高浓度盐筛选农药降解菌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,利用微生物降解农药、处理农药污染的研究,日益被人们所重视。筛选出高效降解菌,是此研究基础和重点,而筛选方法的合理性更是能否筛选出高效降解菌的关键。
     本文针对传统农药降解菌筛选方法中存在的一些弊端,对农药降解菌筛选方法进行了有创新和改良。以西南大学周边普通大田土壤为研究材料,通过使用高浓度NaCl筛选方法,分离得到多株耐盐株菌株,并以我国农田中广泛使用的几类农用化学物质为研究对象,对耐盐菌株的在一定浓度农药中生长及降解特性进行了初步探讨,为降解菌筛选方法的创新,提出了有益的参考。本研究主要结果如下:
     1耐盐菌株的筛选
     通过使用含有10%浓度NaCl的LB富集培养基对土壤中微生物进行筛选,分离出22株耐盐微生物,使用用含有15%浓度NaCl的LB培养基再次对22株耐盐菌株进行复筛得到6株极度耐盐菌株(el-e6),其它16株为中度耐盐菌株(m1-m16)。
     2耐盐菌株的耐药性检测
     分别使用四种农用化学物质对其抗药性进行检测,发现在200ppm药物浓度下,22株耐盐菌在48小时内生长被抑制,但效果并不明显,其最大生长量和所需时间均与不加药相差无儿,表现出较高的耐药性。说明耐盐菌对其他有毒害物质亦有耐受力。
     3耐盐菌株降解率研究
     通过对22株耐盐菌降解率的测定发现,在50mg/L药物浓度下,22株耐盐菌对四种农用化学物质均有一定的降解效果。在对广灭灵、高效氯氰菊酯、3,4-二氯苯胺、毒死蜱的处理2d后,中等耐盐菌株平均降解率分别为10.8%、39.5%、34.0%、28.6%。高耐盐菌株分别为25.1%、76.4%、83.9%、63.6%。可看出高耐盐居住的降解能力,远高于中等耐盐菌株,说明植株耐盐性与其降解效率有一定的相关关系。
     4对高耐盐菌株的鉴定及降解、生长研究
     通过对6株耐盐菌在50mg/L药物浓度下降解及生长对照曲线,可发现其降解效率可能受到菌株生长期和药物残留量两方面的影响:1)在菌株活性最强的对数生长期,菌株降解效率最高,而随着菌株生长进入衰亡期,其降解效率逐步降低。2)在药物残留量较高时,菌株降解效率较高,而随着药物残留量的减少,其降解效率也随之降低。符合一级动力学原理。通过16srRNA检测6株高耐盐农药降解菌株鉴定结果如下:el与蜡样芽孢杆菌Bacillus cereus strain TAUC5相似性最高(>99.9%)e2、e4与地衣芽孢杆菌Bacillus licheniformis strain BPRIST006相似性最高(97.8%)e3与短小杆菌Bacillus pumilus sp. GN-6目似性最高(99.1%),e5与Uncultured Bacillus sp.相似性最高(97.9%)。e6通过鉴定与放线菌链霉菌Streptomyces sp.702(2011)相似性最高(98.6%)。
In recent years, research of degradation pesticide, processing pesticide-contaminated by using microbial was attended increasingly. Selected high efficiency degradation bacterium, is the foundation and focus of this research, and rationality of the method is the key of high efficiency degradation bacterium selection.
     Based on the disadvantage exist in traditional pesticide degradation bacterium screening methods, this article proved the innovation and improvement for the method. This research test if it is possible by using high salt as extreme condition to found farm chemical degradation bacteria. Four chemical: Beta-cypermethrin, Chlorpyrifos,clomazone,3,4-DCA,were used as contaminant in this experiment. So these series of researches have provided references to the further works on environal-microbe applying on farm chemical, the main results are as follows:
     1 The selection of salt-tolerant bacteria
     A total of 22 bacteria isolates from the enrichment survived and grew on the CHS(10%NaCl)medium agar plate considered to be the moderately slat-tolerant bacteria (MSTB).All the colonies can be observed clearly in 4ds incubate time on CHS medium agar plate. In the experiment of isolating extremely salt-tolerant bacteria (ESTB),only 6 moderately slat-tolerant bacteria (MSTB) survived and grew on the EHS (15%NaCl) medium.
