三种蝗虫线粒体基因组测序与直翅目比较线粒体基因组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用L-PCR结合二次嵌套PCR技术对蝗总科的3种蝗虫中华蚱蜢(Acrida cinerea)、永登短鼻蝗(Filchnerella yongdengensis)和东亚飞蝗(Locusta migratoria manilensis)的线粒体基因组全序列进行测定、拼接和注释,比较分析了这3种蝗虫以及NCBI中已收录的、本研究小组其他成员所测定的共计58种直翅目昆虫线粒体基因组全序列,构建了这些线粒体基因组22种tRNA和2种rRNA的通用二级结构模型。获得的主要结果如下:
     (1)所测得的3种蝗虫的线粒体基因组长度分别为东亚飞蝗15895bp、中华蚱蜢15599bp和永登短鼻蝗15674bp。它们均具有典型的昆虫线粒体基因组基因组成:13种蛋白质编码基因、22种tRNA编码基因以及2种rRNA编码基因。3种蝗虫与已报道蝗亚目昆虫拥有相同的基因次序,相较于已发表的螽亚目昆虫的线粒体基因组,其trnK和trnD发生了转位,这一线粒体基因组基因排序特征有可能是蝗亚目昆虫特有特征。
     (2)中华蚱蜢和永登短鼻蝗线粒体基因组的cox1都是非常规的ATN起始密码子。而3种蝗虫线粒体基因组均有不完全的终止密码子T或TA,特别是在nad5基因中。同义密码子的使用与密码子第三位点的碱基组成紧密相关,而与基因组所编码的tRNA反密码子匹配情况关系不大,通常,密码子第三位点为A/T的密码子使用频次高于G/C的密码子。
     (3)3种蝗虫线粒体基因组的tRNA二级结构均存在一定数量的碱基错配,且均以G-U弱配对为主。tRNA基因的保守程度与与其相关的密码子使用频率无关,但是与其所在的编码链有关,J-链编码的tRNA要比N-链编码的tRNA保守。通过借鉴其他发表的rRNA二级结构,并与其他直翅目昆虫rRNA一级序列进行比较分析得到这3种蝗虫12S rRNA和16S rRNA二级结构。
     (4)直翅目昆虫线粒体基因组长度从疑钩额螽的14971bp到Physemacris variolosa的17004bp之间变化,平均值是15684±265bp。蛋白质编码基因的平均长度为11154±37bp,密码子数平均值为3718+12;22个tRNA基因总平均长度1447±7bp;2个rRNA基因总平均长度为2098±14bp,A+T丰富区的平均长度为835±278bp。
     (5)直翅目昆虫的线粒体基因组A+T%含量平均值为73.42%+2.45。螽亚目昆虫的A+T%要比蝗亚目的低。直翅目昆虫中A+T碱基含量最高的区域是A+T丰富区(平均值为80.9%)以及PCG的第三位点(84.8%),蛋白质编码基因第二位点最低(平均值为65.59%)。
     (6)从构建的58种直翅目昆虫的22种tRNA的通用二级结构模型上看出,除了trnS (agn),所有tRNAs序列都能够形成典型的三叶草结构,由J-链编码的tRNA通常更保守,具有更多的保守位点。而A、T碱基含量以及密码子使用频率对于tRNA序列的保守性似乎没有太大的影响。
     (7)从构建的58种直翅目昆虫的12S rRNA的通用二级结构模型上看出,蝗虫的12S rRNA由四个结构域(即结构域Ⅰ、Ⅱ、Ⅲ和Ⅳ)的28个螺旋构成。
     (8)从构建的58种直翅目昆虫的16S rRNA的通用二级结构模型上看出,16S rRNA由5个结构域(分别标记为Ⅰ、Ⅱ、Ⅳ、Ⅴ和Ⅵ),缺结构域Ⅲ。蝗虫的结构域Ⅰ简化了很多,只剩下5个螺旋,并且变异很大。
     (9)从58种直翅目昆虫的A+T丰富区的比较中可以看出,在不同昆虫中可能存在两种不同的序列结构参与线粒体基因组的复制起始调控。在所有蝗亚目、蟋蟀科和蝼蛄科昆虫A+T丰富区的中间偏'rnI基因的区域中都能形成一个约16bp左右的茎环结构,除了基部的三个碱基对外发生补偿性突变外,其他的螺旋对都非常保守,在茎环结构的5’端相邻区域有'TATA’基序,3’端有‘G(A)nT'基序。在螽亚目的其他昆虫中,在H-链靠近rrnS处超过17bp的T-簇,在T-簇的两端分别有一个嘌呤。
The complete mitogenome of Acrida cinerea, Filchnerella yongdengensis and Locusta migratoria manilensis which belong to superfamily Acridoidea of Orthoptera were determined and compared with that of other 55 orthoperans which determined by our research group and recorded in NCBI. The universal secondary structure of the mitochondrial 22 tRNA and 2 rRNA were predicted based on these mitochondrial genomes. Conclusions were showed below:
     (1)The length of the complete mitochondrial of L. m. manilensis, A. cinerea and F. yongdengensis are 15,895bp,15,599bp and 15,674bp respectively. They all display a typical gene composition found in insect mitogenomes:13 PCGs,22 tRNA genes,2 rRNA genes and an A+T-rich region. The gene arrangement of these three grasshoppers' mitogenomes is identical to those of other recorded sequences from Caelifera, which different from the ensiferans in the translocation from trnK-trnD to trnD-trnK. This arrangement of mitogenome may be the unique characteristic of caeliferans.
     (2)The typical initiation codon ATN not occurred in the mitogenomes of A. cinerea and F. yongdengensis. All the three mitogenomes have incomplete termination codon (T/TA) especially for nad5. The usage of synonymous codon markedly correlated with the nucleotide composition at third codon position, and not the anticodon of tRNA. Generally, the usage of codon that is A/T at the third codon position is higher than G/C.
     (3)The mismatches exist in secondary structure of the A.cinerea, F. yongdengensis and L. m. manilensis, mainly for wobble pair G-U. The tRNAs encoded by the J-strand generally contain more conservation sites than those encoded by the N-strand. The conservation of tRNA genes was not associated with the frequency of codon usage and A+T content. The model of secondary structure of 12S rRNA and 16S rRNA were predicted by comparative approach.
     (4)The average length of analyzed mtDNAs set is 15684±265bp, ranging from 14,971bp of R. dubia to 17,004bp of P. variolosa. The average length of PCGs is 11154±37bp, that the average codon usage number is 3718±12. The average length of 22 tRNAs gene,2 rRNAs and the A+T-rich region are 1447±7bp,2098±14bp and 835±278bp, respectively.
     (5)The average A+T% value for the analyzed mtDNAs set is 73.42%±2.45. In Orthoptera, the A+T contents of ensiferans are lower than those of caeliferan but have higher difference among the species, especially in the regions which have high A+Tcontent. Nevertheless, the second position of PCGs (average 65.59%) has the relative constant A+T concentration than other regions, whereas the A+T-rich (average 80.9%) and the third position of PCGs (84.8%) are highest.
