Plant Ecology,141:129-136.
    Chen, Z. B., Li, G., Jin, B.S.2009. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River Estuary, China. Estuarine, Coastal and Shelf Science,82:265-272.
    Chesson, P.2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31:343-366.
    Chesson, P.2008. Quantifying and testing species co-existence mechanisms. In:Valladares, F., Camacho, A., Elosegui, A., Estrada, M., Gracia, C., Senar, J.C., Gili, J.M. (eds.) Unity in diversity:reflections on ecology after the legacy of Ramon Margalef. pp.119-164.
    Chesson, P., Rees, M.2007. Commentary:Resolving the biodiversity paradox. Ecology letters,10: 647-659.
    Clements, F. E.1936. Nature and structure of climax. Journal of ecology,24:254-82.
    Connell, J. H.1978. Diversity in tropical rain forests and coral reefs. Science.199:2-10.
    Corbin, J.D., C.M.D. Antonio.2004. Competition between native and exotic grasses in California: Implications for an historical invasion. Ecology 85:1273-1283.
    Costa, C., Marangoni, J.C., Azevedo, A.2003. Plant zonation in irregularly flooded salt marshes: relative importance of stress tolerance and biological interactions. Journal of Ecology,91: 951-965.
    Cott, G. M., Reidy, D. T., Chapman, D. V., Jansen M. A. K.2013. Waterlogging affects the distribution of the saltmarsh plant Atriplex portulacoides (L.) Aellen. Flora-Morphology, Distribution, Functional Ecology of Plants,208:336-342.
    Craft, C.2007. Freshwater input structures soil properties, vertical accretion and nutrient accumulation of Georgia and United States tidal marshes. Limnology and Oceanography, 52(3):1220-1230.
    Craft, C., Megonigal, P., Broome, S., Stevenson, J., Freese, R., Cornell, J., Zheng, L., Sacco, J. 2003. The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecological Applications,13:1417-1432.
    Craft, C., Seneca, E., Broome, S.1991. Loss on ignition and Kjeldahl digestion for estimating organic C and total N in estuarine marsh soils:calibration with dry combustion. Estuaries,14: 175-179.
    Crain, C.M., Albertson, L.K., Bertness, M.D.2008. Secondary succession dynamics in estuarine marshes across landscape-scale salinity gradients. Ecology,89:2889-2899.
    Crain, C.M., Silliman, B.R., Bertness, S.L., Bertness, M.D.2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology,85(9):2539-2549.
    Cui, B.S., He, Q., An, Y.2011. Community Structure and Abiotic Determinants of Salt Marsh Plant Zonation Vary Across Topographic Gradients. Estuaries and Coasts,34(3):459-469.
    Dansereau, P., Segadas-Vianna, F.1952. Ecological study of the peat bogs of eastern North America. Canadian Journal of Botany,30:490-520.
    Davy, A. J., Brown, M. J. H., Mossman, H. L., Grant A.2011. Colonization of a newly developing salt marsh:disentangling independent effects of elevation and redox potential on halophytes. Journal of ecology,99:1350-1357.
    Decaensa, T., Margeriea, P., Renault, J., Bureau, F., Aubert, M., Hedde, M.2011. Niche overlap and species assemblage dynamics in an ageing pasture gradient in north-western France. Acta Oecologica,37(3):212-219.
    DeWalt, S.J., Denslow, J.C., Hamrick, J.L.2004.Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemiahirta. Oecologia,138:521-531.
    Diamond, J. M.1975. Assembly of species communities.Pages:342-444 in Cody, M.L., Diamond, J.M. eds. Ecology and Evolution of Communities. Harvard University Press, Cambridge.
    Diez, I.A.,Santolaria, J., Gorostiaga, M.2003. The relationship of environmental factors to the structure and distribution of subtidal seaweed vegetation of the western Basque coast (N Spain). Estuarine, Coastal and Shelf Science,56:1041-1054.