     2 Tolerant of farm chemical
     As the result shown, the growth of 6 ESTB strains are different by using normal LB medium.But the optical density value of all strains rise to more than 0.7 after 12h and 1.0 after 24h incubation. Although there is passive affection of growth in initial 24h by using 4 chemical adding medium. But the optical density also can rise to about 2.0 in 48h like grown in normal LB medium. Growth of almost another 16 strains are like the same.So we can observe difference of 22 strains growth and the affection of using normal LB medium and 4 chemical adding medium, but it is consider too slight to impacting the degradation.
     3 Degradation of 4 agricultural chemicals by STBs
     The following can be concluded from above analysis on the bio-degradation efficiency (BE) after two days of culture of the isolated bacteria.1) The ESTBs had greater BE than the MSTBs, which is true identically for four agricultural chemicals. The improved BE between the ESTBs and NSTBs was the most for 3,4- dichloroaniline (49.9%), and the least for clomazone (14.2%) among the four chemicals.2) The bio-degradation efficiency was the highest for 3,4-dichloroaniline, and the least for clomazone.3) The most effective bacteria varied among the chemicals, e5 for clomazone (BE 32.0%) and beta-cypermethrin (BE 85.8%), e6 for 3,4- dichloroaniline (BE 94.9%) and e3 for chlorpyrifos (BE 79.3%).
     4 The identify and degradation research of ESTBs
     Through the six in ESTBs 50mg/l concentration chemical solution growth and degradation curve, found its (DE) may be affected by growth time and drug residues:1) the most efficiency degradation was observed in grown period of logarithm, and on the contrary the lowest DE was shown in decay stage 2)the positive correlation was found between the DE and chemical residues The rate of degradation is vary fit first-order kinetics. Through the 16srRNA detection 6 ESTBs appraisal result is as follows:e1 is identified as Bacillus cereus strain TAUC5 (similarity>99.9%).e2,e4 is identified as Bacillus licheniformis (similarity≈97.8%).e3 is identified as Bacillus pumilus sp. GN-6(similarity≈99.1%). e5 is identified as Uncultured Bacillus sp. partial (similarity≈97.9%).e6 is identified as Streptomyces sp.702(2011) (similarity≈98.6%)
引文
[1]Fernando P. Agriculture, pesticides, food security and food safety[J]. environmental science & policy, 2006,8(2):685-692
    [2]Barcelo'Z D, Hennion M C. Trace determination of pesticides and their degradation products in water [J]. Techniques and Instrumentation in Analytical Chemistry,1997,19:542
    [3]Milton D T, Stephen J K, Fernando P C, et al. Pesticide residues in coastal tropical systems: distribution, fate and effects [J]. Marine Pollution Bulletin,2005,50(4):485
    [4]安凤春,莫汉宏,杨克武,等.农药在土壤中迁移的研究方法[J].环境化学,1994,13(3):214-217
    [5]蔡道基.农药环境毒理学研究[M].北京:中国环境科学出版社:1993
    [6]丁应详.有机污染物在土壤-水体系中的分配理论[J].农村生态环境,1997,13(3):42-45
    [7]方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1):94-97