     (6)A11 tRNAs from 58 orthopterans have the typical clover leaf structure except for trnS (agn) The tRNAs encoded by the H-strand generally contain more conservation sites than those encoded by the L-strand. The conservation of tRNA genes was not associated with the frequency of codon usage and A+T content.
     (7)The secondary structure and conserved consensus sequence of the 58 orthopterans rrnS is presented in this paper. It consists of 28 helices and subdivided into four principal domains (labeledⅠ,Ⅱ,Ⅲ, andⅣ), similar to the secondary structure of small ribosomal RNA subunits in prokaryotes.
     (8)The rrnL of orthopterans is divided into six domains (labeledⅠ,Ⅱ,Ⅲ,Ⅳ,ⅤandⅥ), each separated by a single stranded region. DomainⅢis absent in arthropods mitochondrion. Compared to the E.coli model, considerable degeneration in domainⅠof Orthoptera leads to only five remaining helices.
     (9)A stem-loop structure,16 bp or longer, also exists in the same position in all of the taxa from Caelifera, Gryllidae and Gryllotalpidae. Furthermore, at the basal three couplets was well established by CCSs and conserved in other pairs of the stem-loop structure. The flanking regions, including "TATA" on the 5'end and "G (A)nT" on the 3'end, are also conserved in Caelifera. In other ensiferans exist a common feature with a long T-stretch (>17 bp) next to rrnS on the H-strand, bounded by a purine at either end.
引文
[1]李伟, 印莉萍.基因组学相关概念及其研究进展[J].生物学通报,2000,35(11):1-4.
    [2]赵晋平,徐平丽,孟静静, 李新国.从结构基因组学到功能基因组学[J].生命科学研究,2006,10(2):57-61.
    [3]Batzoglou, S., Pachter, L., Mesirov, J. P., Berger, B., Lander, E. S. Human and mouse gene structure:comparative analysis and application to exon prediction [J]. Genome Res,2000,10(7):950-958.
    [4]Frazer, K. A., Elnitski, L., Church, D. M., Dubchak, I., Hardison, R. C. Cross-species sequence comparisons:a review of methods and available resources [J]. Genome Res,2003,13(1):1-12.
    [5]Gregory, S. G., Sekhon, M., Schein, J., Zhao, S., Osoegawa, K., Scott, C. E., Evans, R. S., Burridge, P. W., Cox, T. V., Fox, C. A., Hutton, R. D., Mullenger, I. R., Phillips, K. J., Smith,J., Stalker, J., Threadgold, G. J., Birney, E., Wylie, K., Chinwalla, A., Wallis, J., Hillier, L., Carter, J., Gaige, T., Jaeger, S., Kremitzki, C., Layman, D., Maas, J., McGrane, R., Mead, K., Walker, R., Jones, S., Smith, M., Asano, J., Bosdet, I., Chan, S., Chittaranjan, S., Chiu, R., Fjell, C., Fuhrmann, D., Girn, N., Gray, C., Guin, R., Hsiao, L., Krzywinski, M., Kutsche, R., Lee, S. S., Mathewson, C., McLeavy, C., Messervier, S., Ness, S., Pandoh, P., Prabhu, A. L., Saeedi, P., Smailus, D., Spence, L., Stott, J., Taylor, S., Terpstra, W., Tsai, M., Vardy, J., Wye, N., Yang, G., Shatsman, S., Ayodeji, B., Geer, K., Tsegaye, G., Shvartsbeyn, A., Gebregeorgis, E., Krol, M., Russell, D., Overton, L., Malek, J. A., Holmes, M., Heaney, M., Shetty, J., Feldblyum, T., Nierman, W. C., Catanese, J. J., Hubbard, T., Waterston, R. H., Rogers, J., de Jong, P. J., Fraser, C. M., Marra, M., McPherson, J. D., Bentley, D. R. A physical map of the mouse genome [J]. Nature,2002,418(6899):743-750.
    [6]Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter,N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J. C., Mungall, A., Plumb, R. Ross, M., Shownkeen, R., Sims, S., Waterston, R. H., Wilson, R. K., Hillier, L. W., McPherson, J. D., Marra, M. A., Mardis, E. R., Fulton, L. A., Chinwalla, A. T., Pepin, K. H., Gish, W. R., Chissoe, S. L., Wendl, M. C., Delehaunty, K. D., Miner, T, L., Delehaunty, A., Kramer, J. B., Cook, L. L., Fulton, R. S., Johnson, D. L., Minx, P. J., Clifton, S. W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J. F., Olsen, A., Lucas, S. Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R. A., Muzny, D. M., Scherer, S. E., Bouck, J. B., Sodergren, E. J., Worley, K. C., Rives, C. M., Gorrell, J. H., Metzker, M. L., Naylor, S. L., Kucherlapati, R. S., Nelson, D. L., Weinstock, G. M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C. Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D. R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H. M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S. Davis, R. W., Federspiel, N. A., Abola, A. P., Proctor, M. J., Myers, R. M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D. R., Olson, M. V., Kaul, R., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G. A., Athanasiou, M., Schultz, R., Roe, B. A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W. R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J. A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D. G., Burge, C. B., Cerutti, L., Chen, H. C., Church, D., Clamp, M. Copley, R. R., Doerks, T., Eddy, S. R., Eichler, E. E., Furey, T.S., Galagan, J., Gilbert, J. G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L. S., Jones, T. A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent,W. J., Kitts, P., Koonin, E. V., Korf, I., Kulp,D., Lancet, D., Lowe, T. M., McLysaght, A., Mikkelsen, T., Moran, J. V., Mulder, N., Pollara, V. J., Ponting, C. P., Schuler, G, Schultz, J., Slater, G., Smit,A. F., Stupka, E., Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y. I., Wolfe, K.H., Yang, S. P., Yeh,R.F., Collins, F., Guyer, M. S., Peterson, J., Felsenfeld, A., Wetterstrand, K. A., Patrinos, A., Morgan, M. J., de Jong, P., Catanese, J. J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y. J. Initial sequencing and analysis of the human genome [J]. Nature,2001,409(6822): 860-921.
    [7]Frazer, K. A. Active conservation of noncoding sequences revealed by 3-way species comparisons [J]. Genome Research,2000,10:1304-1306.
    [8]Rubin, E., Pachter, L., Dubchak, I. Strategies and tools for whole genome alignments [J]. Genome Research,2003,13:73-80.
    [9]宋雪梅,李宏滨,杜立新.比较基因组学及其应用[J].生命的化学,2006,26(5):425-427.
    [10]Sonkoly, E., Bata-Csorgo, Z., Pivarcsi, A., Polyanka, H., Kenderessy-Szabo, A. Molnar, G., Szentpali, K., Bari, L., Megyeri, K., Mandi, Y., Dobozy, A., Kemeny, L., Szell, M. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS [J]. J Biol Chem,2005, 280(25):24159-24167.
    [11]Martens, J. A., Laprade, L., Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene [J]. Nature,2004,429(6991): 571-574
    [12]Nobrega, M. A., Ovcharenko, I., Afzal, V., Rubin, E. M. Scanning Human Gene Deserts for Long-Range Enhancers [J]. Science,2003,302(5644):413.