    Edwards, K.R., Proffitt, C.E.2003. Comparison of wetland structural characteristics between created and natural salt marshes in southwest Louisiana, USA. Wetlands,23:344-356.
    Emery, N.C., Ewanchuk, P.J., Bertness, M.D.2001. Competition and salt marsh plant zonation: stress tolerators may be dominant competitors. Ecology,82:2471-2485.
    Emery, N.C., Stanton, M.L., Rice, K.J.2009. Factors driving distribution limits in an annual plant community. New Phytologist,181:734-747.
    Eriksson, O., Jerling L.1990. Hierarchical selection and risk spreading in clonal plants. In:Clonal Growth in Plants:Regulation and Function (eds van Groenendael J. and de Kroon H.) pp. 79-94. SPB Academic Publishing, The Hague.
    Esselink, P., Fresco, L.F.M., Dijkema K.S.2002. Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage. Applied Vegetation Science,5:17-32.
    Fetscher, A., Sutula, M., Callaway, J., Parker, V., Vasey, M., Collins, J., Nelson, W.2010. Patterns in Estuarine Vegetation Communities in Two Regions of California:Insights from a Probabilistic Survey. Wetlands,30:833-846.
    Gergely, A., Hahn, I., Meszaros-Draskovits, R., Simon, T., Szabo, M., Barabas, S.2001. Vegetation succession in a newly exposed Danube riverbed. Applied Vegetation Science,4: 35-40.
    Gleason, H.A.1939. The individualistic concept of the plant association. Bulletin of the Torrey Botanical club,53:7-26.
    Gomez, V.S., Verhulst, Y.M., Stuefer, J.F.2007. Costs and benefits of induced resistance in a clonal plant network. Oecologia,153:921-930.
    Gough, L., Grace, J.B.1998. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States. Oecologia,117(4):527-535.
    Gray, A.J., Scott, R.1977. The ecology of Morecambe Bay. VII. The distribution of Puccinellia raritima, Festucarubra and Agrostis stolonifera in the salt marshes. Journal Applied Ecology, 14:229-241.
    Grewell, B.J.2008. Hemi-parasites generate environmental heterogeneity and enhance species coexistence in salt marshes. Ecological Applications,18:1297-1306.
    Grime, J.P.1988. The C-S-R model of primary plant strategies-origins, implications and tests. Plant Evolutionary Biology (ed. S.K. Jain), pp.371-393. Chapman and Hall, London.
    Gusewell, S. Koerselman W., Verhoeven, J.T.A.2003. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecology Applications,13:372-384.
    Haines, B.L., Dunn, E.L.1976. Growth and Resource Allocation Responses of Spartina alterniflora Loisel. to Three Levels of NH4-N, Fe, and NaCl in Solution Culture. Botanical Gazette,137 (3):224-230.
    He, Y.L., Li, X.Z., Craft, C., Ma, Z.G., Sun, Y.G.2011. Relationships between vegetation zonation and environmental factors in newly formed tidal marshes of the Yangtze River estuary. Wetlands Ecology and Management,19:341-349.
    He, Y.L., Li, X.Z., Guo, W.Y., Ma, Z.G.2012. Division of labour in rhizomatous species: comparative performance of native and invasive species in the tidal marshes of the Yangtze estuary. Journal of Experimental Marine Biology and Ecology,422-423:122-128.
    Hester, M.W., Mendelssohn, A.M., McKee, K.L.2001. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. Environmental and Experimental Botany,46: 277-297.
    Hickey, D., Bruce, E.2010.Examining Tidal Inundation and Salt Marsh Vegetation Distribution Patterns using Spatial Analysis (Botany Bay, Australia). Journal of Coastal Research,26: 94-102.
    Howard, R.J.2010. Intraspecific Variation in Growth of Marsh Macrophytes in Response to Salinity and Soil Type:Implications for Wetland Restoration. Estuaries and Coasts,33: 127-138.