    [8]苏少泉,宋顺祖.中国农田杂草化学防治[M].北京:中国农业出版社,1995:220
    [9]郭栋儒.广灭灵防除移栽水稻田杂草的效果[J].杂草科学,2000(1):19-20
    [10]王险峰,关成宏.广灭灵使用技术进展[J].农药,2000,39(9):42-44
    [11]刘登才.除草剂广灭灵的合成[J].农药,2000,39(5):12-13
    [12]Earnest L D. Potential for command use in rice[J]. Proc. South. Weed Sci. Soc.,1997,50:180-181
    [13]David L J. Rice (Oryza sativa) respones to clomazone[J]. Weed Science,1998,46:374-380
    [14]Merrosh T L, Simsm G K, Stoller E W. Clomazone fate in soil as affected by microbial activity, temperature, and soil moisture[J]. Journal of Agricultural and Food Chemistry,1995,43(2):537-543
    [15]Liu S Y. Microbial transformations of clomazone [J]. Journal of Agricultural and Food Chemistry, 1996,44(1):313-319
    [16]范志金,刘丰茂.氯氰菊酯的名称和组成及其光学异构体[J].农药科学与管理,1999,20(2):911-913
    [17]朱鲁生,王军.甲氰菊酯和辛硫磷混合剂在苹果及土壤中的残留分析[J].农药,2000,39(2):25-27
    [18]曹爱华,刘保安,徐光军.“功夫”菊酯在烟草及土壤中的残留消解趋势和安全使用的研究[J].烟草科技,1997,6:43-44
    [19]Fomsgaard I S.Degradation of pesticidesin subsurface soils,unsaturated zone-A review of methods and results[J].J.Environ.Anal.Chem.,1995,58:231-245
    [20]Dalton R L, Evans A W, Rhodes R C.Disappearance of diuron from cotton field soil[J]. Weeds,1996, 14:31-331
    [21]Mp W, Armstrong R.Trends in the use of pesticides and pestiside residues on Queensland wool[J]. Australian Veterinary Journal,1998,76(10):694-697
    [22]Macro G J. Natural product interactions during aniline metabolism including their incorporation in biopolymers [J]. Journal of Agricultural and Food Chemistry,1991,39:2101-2111
    [23]Smith A E, Briggs G G. The fate of the herbicide chlortoluron and its possible degradation products in soils [J], Weed Research,1988,18:1-71
    [24]上海师范大学,福建师范人学主编.化工基础[M].北京高等教育出版社:2001:74-90
    [25]曹如珍.农药在环境中的光化学分解作用.农药译从[J],1983,5(5):44-47
    [26]Kentwood D W. Contrasts in behavior:Adaptations in the aquatic and terrestrial environments [J]. Animal Behaviour,1979,27(4):1279-1280
    [27]Bradbury P J, John H. Paleoecology, inland aquatic environments [J].Encyclopedia of Earth Sciences Series,1979,18(3):541-551
    [28]姚建仁,焦淑贞.化学农药光解研究进展[J].农药译丛,1989,11:26-30
    [29]岳永德,刘根风.农药的环境化学及其应用[J].安徽农业大学学报,1995,22(4):3
    [30]尤民生,刘新.农药污染的生物降解与生物修复[J].生态学杂志,2002,23(1):73-77
    [31]李顺鹏,沈标.甲基对硫磷的降解菌的生态效应及应用[J].土壤学报,1996,33(4):380-384
    [32]方玲.降解有机氯农药的微生物菌株分离筛选及其应用效果[J].应用生态学报,2000,11(2):249-252
    [33]程国峰,李顺鹏,沈标.微生物降解蔬菜农药研究[J].应用与环境微生物学报,1998,4(1):27-36
    [34]杨小红,李俊.微生物降解农药的研究新进展[J].微生物学通报,2003,30(6):93-96
    [35]薛节庆,基因工程技术在降解农药中的应用[J].环境科学与技术,2004,27:173-175
    [36]滕春红,苏少泉.除草剂在土壤中的微生物降解及污染土壤的生物修复[J].农药,2006,12:43-45
    [37]Reza M, Shiv O P, Naro Markarian, et al.Biofiltration of residualn fertilizer nitrate and atrazine by rhizobium meliloti in saturated and unsaturated sterile siol solumns. Environmental Science and Technology.2001,35(8):1610-1615
    [38]邵劲松,沈标,李顺鹏,等.一株氯磺隆降解菌的分离鉴定及其特性研究[J],土壤学报,2003,40(6):952-956
    [39]郎印海,蒋新,赵其国,等.磺酰脲除草剂在土壤中的环境行为研究进展[J],应用生态学报,2002,12(9):33-34
    [40]闻长虹.磺酰脲类类除草剂的微生物降解与转化[J],池州师范学报,2004,18(5):46-47
    [41]间春秀,赵长山,刘亚光.微生物降解长残效除草剂的研究进[J],东北农业大学学报,2005,36(5):57-58