    [13]Nelson, C. E., Hersh, B. M., Carroll, S. B. The regulatory content of intergenic DNA shapes genome architecture [J]. Genome Biology,2004,5:R25.
    [14]Ovcharenko, I., Loots, G. G., Nobrega, M. A., Hardison, R. C., Miller, W., Stubbs, L. Evolution and functional classification of vertebrate gene deserts [J]. Genome Res,2005,15(1):137-145.
    [15]Jareborg, N., Birney, E., Durbin, R. Comparative analysis of noncoding regions of 77 orthologous mouse and human genepairs [J]. Genome Res,1999,9:815-824.
    [16]Frazer, K. A., Sheehan, J. B., Stokowski, R. P., Chen, X., Hosseini, R., Cheng, J. F., Fodor, S. P., Cox, D. R., Patil, N. Evolutionarily conserved sequences on human chromosome 21 [J]. Genome Res,2001,11(10):1651-1659.
    [17]Chen, R., Ali, Ⅱ. On gene prediction by cross- species comparative sequence analysis[R]. Proceedings of the IEEE Bioinformatics Conference,2003.
    [18]Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Maner, S., Massa, H., Walker, M., Chi, M., Navin, N., Lucito, R., Healy, J., Hicks, J., Ye, K., Reiner, A., Gilliam, T. C., Trask, B., Patterson, N., Zetterberg, A., Wigler, M. Large-Scale Copy Number Polymorphism in the Human Genome [J]. Science, 2004,305(5683):525-528.
    [19]Snel, B., Bork, P., Huynen, M. A. Genome Phylogeny Based on Gene Content [J]. Nature Genetics,1999,21(1):108-110.
    [20]Bansal, A. K., Meyer, T. E. Evolutionary Analysis by Whole-Genome Comparisons [J]. Journal of Bacteriology,2002,184(8):2260-2272.
    [21]宋立强, 李妍.从比较基因组学的发展理解医学生物学的重要性[J].山西医科大学学报(基础医学教育版),2005,7(2):138-139.
    [22]Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K. D., Ovcharenko, I., Pachter, L., Rubin, E. M. Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome [J]. Science,2003,299(5611): 1391-1394.
    [23]Harsha, H. C., Suresh, S., Amanchy, R., Deshpande, N., Shanker, K., Yatish, A. J., Muthusamy, B., Vrushabendra, B. M., Rashmi, B. P., Chandrika, K. N., Padma, N., Sharma, S., Badano, J. L., Ramya, M. A., Shivashankar, H. N., Peri, S., Choudhury, D. R., Kavitha, M. P., Saravana, R., Niranjan, V., Gandhi, T. K. B., Ghosh, N., Chandran, S., Menezes, M., Joy, M., Mohan, S. S., Katsanis, N., Deshpande, K. S., Raghothama, C., Prasad, C. K., Pandey, A. A manually curated functional annotation of the human X chromosome [J]. Nature Genetics,2005, 37(4):331-332.
    [24]Sheffield, N. C., Song, H., Cameron, S. L., Whiting, M. F. A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda:Insecta) and genome descriptions of six new beetles [J]. Molecular Biology and Evolution,2008,25(11): 2499-2509.
    [25]Boore, J. L. Animal mitochondrial genomes [J]. Nucleic Acids Research,1999, 27(8):1767-1780.
    [26]Chang, Y. S., Huang, F. L., Lo, T. B. The complete nucleotide sequence and gene organization of carp Cyprinus carpio mitochondrial genome [J]. J Mol Evol,1994, 38(2):138-155.
    [27]Francino, M. P., Ochman, H. Strand asymmetries in DNA evolution [J]. Trends in Genetics,1997,13(6):240-245.
    [28]Clayton, D. A. Replication of animal mitochondrial DNA [J]. Cell,1982,28(4): 693-705.
    [29]Bogenhagen, D. F., Clayton, D. A. The mitochondrial DNA replication bubble has not burst [J]. Trends in Biochemical Sciences,2003,28(7):357-360.
    [30]Lindahl, T. DNA Repair Enzymes [J]. Annual Review of Biochemistry,1982,51(1): 61-87.
    [31]Frederico, L. A., Kunkel, T. A., Shaw, B. R. A sensitive genetic assay for the detection of cytosine deamination:determination of rate constants and the activation energy [J]. Biochemistry,1990,29(10):2532-2537.
    [32]Lindahl, T. Instability and decay of the primary structure of DNA [J]. Nature,1993, 362(6422):709-715.
    [33]Touchona, M., Rocha, E. P. C. From GC skews to wavelets:A gentle guide to the analysis of compositional asymmetries in genomic data [J]. Biochimie,2008,90(4): 648-659.
    [34]Okimoto, R., Macfarlane, J. L., Clary, D. O., Wolstenholme, D. R. The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum [J]. Genetics,1992,130(3):471-498.
    [35]Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Fliik, P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers [J]. Annals of the Entomological Society of America,1994,87(6):651-701.
    [36]Simon, C., Buckley, T. R., Frati, F., Stewart, J. B., Beckenbach, A. T. Incorporating Molecular Evolution into Phylogenetic Analysis, and a New Compilation of Conserved Polymerase Chain Reaction Primers for Animal Mitochondrial DNA [J]. Annual Review of Ecology, Evolution, and Systematics,2006,37:545-579
    [37]Yamauchi, M. M., Miya, M. U., Nishida, M. Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea:Decapoda) [J]. Gene,2002,295(1):89-96.
    [38]Nardi, F., Carapelli, A., Dallai, R., Frati, F. The mitochondrial genome of the olive fly Bactrocera oleae:two haplotypes from distant geographical locations [J]. Insect Molecular Biology,2003,12(6):605-611.
    [39]Shao, R., Barker, S. C. The Highly Rearranged Mitochondrial Genome of the Plague Thrips, Thrips imaginis (Insecta:Thysanoptera):Convergence of Two Novel Gene Boundaries and an Extraordinary Arrangement of rRNA Genes [J]. Molecular Biology and Evolution,2003,20(3):362-370.
    [40]Yamauchi, M. M., Miya, M. U., Nishida, M. Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects:two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans [J]. Insect Molecular Biology,2004,13(4):435-442.
    [41]Cameron, S. L., Barker, S. C., Whiting, M. F. Mitochondrial genomics and the new insect order Mantophasmatodea [J]. Molecular Phylogenetics and Evolution,2006, 38(1):274-279.
    [42]Cameron, S. L., Whiting, M. F. Mitochondrial genomic comparisons of the subterranean termites from the Genus Reticulitermes (Insecta:Isoptera: Rhinotermitidae) [J]. Genome,2007,50(2):188-202.
    [43]Beard, C. B., Hamm, D. M., Collins, F. H. The mitochondrial genome of the mosquito Anopheles gambiae:DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects [J]. Insect Mol Biol, 1993,2(2):103-124.
    [44]Mitchell, S. E., Cockburn, A. F., Seawright, J. A. The mitochondrial genome of Anopheles quadrimaculatus species A:complete nucleotide sequence and gene organization [J]. Genome,1993,36(6):1058-1073.