    Huckle, J.M., Marrs, R.H., Potter, J.A.2002. Interspecific and intraspecific interactions between salt marsh plants:integrating the effects of environmental factors and density on plant performance. Oikos,96:307-319.
    Huckle, J.M., Potter, J.A., Marrs, R.H.2000. Influence of environmental factors on the growth and interactions between salt marsh plants:effects of salinity, sediment and waterlogging. Journal of Ecology,88:492-505.
    Hunt, R.., Cornelissen, J.H.C.1997. Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytologist,135:395-417.
    Hutching, M.J.1999. Clonal plants as cooperation systems:benefits in heterogenous environments. Plant species biology,14(1):1-10.
    Hutchings, M.J., Wijesinghe, D.K.2008. Performance of a clonal species in patchy environments: effects of environmental context on yield at local and whole-plant scales. Evolutionary Ecology,22:313-319.
    Ikegami, M., Whigham, D.F., Werger, M.J.A.,2008. Optimal biomass allocation on hetergenous environment in a clonal plant-spatial division of labour. Ecological Modelling,213:156-164.
    Imbert, E.2005. Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics,5(1):13-36.
    Jifon, J.L., Syvertsen, J.P.2003. Moderate shade can increase net gas exchange and reduce photo inhibition in citrus leaves. Tree Physiology,23 (2):119-127.
    Karimi, S.H., Ungar, I.A.1991. Oxalate and inorganic ion concentrations in Atriplex trianguiaris Organs in response to salinity, light level and aeration. Botanical Gazette,147:65-70.
    Keddy, P.A.2010. Wetlands ecology principles and conservation.Second edition. Cambridge, UK: Cambridge University Press, pp:20-66.
    Keddy, P. A.1999. Wetland restoration:The potential for assembly rules in the service of conservation. Wetlands,19:716-732.
    Kemp,W. M., Boynton, W. R.2012. Synthesis in Estuarine and Coastal Ecological Research: What Is It, Why Is It Important, and How Do We Teach It? Estuaries and Coasts,35(1):1-22.
    Kiehl, K., Eischeid, I., Gettner, S., Walter, J.1996. The impact of different sheep grazing intensities on salt marsh vegetation in Northern Germany. Journal of Vegetation Science,7: 99-106.
    Kim, D., Cairns, D.M., Bartholdy, J.2010. Environmental Controls on Multiscale Spatial Patterns of Salt Marsh Vegetation. Physical Geography,31:58-78.
    Krull, K., Craft, C.2009. Ecosystem development of a sandbar emergent tidal marsh, Altamaha River Estuary, Georgia, USA. Wetlands,29 (1):314-322.
    Kuhn, N.L., Zedler, J.B.1997. Differential effects of salinity and soil saturation on native and exotic plants of a coastal salt marsh. Estuaries,20:391-403.
    Landin, M. C.1991. Growth habits and other considerations of smooth cordgrass Spartina alternifloraLoisel [A]. In:Mumford T.F.J, Peyton P, Sayce J.R et al. (eds) Spartina workshop record [C], Washington Sea Grant Program,University of Washington, Seattle, pp 115-201.
    Langley, A., Megonigal, J.P.2012. Field-Based Radiometry to Estimate Tidal Marsh Plant Growth in Response to Elevated CO2 and Nitrogen Addition. Wetlands,32:571-578.
    Langlois E., Bonis, A., Bouzille, J.B.2003. Sediment and plant dynamics in saltmarshes pioneer zone:Puccinellia maritima as a key species? Estuarine, Coastal and Shelf Science,56: 239-249.
    Leicht-Young, S.A., Silander, J.A., Latimer, A.M.2007.Comparative performance of invasive and native Celastrus species across environmental gradients. Oecologia,154:273-282.
    Levine, J.M., Brewer, J.S., Bertness, M.D.1998. Nutrients, competition and plant zonation in a New England salt marsh. Journal of Ecology,86:285-292.
    Loreau, M.S., Naeem, P., Inchausti, J., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., Wardle, D.A.2001. Biodiversity and Ecosystem Functioning:Current Knowledge and Future Challenges. Science,294 (5543): 804-808.