    [42]Daniel R, Michael A. A model describing pesticide bioavailability and biodegradation in soil [J]. Soil Science Society of America Journal,1997,4:1078-1084
    [43]潘渠,杨志荣.一株降解草甘磷的真菌分离鉴定[J],四川大学学报(自然科学版),2001,38(1):170-173
    [44]颜彗.扑草净降解菌降解特性、降解基因保存序列的扩增及同源性分析[J],城市环境与城市生态,2002,15(4):61-63
    [45]王学东,欧晓明,王慧利,等.除草剂咪唑烟酸高效降解菌的筛选及其降解性能的研究[J],农业环境科学学报,2003,22(1):102-105
    [46]王学东,欧晓明,王慧利,等.咪唑烟酸高效降解菌的降解特性[J],中国环境科学,2003,23(1):21-24
    [47]郭华,杨红.乙草胺及其它酰胺类除草剂在环境中的降解与迁移[J].农药,2006,37(6):7-10
    [48]Boyd R A. Herbicides and herbicide degraded in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa [J]. The Science of the Total Environment,2000,248:241-253
    [49]Thomas L. Potter Thomas L. Carpenter, Occurrence of alachlor environmental degradation products in groundwater [J]. Environmental Science and Technology,1995,29:1557-1563
    [50]马文漪,温晓艳,刘方,等.微生物降解除草剂氯磺隆、甲磺隆和丁草胺的毒性效应(Ames试验)[J].环境化学.1991,10(3):59-63
    [51]朱鲁生.乙草胺和莠去津对土壤微生物的影响及安全性评价[J].土壤与环境,2000,9(1):71-72
    [52]王保军,刘志培,杨惠芳.单甲脒农药的微生物降解代谢研究[J].环境科学学报,1998,18(3):296-302
    [53]虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与发展策略[J].环境科学进展,1996,4(3):28-36
    [54]戴树桂,宋文华.有机污染物生物降解途径控制反应的预测与优势菌株选择模型的建立[J].环境化学,1998,17(6):547-553
    [55]戴树桂,宋文华.有机污染物生物降解途径控制反应的预测与优势菌株选择模型的建立[J].环境化学,1998,17(6):547-553
    [56]陈亚丽,张先恩,刘虹,等.甲基对硫磷降解菌假单胞菌WBC-3的筛选及降解性能的研究[J].微生物学报,2002,42(2):490-497
    [57]钞亚鹏,赵永芳,刘斌斌,等.甲基营养菌WB-1甲胺磷降解酶的产生、部分纯化及性质.微生物学报[J],2000,40(5):523-527
    [58]Wei X R, Shao M G, Fu, Xian Q. The effects of land use on soil N mineralization during the growing season on the northern Loess Plateau of China[J]. Geoderma,2011,160(1-2):590-598
    [59]莫测辉,蔡全英,吴启堂,等.城市污泥与玉米秸秆堆肥中多环芳烃(PAHs)的研究[J].农业工程学报,2001,17(5):73-77
    [60]王永杰,李顺鹏,严淑玲.活性微生物与农药降解[J].中国沼气,1999,17(14):10-13
    [61]Hundt K, Wagner M, Becher D, et al. Effect oselectedenvironmental factors on degradation and mineralizatioofbiaryl compounds by bacterium ralstonia pickettii in soilancompost[J]. Chemosphere,1998, 36(10):2321-2335
    [62]Sharpe M.Towards sustainable pesticides [J]. Journal of Environmental Monitoring,1999,(1):33-36
    [63]Shortt N K, Richardson E A. Re-engaging with the physical environment:a health-related environmental classification of the UK[J]. Area,2011,43(1):76-87
    [64]Fantroussi S. Enrichment and Molecular Characterization of a Bacterial Culture That Degrades Methoxy-Methyl herbicides and their aniline derivatives [J]. Applied and Environmental Microbiology, 2000,66(12):5110-5115
    [65]Mitchell G, Bartlett D W, Fraser T E M, et al. Mesotrione:a new selective herbicide for use in maize[J]. Pest Management Science,2001,57:120-128
    [66]Dyson J S, Beulke S, Brown C D, et al. Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications[J]. Journal of Environmental Quality,2002,31(2):613-618
    [67]Durand S, Martin A S, Sancelme M, et al. Biotransformation of the triketone herbicide mesotrione by a Bacillus strain. Metabolite profiling using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry,2006,20(17):2603-2613