    [45]Spanos, L., Koutroumbas, G., Kotsyfakis, M., Louis, C. The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata [J]. Insect Molecular Biology,2000,9(2):139-144.
    [46]Coates, B. S., Sumerford, D. V., Hellmich, R. L., Lewis, L. C. Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis [J]. Int J Biol Sci,2005,1(1):13-18.
    [47]Wilson, K., Cahill, V., Ballment, E., Benzie, J. The complete sequence of the mitochondrial genome of the crustacean Penaeus monodon:are malacostracan crustaceans more closely related to insects than to branchiopods? [J]. Mol Biol Evol,2000,17(6):863-874.
    [48]Clary, D. O., Wolstenholme, D. R. The mitochondrial DNA molecular of Drosophila yakuba:nucleotide sequence, gene organization, and genetic code [J]. Journal of Molecular Biology,1985,22(3):252-271.
    [49]Ballard, J. W. Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup [J]. J Mol Evol,2000,51(1):48-63.
    [50]Crease, T. J. The complete sequence of the mitochondrial genome of Daphnia pulex (Cladocera:Crustacea) [J]. Gene,1999,233(1-2):89-99.
    [51]Kim, I., Lee, E. M., Seol, K. Y, Yun, E. Y., Lee, Y. B., Hwang, J. S., Jin, B. R. The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera:Lycaenidae) [J]. Insect Mol Biol,2006,15(2):217-225.
    [52]Ojala, D., Montoya, J., Attardi, G. tRNA punctuation model of RNA processing in human mitochondria [J]. Nature,1981,290:470-474.
    [53]Sueoka, N. On the Genetic Basis of Variation and Heterogeneity of DNA Base Composition [J]. Proceedings of the National Academy of Sciences, USA,1962, 48:582-592.
    [54]孙啸,陆祖宏, 谢建明.生物信息学基础[M].2005,北京:清华大学出版社.
    [55]Sharp, P. M., Tuohy, T. M., Mosurski, K. R. Codon Usage in Yeast:Cluster Analysis Clearly Differentiates Highly and Lowly Expressed Genes [J]. Nucleic Acids Research,1986,14(13):5125-5143.
    [56]Miya, M., Nishida, M. Use of Mitogenomic Information in Teleostean Molecular Phylogenetics:A Tree-Based Exploration under the Maximum-Parsimony Optimality Criterion [J]. Molecular Phylogenetics and Evolution,2000,17(3): 437-455.
    [57]Crozier, R. H., Crozier, Y. C. The Mitochondrial Genome of the Honeybee Apis melliferu:Complete Sequence and Genome Organization [J]. Genetics,1993,133: 97-117.
    [58]Flook, P., Rowell, H., Gellissen, G. Homoplastic rearrangements of insect mitochondrial transfer-RNA genes [J]. Naturwissenschaften,1995,82:336-337.
    [59]Shao, R., Campbell, N. J., Barker, S. C. Numerous Gene Rearrangements in the Mitochondrial Genome of the Wallaby Louse, Heterodoxus macropus (Phthiraptera) [J]. Molecular Biology and Evolution,2001,18(5):858-865.
    [60]Thao, M. L., Baumann, L., Baumann, P. Organization of the Mitochondrial Genomes of Whiteflies, Aphids, and Psyllids (Hemiptera, Stemorrhyncha) [J]. BMC Evolutionary Biology,2004,4:25.
    [61]Covacin, C., Shao, R., Cameron, S., Barker, S. C. Extraordinary Number of Gene Rearrangements in the Mitochondrial Genomes of Lice (Phthiraptera:Insecta) [J]. Insect Mol Biol,2006,15(1):63-68.
    [62]Castro, L. R., Ruberu, K., Dowton, M. Mitochondrial Genomes of Vanhornia eucnemidarum (Apocrita:Vanhorniidae) and Primeuchroeus spp. (Aculeata: Chrysididae):Evidence of Rearranged Mitochondrial Genomes within the Apocrita (Insecta:Hymenoptera) [J]. Genome,2006,49:752-766.
    [63]Cameron, S. L., Johnson, K. P., Whiting, M. F. The Mitochondrial Genome of the Screamer Louse Bothriometopus (Phthiraptera:Ischnocera):Effects of Extensive Gene Rearrangements on the Evolution of the Genome [J]. J Mol. Evol.,2007.
    [64]Podsiadlowski, L., Carapelli, A., Nardi, F., Dallai, R., Koch, M., Boore, J. L., Frati, F. The mitochondrial genomes of Campodea fragilis and Campodea lubbocki (Hexapoda:Diplura):High genetic divergence in a morphologically uniform taxon [J]. Gene,2006,381:49-61.
    [65]Cantatore, P., Gadaleta, M. N., Roberti, M., Saccone, C., Wilson, A. C. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes [J]. Nature,1987,329(6):853-855.
    [66]Chiotis, M., Jermiin, L. S., Crozier, R. H. A molecular framework for the phylogeny of the ant subfamily dolichoderinae [J]. Mol Phylogenet Evol,2000, 17(1):108-116.
    [67]Brimacombe, R., Greuer, B., Guile, H., Kosack, M., Mitchell, P., Osswald, M., Stade, K., Stiege, W. New techniques for the analysis of intra-RNA and RNA-protein cross-linking data from ribosomes[M]. Ribosomes and protein synthesis:A practical approach.1990, Oxford UK:IRL Press,131-159.
    [68]Mindell, D., Honeycutt, R. Ribosomal RNA in vertebrates:evolution and phylogenetic applications [J]. Annual Review of Ecology and Systematics,1990, 21:541-566.
    [69]Hillis, D., Dixon, M. Ribosomal DNA:molecular evolution and phylogenetic inference [J]. Quarterly Review of Biology,1991,66(4):411.
    [70]Hamby, R., Zimmer, E. Ribosomal RNA as a phylogenetic tool in plant systematics[M]. Molecular systematics of plants.1992, New York:Chapman & Hall.
    [71]De Rijk, P., Caers, A., Van de Peer, Y., De Wachter, R. Database on the structure of large ribosomal subunit RNA [J]. Nucleic Acids Research,1998,26(1): 183-186.
    [72]Van de Peer, Y., Robbrecht, E., de Hoog, S., Caers, A., De Rijk, P., De Wachter, R. Database on the structure of small subunit ribosomal RNA [J]. Nucleic Acids Research,1999,27(1):179-183.
    [73]Moazed, D., Noller, H. F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA [J]. Journal of Molecular Biology, 1990,211(1):135-145
    [74]Hancock, J., Marshall, C., McKay, I., Gardner, S., Houslay, M., Hall, A., Wakelam, M. Mutant but not normal p21 ras elevates inositol phospholipid breakdown in two different cell systems [J]. Oncogene,1988,3(2):187-193.
    [75]Hickson, R. E., Simon, C.,Cooper, A., Spicer, G. S., Sullivan, J., Penny, D. Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA [J]. Molecular Biology and Evolution,1996,13(1): 150-169.
    [76]Gutell, R. R., Lee, J. C., Cannone, J. J. The accuracy of ribosomal RNA comparative structure models [J]. Current Opinion in Structural Biology,2002, 12(3):301-310.