    Loucougaray G., Bonis, A., Bouzille, J.B.2004. Effects of grazing by horses and/or cattle on the diversity of coastal grasslands in western France.Biological Conservation,116 (1):59-71.
    Ma, Z.J, Wang, Y, Gan, X.J, Li, B, Cai, Y.T, Chen, J.K.2009. Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River Estuary, China. Environmental Management,43(6):1187-1200.
    Magyar, G., Kun, A., Oborny, B., Stuefer, J.F.2007. Importance of plasticity and decision-making strategies for plant resource acquisition in spatio-temporally variable environments. New phytologist,174:182-193.
    Marani, M., Lanzoni, S., Silvestri, S., Rinaldo, A.2004. Tidal landforms, patterns of halophytic vegetation and the fate of the lagoon of Venice. Journal of Marine Systems,51:191-210.
    Medeiros, D. L., White, D. S., Howes, B. L.2013. Replacement of Phragmites australisby Spartina alterniflora:The Role of Competition and Salinity. Wetlands,33:421-430.
    Mendelssohn, I.A., Morris, J.T.2000. Eco-physiological controls on the productivity of Spartina alterniflora Loisel. Concepts and Controversies in Tidal Marsh Ecology (ed. D.A. Kreeger). Kluwer Academic, Dordrecht.
    Miner, B.G., Sultan, S.E., Morgan, S.G., Padilla, D.K., Relyea, R.A.2005. Ecological consequences of phenotypic plasticity. Trends in Ecology and Evolution,20 (12):685-692.
    Montemayora, M.B., Price, J.S., Rochefort, L., Boudreau, S.2008. Temporal variations and spatial patterns in saline and waterlogged peat fields 1. Survival and growth of salt marsh graminoids. Environmental and Experimental Botany,62:333-342.
    Morzaria-Luna, H. N., Zedler, J. B.2013. Competitive Interactions between Two Salt Marsh Halophytes across Stress Gradients. Wetlands,10.1007/s13157-013-0479-9.
    Morzaria-Luna, H., Callaway, J.C., Sullivan, G., Zedler, J.B.2004. Relationship between topographic heterogeneity and vegetation patterns in a Californian salt marsh. Journal of Vegetation Science,15:523-530.
    Mouquet, N., Loreau, M.2003. Community Patterns in Source-Sink Meta-communities. The American Naturalist,162(5):544-557.
    Naranjo, E., Redondo-Go'mez, S., Luque, C.J., Castellanos, E.M.2008.Environmental limitations on recruitment from seed in invasive Spartina densiflora on a southern European salt marsh.Estuarine, Coastal and Shelf Science,79:727-732.
    Negrina,V.L., Spettera, C.V., Asteasuaina, R.O., Perillo, G.M.E., Marcovecchioa, J.E.2011. Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the porewater of a Spartina altemiflora salt marsh. Journal of Environmental Sciences, 23(2):212-221.
    Oborny, B., Kun, A. Czaran, T., Bokros, S.2000. The effect of clonal integration on plant competition for mosaic habitat space. Ecology,81:3291-3304.
    Odland, A., Del Moral, R.2002. Thirteen years of wetland vegetation succession following a permanent drawdown, Myrkdalen Lake, Norway. Plant Ecology,162:185-198.
    Olff, H., Leeuw, J.D., Bakker, J.P, Platerink, R.J., Wijnen, H.J.V.1997. Vegetation Succession and Herbivory in a Salt Marsh:Changes Induced by Sea Level Rise and Silt Deposition along an Elevational Gradient. Journal of Ecology,85:799-814.
    Olsena, Y.S., Daussea, A., Garbuttb, A., Fordb, H., Thomasa, D.N., Jones, D.L.2011. Cattle grazing drives nitrogen and carbon cycling in a temperate salt marsh. Soil Biology and Biochemistry,43(3):531-541.