    [68]Dejonghe W, Berteloot E, Goris J, et al. Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovoraxstrain. Applied and Environmental Microbiology, 2003,69:1532-1541
    [69]Fulthorpe R R,McGowan C,Maltseva O V, et al.2,4-Dichlorophenoxyacetic acid degrading bacteria: mosaics of catabolic genes. [J] Applied and Environmental Microbiology.1995,61 (9):3274-3281
    [70]Thakur I S, Verma P, Upadhyaya K C. Involvement of plasmid in degradation of pentachlorophenol by Pseudomonas sp. from a chemostat[J].Biochemical and Biophysical Research Communications. 2001,286 (1):109-113
    [71]Eiji F, Kiyoshi T, Hisao O. Bacterial reduction of toxic hexavalent chromium using a fed-batch culture of Enterobacter cloacae strain HOl [J]. Journal of Fermentation and Bioengineering,1990,69(6):365-367
    [72]Sharma H A, Barber J T, Ensley H E, et al. A comparison of the toxicity and metabolism of phenol and chlorinated phenols by Lemna gibba, with special reference to 2,4,5-trichlorophenol[J]. Environmental Toxicology and Chemistry,1997,16(2):346-350
    [73]Xing H, He J, Sun J Q, et al. Isolation and characterization of a metsulfuron-methyl degrading bacterium Methylopila sp. S113[J]. International Biodeterioration and Biodegradation,2007,60(3)152-158
    [74]Yu Y L, Wang X, Luo M Y, et al. Fungal degradation of metsulfuron-methyl in pure cultures and soil. [J] Chemosphere,2005,60(4):460-466
    [75]Zhu Y W, Zhao Y H, Lin X Y, et al. Isolation, Characterization and Phylogenetic Analysis of an Aerobic Bacterium Capable of Degrading Bensulfuronmethyl[J]. World Journal of Microbiology and Biotechnology,2005,21:1195-1200
    [76]Sudhakara M, Priyadarshinia C, Doblea M, P, et al. Marine bacteria mediated degradation of nylon 66 and 6 [J]. International Biodeterioration & Biodegradation.2007,60 (3):144-151
    [77]Koutny M, Ruzicka J, Chlachula J.Screening for phenol-degrading bacteria in the pristine soils of south Siberia[J]. Applied Soil Ecology,2003,23 (1):79-83
    [78]De J, Ramaiah N. Characterization of marine bacteria highly resistant to mercury exhibiting multiple resistances to toxic chemicals[J]. Ecological Indicators,2007,7 (3):511-520
    [79]Samina W, Ghulam J, Masood A. Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain[J]. Chemosphere,2008,71(7):1348-1355
    [80]Michaud L, Di M G, Bruni V, et al. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica) [J]. Marine Pollution Bulletin,2007,54 (11)1754-1761
    [81]Hao,R X, Lu A H.Biodegradation of heavy oils by halophilic bacterium[J]Progress in Natural Science, 2009,19(8):997-1001
    [82]Sood N, Lal B. Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems[J].Chemosphere,2008,70(8):1445-1451
    [83]张桃英.用ASE快速溶剂萃取茶叶中六六六、DDT的残留[J].食品研究与开发,2004,25(2):115-117
    [84]王元鸿,荣会.毛细管气相色谱分析人参中有机氯农药残留量[J].分析化学,1994,22(9):9319
    [85]尹君,金国勋,蔡贞,等.30%乙酰甲胺磷(乳油)在鸡毛菜上的消解动态试验研究[J].上海农业科技,2004,(4):83-84
    [86]杨丽莉,邓延慧.超声波提取—气相色谱法测定土壤中残留六六六和滴滴涕[J].环境监测管理与技术,2002,14(3):33-34
    [87]弓爱君,刘建森,莠去津.在土壤及作物中残留量测定[J].农药科学与管理,2000,21(6):16-19