    [77]Noller, H. F., Moazed, D., Stern, S., Powers, T., Allen, P. N., Robertson, J. M., Weiser, B., Triman, K. Structure of rRNA and its functional interactions in translation[M]. The Ribosome:Structure, Functions, and Evolution.1990, Washington, D.C.:American Society for Microbiology,73-92.
    [78]Hixson, J. E., Brown, W. M. A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans:sequence, structure, evolution, and phylogenetic implications [J]. Molecular Biology and Evolution, 1986,3(1):1-18.
    [79]Clary, D. O., Wolstenholme, D. R. The ribosomal RNA genes of Drosophila mitochondrial DNA [J]. Nucleic Acids Research,1985,13(11):4029-4045.
    [80]De Rijk, P., Neefs, J. M., Van de Peer, Y., De Wachter, R. Compilation of small ribosomal subunit RNA sequences [J]. Nucleic Acids Research,1992,20 Suppl: 2075-2089.
    [81]Gutell, R. R., Power, A., Hertz, G. Z., Putz, E. J., Stormo, G. D. Identifying constraints on the higher-order structure of RNA:continued development and application of comparative sequence analysis methods [J]. Nucleic Acids Research, 1992,20(21):5785-5795.
    [82]Zhang, D. X., Hewitt, G. M. Insect mitochondrial control region:a review of its structure, evolution and usefulness in evolutionary studies [J]. Biochemical Systematics and Ecology,1997,25(2):99-120.
    [83]Tsujino, F., Kosemura, A., Inohira, K., Hara, T., Otsuka, Y. F., Obara, M. K., Matsuura, E. T. Evolution of the A+T-rich region of mitochondrial DNA in the melanogaster species subgroup of Drosophila [J]. J Mol Evol,2002,55(5): 573-583.
    [84]Sbisa, E., Tanzariello, F., Reyes, A., Pesole, G., Saccone, C. Mammalian mitochondrial D-loop region structural analysis:identification of new conserved sequences and their functional and evolutionary implications [J]. Gene,1997, 205(1-2):125-140.
    [85]Crozier, R. H., Crozier, Y. C. The mitochondrial genome of the honeybee Apis mellifera:complete sequence and genome organization [J]. Genetics,1993,133(1): 97-117.
    [86]Boore, J. L., Collins, T. M, Stanton, D., Daehler, L. L., Brown, W. M. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements [J]. Nature,1995,376(6536):163-165.
    [87]Boore, J. L., Brown, W. M. Big trees from little genomes:mitochondrial gene order as a phylogenetic tool [J]. Current Opinion in Genetics & Development, 1998,8(6):668-674.
    [88]Friedrich, M., Muqim, N. Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum [J]. Molecular Phylogenetics and Evolution,2003,26(3):502-512.
    [89]Lewis, O. L., Farr, C. L., Kaguni, L. S. Drosophila melanogaster mitochondrial DNA:completion of the nucleotide sequence and evolutionary comparisons [J]. Insect Molecular Biology,1995,4(4):263-278.
    [90]Yukuhiro, K., Sezutsu, H., Itoh, M., Shimizu, K., Banno, Y. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori [J]. Molecular Biology and Evolution,2002,19(8):1385-1389.
    [91]Nardi, F., Carapelli, A., Fanciulli, P. P., Dallai, R., Frati, F. The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: evidence for heteroplasmy and tRNA translocations [J]. Molecular Biology and Evolution,2001,18(7):1293-1304.
    [92]Navajas, M., Le Conte, Y., Solignac, M., Cros-Arteil, S., Cornuet, J. M. The complete sequence of the mitochondrial genome of the honeybee ectoparasite mite Varroa destructor (Acari:Mesostigmata) [J]. Mol Biol Evol,2002,19(12): 2313-2317.
    [93]Masta, S. E., Boore, J. L. The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs [J]. Molecular Biology and Evolution,2004,21(5):893-902.
    [94]Negrisolo, E., Minelli, A., Valle, G. Extensive gene order rearrangement in the mitochondrial genome of the centipede Scutigera coleoptrata [J]. J Mol Evol,2004, 58(4):413-423.
    [95]Qiu, Y., Song, D., Zhou, K., Sun, H. The mitochondrial sequences of Heptathela hangzhouensis and Ornithoctonus huwena reveal unique gene arrangements and atypical tRNAs [J]. J Mol Evol,2005,60(1):57-71.
    [96]Kilpert, F., Podsiadlowski, L. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features [J]. BMC Genomics,2006,7:241.
    [97]Podsiadlowski, L., Bartolomaeus, T. Major rearrangements characterize the mitochondrial genome of the isopod Idotea baltica (Crustacea:Peracarida) [J]. Mol Phylogenet Evol,2006,40(3):893-899.
    [98]Shao, R., Barker, S. C, Mitani, H., Takahashi, M., Fukunaga, M. Molecular mechanisms for the variation of mitochondrial gene content and gene arrangement among chigger mites of the genus Leptotrombidium (Acari:Acariformes) [J]. J Mol Evol,2006,63(2):251-261.
    [99]Shao, R., Campbell, N. J. H., Schmidt, E. R., Barker, S. C. Increased rate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects [J]. Molecular Biology and Evolution,2001,18(9):1828-1832.
    [100]Dowton, M., Austin, A. D. Evolutionary dynamics of a mitochondrial rearrangement "hot spot" in the Hymenoptera [J]. Molecular Biology and Evolution,1999,16(2):298-309.
    [101]Castro, L., Dowton, M. Mitochondrial genomes in the Hymenoptera and their utility as phylogenetic markers [J]. Systematic Entomology,2006,32(1):60-69.
    [102]Dowton, M., Campbell, N. Intramitochondrial recombination-is it why some mitochondrial genes sleep around? [J]. Trends in Ecology & Evolution,2001, 16(6):269-271.
    [103]Shao, R., Dowton, M., Murrell, A., Barker, S. C. Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects [J]. Molecular Biology and Evolution,2003,20(10):1612-1619.
    [104]Hua, J., Li, M., Dong, P., Cui, Y,Xie, Q., Bu, W. Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha(Insecta:Hemiptera: Heteroptera) [J]. BMC Genomics,2008,9:610.
    [105]Dowton, M., Austin, A. D. The evolution of strand-specific compositional bias. A case study in the hymenopteran mitochondrial 16S rRNA gene [J]. Molecular Biology and Evolution,1997,14(1):109.
    [106]Wiegmann, B. M., Mitter, C., Farrell, B. Diversification of carnivorous parasitic insects:extraordinary radiation or specialized dead end? [J]. American Naturalist, 1993,142(5):737-754.
    [107]Dowton, M., Belshaw, R., Austin, A. D., Quicke, D. L. J. Simultaneous Molecular and Morphological Analysis of Braconid Relationships (Insecta: Hymenoptera:Braconidae) Indicates Independent mt-tRNA Gene Inversions Within a Single Wasp Family [J]. Journal of Molecular Evolution,2002,54(2): 210-226.