    Omer, L.2004. Small-scale resource heterogeneity among halophytic plant species in an upper salt marsh community. Aquatic Botany,78:337-448.
    Osgood, D.T., Santos, M.C.F. V., Zieman, J.1995. Sediment physico-chemistry associated with natural marsh development on storm-deposited sandbar. Marine Ecology,120:271-83.
    Palmer, M.W.1993. Putting things in even better order:the advantages of canonical 311 correspondence analyses. Ecology,74:2215-2230.
    Pennings, S.C., Callaway, R.M.2000. The advantages of clonal integration under different ecological conditions:A community-wide test. Ecology,81(3):709-716.
    Pennings, S.C., Grant, M.B., Bertness, M.D.2005. Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology, 93:159-167.
    Pennings, S.T, Selig, E.R., Houser, L.T., Bertness, M.D.2003. Geographic variation in positive and negative interactions among salt marsh plants. Ecology,84(6):1527-1538.
    Petillon, J., Erfanzadeh, R., Garbutt, A., Maelfait, J.P., Hoffmann, M.2010. Inundation Frequency Determines the Post-Pioneer Successional Pathway in a Newly Created Salt Marsh G-3577-2011. Wetlands,30:1097-1105.
    Pezeshki, S.R.,2001. Wetland plant responses to soil flooding. Environmental and Experimental Botany,46:299-312.
    Price, E.A.C., Marshall, C.1999. Clonal plants and environmental heterogeneity:An introduction to the proceedings. Plant Ecology,141:3-7.
    Proffitt, C. E., Steven, E. T., Kelth, R. E.2003. Genotype and elevation influence Spartina alterniflora colonization and growth in a salt marsh. Ecological Applications,13(1):180-192.
    Rasser, M. K., Fowler, N. L., Dunton, K. H.2013. Elevation and Plant Community Distribution in a Microtidal Salt Marsh of the Western Gulf of Mexico. Wetlands,33:575-583.
    Reed, T.E., Waples, R.S., Schindler, D.E., Hard, J.J., Kinnison, M.T.2010. Phenotypic plasticity and population viability:the importance of environmental predictability. Proceedings of the Royal Society B:Biological Sciences,277:3391-3400.
    Roiloa, S.R., Alpert, P., Tharayil, N., Hancock, G., Bhowmik, P.C.2007. Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitats. Journal of Ecology, 95:397-405.
    Sanchez, J.M., Izco, J., Medrano, M.1996. Relationships between vegetation zonation and altitude in a salt-marsh system in northwest Spain. Journal of Vegetation Science,7:695-702.
    Sanchez, J.M., Otero, X.L., Izco, J.1998. Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of Northwest Spain. Plant Ecology,136: 1-8.
    Sanderson, J.S., Kotliar, N.B., Steingraeber, D.A.2008. Opposing Environmental Gradients Govern Vegetation Zonation in an Intermountain Playa. Wetlands,28:1060-1070.
    Schmitz, O.J.2003. Linking individual-scale trait plasticity to community dynamics. Ecology,84: 1081-1082.
    Scholten, M., Blaauw, P.A., Stroetenga, M., Rozema, J.1987. The impact of competitive interactions on the growth and distribution of plant species in salt marshes. Pages 270-283 in A. H. L. Huiskes, C. W. P. M. Blom, and J. Rozema, editors. Vegetation between land and sea Dr. W. Junk, Dordrecht, The Netherlands.
    Silvestri, S., Defina, A., Marco Marani, M.2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science,62:119-130.
    Simas, T., Nunes, J.P., Ferreira, J.G.2001. Effects of global climate change on coastal salt marshes. Ecological Modeling,139:1-15.
    Small, C., Nicholls, R. J.2003. A Global Analysis of Human Settlement in Coastal Zones. Journal of Coastal Research,19(3):584-599.
    Snow, A. A.,Vince, S.W.1984. Plant zonation in an Alaskan salt marsh:I. An experimental study of the role of edaphic conditions. Journal of Ecology,72:669-684.