    [88]汤桦,孔祥虹,李建华,等.浓缩苹果汁中多种拟除虫菊酯类农药残留量的气相色谱·质谱测定方法[J].分析试验室,2004,23(8):25-27
    [89]Lehotay S J, Aharonson N, Pfeil E, et al.Development of a Sample Preparation Technique for Supercritical Fluid Extraction for Multiresidue Analysis of Pesticides in Produce [J]. Journal of AOAC INTERNATIONAL,1995,78(3):831-834
    [90]Snyder J, Grob R L, Mcnally M E, et al. Comparison of supercritical fluid extraction with classical soncation and soxhlet extractions for selected pesticides [J]. Anal Chem,1992,64:1940-1946
    [91]吴慧明,张晶,施海燕,等.柑桔和土壤中速霸螨的残留分析方法研究[J].农业环境科学学报,2003,22(5):617-619
    [92]胡小钟,储晓刚,余建新,等.气相色谱—质谱法快速筛选测定浓缩苹果汁中105种农药残留量[J].分析测试学报,2003,22(6):26-31
    [93]易军,张水坝,李云春,等.茶叶中多种农药残留的气相色谱法测定[J].厦门大学学报,2002,41(3):334-339
    [94]陶传江,郑姗姗,赵伟,等.蔬菜样本层析柱净化方法研究[J].2001,22(22):18-20
    [95]朱鲁生,王军.甲氰菊酷和辛硫磷混合剂在苹果及土壤中的残留分析[J].农药,2000,39(2):21-22
    [96]李军,刘玉纯.磺化法净化中丙酮对α,p六六六的影响与消除[J].安徽地质,2003,13(1):58-60
    [97]田金改,高天兵,张曙明,等.2种出口中成药中有机氯类农药的含量测定[J].中国中药杂志2000,25(5):279-282
    [98]李娟,李光艾,杜敏.混凝沉淀法预处理乐果农药废水的正交实验研究[J].中山大学学报,2000,20(5):106-109
    [99]虞云龙,陈尊三,樊德方,等.中草药上农药多残留分析方法探讨[M].第八次全国色谱学术报告会文集:中国色谱学会,1991:110
    [100]徐宏喜,陈瑞华,张炯炯,等.中药中有机磷农药的残留量研究[J].中草药,1990,21(3):11-12
    [101]俞飞,蔡道基,单正军,等.20%三哇磷乳油在稻田上的残留试验[J].农业环境科学学报,2004,23(2):384-386
    [102]赵维佳,高巍,陈如东,等.青菜中多种农药残留量的分析方法[J].南京农业大学学报,2004,27(1):106-107
    [103]吴慧明,张晶,施海燕,等.柑桔和土壤中速霸螨的残留分析方法研究[J].农业环境科学学报,2003,22(5):617-619
    [104]白桦,邱月明,郝楠,等.气相色谱·质谱法测定粮谷中多效哇残留量[J].检疫检验科学,2004,14(3):54-55
    [105]许汉,林安清,古珑,等.果蔬中107种残留农药的气相色谱·质谱检测方法[J].分析测试学报,2004,23(3):34-38
    [106]刘永波,贾立华,牛淑妍,等.气—质联用快速检测蔬菜、水果中农药多残留的分析方法[J].青岛科技大学学报,2003,24(6):491-495
    [107]温可可,邱月明.超临界流体萃取在食品农药残留量检验中的应用[J].分析仪器,1995,(2):13-15
    [108]郭亚东,马银海,李瑙,等.超临界流体色谱测定牛奶中乳清酸的含量[J].食品科学,2004,25(5):145-147
    [109]Sieman M, Adersson L I, Mosbach K. Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymer [J]. Journalof Agriculturaland Food Chemistry,1996,44(1):141-145
    [110]Surugiu J, Ye L, Yihnaz E, etal. An enzyme-linked molecularly imprinted sorbent assay[J]. ANALYST-LONDON-SOCIETY OF PUBLIC ANALYSTS THEN ROYAL SOCIETY OF CHEMISTRY,2000,125:13-16
    [111]Ngeh N J, Foley D H, Kuan S S. Parathion antibodies on piezoelectric crystals[J]. Journal of the American Chemical Society,1995,108(18):5444-5447
    [112]蔡顺香.台湾蔬菜农药残留的预防措施及其启示[J].福建农业科技,1999,(4):25-26
    [113]高晓辉.蔬菜上农药残留快速检测势在必行[J].农药科学与管理,2000,21(1):16
    [114]高晓辉,朱光艳.蔬菜上农药残毒快速检测技术—酶抑制法检测有机磷和氨基甲酸醋类农药[J].农药科学与管理,2000,24(4):29-31
    [115]刘祥英,柏连阳.土壤微生物降解磺酰脲类除草剂的研究进展[J].现代农药,2006,5(1):29-32
    [116]刘晓冰,Herbert S J覆盖作物的生态效应[J].应用生态学报,2002,13(30):365-368
    [117]刘玉焕,钟英长.真菌降解有机磷农药乐果的研究[J].环境科学学报,2000,20(1):95-99
    [118]虞云龙,宋凤鸣,郑重.一株广谱性农药降解菌(Alcaligenes sp.)的分离与鉴定[J].浙江农业大学学报,1997,23(2):111-115
    [119]张松柏,张德咏,罗香文,尹乐斌,刘勇.甲氰菊酯降解菌鉴定及其降解特性[J].环境污染与防治,2008,30(7):9-11
    [120]赵宇蕾,呼世斌,秦宝福,等.联苯菊酯降解菌的筛选及降解特性研究[J].西北农业学报,2009,(3):273-276
    [121]郑永良,刘德立,陈舒丽,赵莉,肖文精.一株甲基对硫磷高效降解菌的鉴定及特性研究[J].环境科学研究,2006,19(4):100-104
    [122]郑重.农药的微生物降解[J].环境科学,1990,11(2):68-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700