    [108]孙红英,周开亚,宋大祥.节肢动物线粒体基因组与系统发生重建[J].动物学研究,2003,24(6):467~479.
    [109]胡婧,刘念,黄原.节肢动物线粒体基因组研究进展及基因顺序分析[J].昆虫分类学报,2006,28(2).
    [110]Dowton, M., Castro, L. R., Austin, A. D. Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates:the examination of genome 'morphology'[J]. Invertebrate Systematics,2002,16:345-356.
    [111]Ohkuma, M., Yuzawa, H., Amornsak, W., Sornnuwat, Y., Takematsu, Y, Yamada, A., Vongkaluang, C., Sarnthoy, O., Kirtibutr, N., Noparatnaraporn, N., Kudo, T., Inoue, T. Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences [J]. Molecular Phylogenetics and Evolution,2004,31(2):701-710.
    [112]Aanen, D. K., Eggleton, P. Fungus-growing termites originated in African rain forest [J]. Current Biology,2005,15(9):851-855.
    [113]Dirsh, V. M. Genital Organs in Acridomorphoidea (Insecta) as Taxonomic Character [J]. Journal of Zoological Systematics and Evolutionary Research,1973, 11(1):133-154.
    [114]Dirsh, V. M. Classification of the Acridomorphoid insects[M].1975, Oxford, G.B.: E.W.Classey Ltd., Faringdon.
    [115]Kevan, D. K. M. The higher classification of the orthopteroid insects [J]. Mem. Lyman Entomol. Mus. Res. Lab.4 (Spec. Publ. No.12),1977:1-79.
    [116]Kevan, D. K. M. Orthoptera[M]. Synopsis and Classification of Living Organisms. 1982, New York:McGraw-Hill,352-383.
    [117]Richards, O. W., Davies, R. G. Imms'general textbook of entomology[M]. Science paperbacks 137 1977, Ondon:Chapman and hall.
    [118]周尧.中国昆虫学史[M].1980,西安:昆虫分类学报社.
    [119]袁锋,张雅林,冯纪年, 花保祯.昆虫分类学[M].1996,北京:中国农业出版社.
    [120]刘宪伟,殷海生.昆虫纲:直翅目[M].昆虫分类.1999,南京:南京师范大学,245-281.
    [121]Flook, P. K., Rowell, C. H. The effectiveness of mitochondrial rRNA gene sequences for the reconstruction of the phylogeny of an insect order (Orthoptera) [J]. Molecular Phylogenetics and Evolution,1997,8(2):177-192.
    [122]Flook, P. K., Rowell, C. H. The phylogeny of the caelifera (Insecta, Orthoptera) as deduced from mtrRNA gene sequences [J]. Molecular Phylogenetics and Evolution,1997,8(1):89-103.
    [123]Flook, P. K., Rowell, C. H. Inferences about orthopteroid phylogeny and molecular evolution from small subunit nuclear ribosomal DNA sequences [J]. Insect Molecular Biology,1998,7(2):163-178.
    [124]Flook, P. K., Klee, S., Rowell, C. H. Combined molecular phylogenetic analysis of the Orthoptera (Arthropoda, Insecta) and implications for their higher systematics [J]. Systematic Biology,1999,48(2):233-253.
    [125]刘晓英,刘建文,蒋国芳.直翅目昆虫分子系统学研究新进展[J].昆虫知识,2005,(5):21-26.
    [126]印红,张道川,毕智丽,印展,刘勇, 印象初.蝗总科部分种类16SrDNA的分子系统发育关系[J].遗传学报,2003,30(8):766-772.
    [127]任竹梅,马恩波,郭亚平.蝗总科部分种类Cytb基因序列及系统进化研究[J].遗传学报,2002,29(4):314-321.
    [128]刘殿锋, 蒋国芳.基于18Sr DNA的蝗总科分子系统发育关系研究及分类系统探讨[J].昆虫学报,2005,48(2):232-241.
    [129]Flook, P. K., Klee, S., Rowell, C. H. Molecular phylogenetic analysis of the Pneumoroidea (Orthoptera, Caelifera):molecular data resolve morphological character conflicts in the basal acridomorpha [J]. Molecular Phylogenetics and Evolution,2000,15(3):345-354.
    [130]Jost, M. C., Shaw, K. L. Phylogeny of Ensifera (Hexapoda:Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication [J]. Molecular Phylogenetics and Evolution,2006,38:510-530.
    [131]邓素芳.基于线粒体Cyt b基因的蟋蟀分子系统学研究(直翅目:蟋蟀总科)[D].西安:陕西师范大学,2006.
    [132]Fenn, J. D., Song, H., Cameron, S. L., Whiting, M. F. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data [J]. Molecular Phylogenetics and Evolution,2008,49(1):59-68.
    [133]孙正莉,蒋国芳,霍光明, 刘殿锋.基于16SrDNA序列探讨中国剑角蝗科的单系性及其六属的系统发育关系[J].动物学报,2006,52(2):302-308.
    [134]Zheng, Z. M. Taxonomy of Locust[M].1993, Xian:Shaanxi Normal University.
    [135]Chen, Y. L. The main achievement of the Chinese Locusta migratoria study and treat [J]. Entomological Knowledge/Kunchong Zhishi,2000,37(1):50-58.
    [136]Flook, P. K., Rowell, C. H., Gellissen, G. The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome [J]. Journal of Molecular Biology,1995,41(6):928-941.
    [137]傅鹏, 郑哲民.两种短鼻蝗的染色体C-带核型[J].遗传,1991,13(5):16-18.
    [138]奚耕思,郑哲民.三种短鼻蝗精子超微结构的比较研究(直翅目:蝗总科)[J].昆虫分类学报,1996,(4).
    [139]李新江.基于16SrDNA部分序列的6种短鼻蝗的分子系统学(直翅目:蝗总科)[R].中国动物学会北方七省市动物学会学术研讨会,2005.
    [140]张道川,徐淼洋,李新江, 郑金玉.8种短鼻蝗线粒体COⅡ基因序列的分析 研究(直翅目:蝗总科:癞蝗科)[J].四川动物,2008,27(5):761-763.
    [141]Lalitha, S. Primer Premier 5 [J]. Biotech Software & Internet Report,2000,1(6): 270-272.
    [142]Singh, V. K., Mangalam, A. K., Dwivedi, S., Naik, S. Primer premier:program for design of degenerate primers from a protein sequence [J]. BioTechniques,1998, 24(2):318-319.
    [143]Bonfield, J. K., Smith, K. F., Staden, R. A New DNA Sequence Assembly Program [J]. Nucleic Acids Research,1995,23(24):4992-4999.
    [144]Staden, R., Beal, K.F., Bonfield, J. K. The Staden Package,1998 [J]. Methods in Molecular Biology,1999,132(1):115-130.
    [145]Hall, T. A. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J]. Nucleic acids symposium series, 1999, (41):95-98.
    [146]Burland, T. G. DNASTAR's Lasergene Sequence Analysis Software [J]. Methods in molecular biology (Clifton, N.J.),2000,132:71-91.
    [147]Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G. The CLUSTAL X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research,1997,25(24): 4876-4882.