    Stanton, M.L., Thiede, D.A., Roy, B.A.2004. Consequences of Intraspecific Competition and Environmental Variation for Selection in the Mustard Sinapsis arvensis:Contrasting Ecological and Evolutionary Perspectives. The American Naturalist,164 (6):736-752.
    Stuefer, J.F.,1998. Two types of division of labour in clonal plants:benefits, costs and constraints. Perspectives on Plant Ecology, Evolution and Systematics,1:47-60.
    Tansley, A.G.1939. The British Islands and their vegetation. Cambridge, UK:Cambridge University Press.
    terBraak, C.J.F.1986. Canonical correspondence analysis:a new eigenvector technique for 331 multivariate direct gradient analysis. Ecology,67:1167-1179.
    Travisa, J.M.J., Brooker, R.W., Clarka, E.J., Dytham, C.2006. The distribution of positive and negative species interactions across environmental gradients on a dual-lattice model. Journal of Theoretical Biology,241:896-902.
    Ugland K.I., Gray, J.S., Ellingsen, K.E.2003.The species-accumulation curve and estimation of species richness. Journal of Animal Ecololy,72:888-897.
    Van der Valk, A G.1981. Succession in wetlands:a Gleasonian approach. Ecology,62(6):88-96.
    VanWijnen, H.J., Bakker, J.P.1999. Nitrogen and phosphorus limitation in a coastal barrier salt marsh:the implications for vegetation succession. Journal of Ecology,87:265-272.
    Vasquez, E.D., Glenn, E.P., Guntenspergen, G.R., Brown, J.J., Nelson, S.G.2006. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. American Journal of botany,93(12): 1784-1790.
    Vermaat, J.E.,2009. Linking clonal growth patterns and ecophysiology allows the prediction of meadow-scale dynamics of seagrass beds. Perspectives in Plant Ecology, Evolution and Systematics,11:137-155.
    Wahl, L.M.2002. Evolving the Division of Labour:Generalists, Specialists and Task Allocation. Journal of Theoretical Biology,219:371-388.
    Wang, C.H., Lu, M., Yang, B., Yang, Q., Zhang, X.D., Hara, T., Li, B.2010. Effects of environmental gradients on the performances of four dominant plants in a Chinese saltmarsh: implications for plant zonation. Ecological Research,25:347-358.
    Wijesinghe, D.K., Hutchings, M.J.1997. The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant:an experimental study with Glechoma hederacea. Journal of Ecology,85:17-28.
    Wilson, J.B.1999. Guilds, functional types and ecological groups. Oikos,86:507-522.
    Wilson, J.B.2011. The twelve theories of coexistence in plant communities:the doubtful, the important and the unexplored. Journal of vegetation Science,22:184-195.
    Wilson, S.D., Keddy, P.A.1985. Plant zonation on a lakeshore gradient:physiological response curves of component species. Journal of Ecology,73:851-860.
    Wilson, J. B., Stubbs, W. J.2012. Evidence for assembly rules:limiting similarity within a saltmarsh. Journal of Ecology,100(1):210-221.
    Yu, Z., McAndrews, J.H., Siddiqi, D.1996. Influences of Holocene climate and water levels on vegetation dynamics of a lakeside wetlands. Canadian Journal of Botany,74(10):1602-1615.
    Yuan, Y., Wang, K., Li, D., Pan, Y., Lv, Y.2013. Interspecific Interactions between Phragmites australis and Spartina alterniflora along a Tidal Gradient in the Dongtan Wetland, Eastern China. PLoS ONE 8(1):e53843. doi:10.1371/journal.pone.0053843.
    Zacheis, A.B., Hupp, J.W., Ruess, R.W.2002. Response of. a subarctic salt marsh plant community to foraging by captive lesser snow geese. Ecoscience,9:320-331.
    Zhou, J.L., Wu, Y.Q., Kang, S., Zhang, J.2007.Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuarine Coastal and Shelf Science,71:47-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700