    [148]Kumar, S., Tamura, K., Nei, M. MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment [J]. Briefings in bioinformatics,2004,5(2):150-163.
    [149]Lowe, T. M., Eddy, S. R. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence [J]. Nucleic Acids Research,1997,25(5): 955-964.
    [150]De Rijk, P., Wuyts, J., De Wachter, R. RnaViz 2:an improved representation of RNA secondary structure [J]. Bioinformatics,2003,19(2):299-300.
    [151]Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D'Souza, L. M., Du,Y., Feng, B., Lin,N., Madabusi, L. V., Muller, K. M., Pande,N., Shang, Z. Yu, N., Gutell, R. R. The Comparative RNA Web (CRW) site:an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs [J]. BMC Bioinformatics,2002,3:2.
    [152]Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction [J]. Nucleic Acids Research,2003,31(13):3406-3415.
    [153]Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R., Hofacker, I. L. The Vienna RNA websuite [J]. Nucleic Acids Research,2008,36(Web Server issue): W70-74.
    [154]Schattner, P., Brooks, A. N., Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs [J]. Nucleic Acids Research,2005,33(suppl 2):W686-W689.
    [155]田英芳, 黄刚.一种简易的昆虫基因组DNA提取方法[J].陕西师范大学学报(自然科学版),27(4):82-84.
    [156]郑仲承.寡核苷酸的优化设计[J].生命的化学,2001,21(3):254-256.
    [157]张新宇, 高燕宁.PCR引物设计软件使用技巧[J].生物信息学,2004,2(4):15-18,46.
    [158]Roehrdanz, R. L. An improved primer forPCR anplification of mitochondrial DNA in a variety of insect species [J]. Insect Molecular Biology,1993,2(2):89-91.
    [159]Cheng, S., Chang, S.-Y, Gravitt, P., Respess, R. Long PCR:As increasingly longer DNA targets are amplified reliably, new applications for PCR are becoming possible. [J]. Nature,1994,369(684-685).
    [160]Cheng, S., Chen, Y., Monforte, J. A., Higuchi, R., Houten, a. B. V. Template Integrity Is Essential for PCR Amplification of 20-to 30-kb Sequences from Genomic DNA [J]. PCR methods and applications,1995,4(5):294-298.
    [161]Roehrdanz, R. L. Amplification of complete insect mitoehondrial genome in two easy pieces [J]. Insect Molecular Biology,1995,4(3):169-172.
    [162]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南(第二版)[M].1992,北京:科学出版社.
    [163]Chastain, M., Jr., I. T. Structural Elements in RNA [J]. Progress in Nucleic Acid Research and Molecular Biology,1991,41:131-177.
    [164]Kim, I., Cha, S. Y., Yoon, M. H., Hwang, J. S., Lee, S.M., Sohn, H. D., Jin, B. R. The complete nucleotide sequence and gene organization of the mitoehondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera:Gryllotalpidae) [J]. Gene,2005,353(2):155-168.
    [165]Zhang, D. X., Szymura, J. M., Hewitt, G. M. Evolution and structural conservation of the control region of insect mitoehondrial DNA [J]. Journal of Molecular Biology,1995,40(4):382-391.
    [166]Saito, S., Tamura, K., Aotsuka, T. Replication origin of mitochondrial DNA in insects [J]. Genetics,2005,171(4):1695-1705.
    [167]Ouvrard, D., Campbell, B. C., Bourgoin, T., Chan, K. L.18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera) [J]. Mol Phylogenet Evol,2000,16(3):403-417.
    [168]谢强, 卜文俊.RNA的二级结构在动物分子系统学研究中的应用[J].动物分类学报,2003,28(4):557-562.
    [169]Yoder, M., Gillespie, J. (2004-present). "jRNA.Exploring insect phylogeny using RNA secondary structure." from http://hymenoptera.tamu.edu/rna.
    [170]刘艳.中华雏蝗和日本鸣蝗全线粒体基因组的测序及分析[D].西安:陕西师范大学,2007.
    [171]Shi, H. W., Ding, F. M., Huang, Y. Complete sequencing and analysis of mtDNA in Phlaeoba albonema Zheng [J]. Chinese Journal of Biochemistry and Molecular Biology,2008,24(7):604-611.
    [172]邱忠营.云南卡蝗、斑腿勐腊蝗和柯氏无翅蝗线粒体基因组序列测定与分析[D].西安:陕西师范大学,2009.
    [173]肖莉莉.青脊竹蝗、云南蝗和亚洲飞蝗线粒体基因组序列测定及分析[D].西安:陕西师范大学,2007.
    [174]Ma, C., Liu, C., Yang, P., Kang, L. The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus [J]. BMC Genomics,2009,10:156.
    [175]刘念.隆额网翅蝗线粒体基因组全序列的测定与分析[D].西安:陕西师范大学,2006.
    [176]Liu, Y., Huang, Y. Sequencing and Analysis of Complete Mitochondrial Genome of Chorthippus chinensis Tarb [J]. Chinese Journal of Biochemistry and Molecular Biology,2008,24(4):329-335.
    [177]Zhao, L., Zheng, Z. M., Huang, Y., Sun, H. M. A comparative analysis of mitochondrial genomes in Orthoptera (Arthropoda:Insecta) and genome descriptions of three grasshopper species [J]. Zoological Science,2010,27(8): 662-672.
    [178]高佳.三种直翅目昆虫线粒体基因组的测定与系统发育分析[D].西安:陕西师范大学,2009.
    [179]Sun, H., Zheng, Z., Huang, Y. Sequence and phylogenetic analysis of complete mitochondrial DNA genomes of two grasshopper species Gomphocerus rufus (Linnaeus,1758) and Primnoa arctica (Zhang and Jin,1985) (Orthoptera: Acridoidea). [J]. Mitochondrial DNA,2010,21(3-4):115-131.
    [180]高佳,程春花,黄原.李氏大足蝗线粒体全基因组序列分析[J].动物学研究,2009,30(6):603-612.
    [181]张辰艳.中华稻蝗、长翅燕蝗和四川凸额蝗的线粒体基因组全序列的测定及分析[D].西安:陕西师范大学,2008.
    [182]Erler, S., Ferenz, H.-J., Moritz, R. F. A., Kaatz, H.-H. Analysis of the mitochondrial genome of Schistocerca gregaria gregaria (Orthoptera:Acrididae) [J]. Biological Journal of the Linnean Society,2010,99(2):296-305.
    [183]Zhang, C., Huang, Y. Complete mitochondrial genome of Oxya chinensis (Orthoptera, Acridoidea) [J]. Acta Biochimica et Biophysica Sinica,2008,40(1): 7-18.
    [184]卢慧甍.霍山蹦蝗和意大利蝗全线粒体基因组的测序及分析[D].西安:陕西师范大学,2006.
    [185]程春花.三种斑腿蝗线粒体基因组序列测定及蝗亚目系统发育关系分析[D].西安:陕西师范大学,2009.
    [186]Ding, F. M., Shi, H. W., Huang, Y. Complete mitochondrial genome and secondary structures of 1rRNA and srRNA of Atractomorpha sinensis (Orthoptera, Pyrgomorphidae) [J]. Zoological Research,2007,28(6):580-588.
    [187]Sheffield, N. C., Hiatt, K. D., Valentine, M. C., Song, H., Whiting, M. F. Mitochondrial genomics in Orthoptera using MOSAS [J]. Mitochondrial DNA, 2010,21(3-4):87-104.
    [188]胡婧.笨蝗线粒体基因组测序及节肢动物线粒体基因重排的系统发育分析[D].西安:陕西师范大学,2006.
    [189]Zhang, D., Zhi, Y., Yin, H., Li, X., Yin, X. The complete mitochondrial genome of Thrinchus schrenkii (Orthoptera:Caelifera, Acridoidea, Pamphagidae). [J]. Molecular Biology Reports,2010, in press.
    [190]Fenn, J. D., Cameron, S. L., Whiting, M. F. The complete mitochondrial genome sequence of the mormon cricket(Anabrus simplex:Tettigoniidae:Orthoptera) and an analysis of control region variability [J]. Insect Molecular Biology,2007,16(2): 239-252.
    [191]丁方美.短额负蝗、日本蚤蝼和中华寰螽线粒体基因组序列测定与分析[D]. 西安:陕西师范大学,2008.
    [192]Zhou, Z., Shi, F., Huang, Y. The complete mitogenome of the Chinese bush cricket, Gampsocleis gratiosa (Orthoptera:Tettigonioidea) [J]. Journal of Genetics and Genomics,2008,35(6):341-348.
    [193]师红雯.白纹佛蝗和暗褐蝈螽线粒体基因组序列测定和分析[D].西安:陕西师范大学,2008.
    [194]Zhou, Z., Huang, Y., Shi, F., Ye, H. The complete mitochondrial genome of Deracantha onos (Orthoptera:Bradyporidae) [J]. Molecular Biology Reports,2009, 36(1):7-12.
    [195]Zhou, Z., Huang, Y, Shi, F. The mitochondrial genome of Ruspolia dubia (Orthoptera:Conocephalidae) contains a short A+T-rich region of 70 bp in length [J]. Genome,2007,50(9):855-866.
    [196]周志军.五种螽嘶线粒体基因组的测定与直翅目谱系基因组学分析[D].西安:陕西师范大学,2008.
    [197]Zhou, Z., Ye, H., Huang, Y., Shi, F. The phylogeny of Orthoptera inferred from mtDNA and description of Elimaea cheni (Tettigoniidae:Phaneropterinae) mitogenome [J]. Journal of Genetics and Genomics,2010,37:315-324.
    [198]Ye, W., Dang, J. P., Xie, L. D., Huang, Y. Complete mitochondrial genome of Teleogryllus emma (Orthoptera:Gryllidae) with a new gene order in orthoptera [J]. Zoological Research,2008,29(3):236-244.
    [199]潘程莹.银川油葫芦和多伊棺头蟋线粒体基因组序列测定与分析[D].西安:陕西师范大学,2008.
    [200]Xiao, L. L., Zhou, Z. J., Huang, Y. The mitochondrial genome of Locusta migratoria migratoria (Orthoptera:Oedipodidae) contains three tRNA-like sequences on the N-strand [J]. Unpublished,2007.
    [201]Wolstenholme, D. R., Clary, D. O. Sequence evolution of Drosophila mitochondrial DNA[J]. Genetics,1985,109(4):725-744.
    [202]Wolstenholme, D. R. Animal mitochondrial DNA:structure and evolution [J]. International Review of Cytology,1992,141:173-216.
    [203]Cameron, S. L., Bechenbach, A. T., Dowton, M., Whiting, M. F. Evidence from mitochondrial genomics on interordinal relationships in insects [J]. Arthropod Systematics & Phylogeny,2006,64(1):27-34.
    [204]Campbell, N. J., Barker, S. C. The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus:fivefold tandem repetition of a coding region [J]. Mol Biol Evol,1999,16(6):732-740.
    [205]Fearnley, I. M., Walker, J. E. Two overlapping genes in bovine mitochondrial DNA encode membrane components of ATP synthase [J]. EMBO J,1986,5(8): 2003-2008.
    [206]Gillespie, J. J., Johnston, J. S., Cannone, J. J., Gutell, R. R. Characteristics of the nuclear (18S,5.8S,28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis-mellifera (Insecta:Hymenoptera):structure, organization, and retrotransposable elements [J]. Insect Molecular Biology,2006,15(5):657-686.
    [207]Niehuis, O., Naumanny, C. M., Misof, B. Identification of evolutionary conserved structural elements in the mt SSU rRNA of Zygaenoidea (Lepidoptera): a comparative sequence analysis [J]. Organisms Diversity & Evolution,2006,6(1): 17-32.
    [208]Page, R. D. Comparative analysis of secondary structure of insect mitochondrial small subunit ribosomal RNA using maximum weighted matching [J]. Nucleic Acids Research,2000,28(20):3839-3845.
    [209]Page, R. D., Cruickshank, R., Johnson, K. P. Louse (Insecta:Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable [J]. Insect Molecular Biology,2002,11(4):361-369.
    [210]Carapelli, A., Soto-Adames, F. N., Simon, C., Frati, F., Nardi, F., Dallai, R. Secondary structure, high variability and conserved motifs for domain III of 12S rRNA in the Arthropleona (Hexapoda; Collembola) [J]. Insect Molecular Biology, 2004,13(6):659-670.
    [211]Kambhampati, S., Kjer, K. M., Thome, B. L. Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S ribosomal RNA gene [J]. Insect Molecular Biology,1996,5(4):229-238.
    [212]Buckley, T. R., Simon, C., Flook, P. K., Misof, B. Secondary structure and conserved motifs of the frequently sequenced domains IV and V of the insect mitochondrial large subunit rRNA gene [J]. Insect Molecular Biology,2000,9(6): 565-580.
    [213]Misof, B., Fleck, G. Comparative analysis of mt LSU rRNA secondary structures of Odonates:structural variability and phylogenetic signal [J]. Insect Molecular Biology,2003,12(6):535-547.
    [214]Clary, D. O., Wolstenholme, D. R. Drosophila mitochondrial DNA:conserved sequences in the A+T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA [J]. J Mol Evol,1987,25(2):116-125.
    [215]Lewis, D. L., Farr, C. L., Farquhar, A. L., Kaguni, L. S. Sequence, organization, and evolution of the A+T region of Drosophila melanogaster mitochondrial DNA [J]. Mol Biol Evol,1994,11(3):523-538.
    [216]Taylor, M. F., McKechnie, S. W., Pierce, N., Kreitman, M. The lepidopteran mitochondrial control region:structure and evolution [J]. Molecular Biology and Evolution,1993,10(6):1259-1272.
    [217]Monforte, A., Barrio, E., Latorre, A. Characterization of the length polymorphism in the A+T-rich region of the Drosophila obscura group species [J]. J Mol Evol, 1993,36(3):214-223.
    [218]Rand, D. M., Harrison, R. G. Molecular population genetics of mtDNA size variation in crickets [J]. Genetics,1989,121:551-569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700