携带HBB基因shRNA的人脐血CD34+细胞构建及其应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-血红蛋白病是一组多相群的单基因疾病,重型可致死。为了探讨其基因治疗的可行性及潜在价值。本课题拟选择对β-珠蛋白基因具有靶向RNAi的特异序列,并构建慢病毒载体,采用体外筛选法获得目的序列及质粒,以期能与β-珠蛋白等位基因特异性结合抑制RNA的表达,并了解感染细胞的体内植入和增殖情况,以期在以后试验中与其它基因表达载体组合共同用于治疗β-血红蛋白病。
     内容和方法
     1.从GeneBank查找HBB mRNA序列,设计挑选3个RNAi靶点,每个合成两条单寡核苷酸链,退火后连入酶切的pGCL-GFP载体,将连接产物转染感受态细菌,对长出的克隆进行PCR鉴定,测序比对。对阳性克隆进行质粒抽提。
     2.用PCR方法从模板钓取相应的HBB序列片段,将片段与pdsRED2-N1载体进行双酶切后定向连接,转染感受态细菌,长出的克隆进行PCR鉴定,测序和比对分析后,对阳性克隆进行质粒抽提。
     3.HBB-RNAi-LV质粒和HBB过表达质粒,按低浓度组(0.5:1)和高浓度组(1:1)用Lipofectamine2000共转染293T细胞,48h后FM观察GFP表达,Western Blot检测FLAG-HBB融合蛋白表达。
     4.将HBB-RNAi-LV质粒和慢病毒包装载体pHelper 1.0及pHelper 2.0载体按4:3:2比例添加,转染293T细胞,培养48小时后收集培养上清,利用Plus-20离心超滤装置对病毒上清进行离心超浓缩。
     5.人脐血MACS法分离的CD34+细胞,加入细胞因子进行无血清无基质预培养,慢病毒感染,48h后FM观察感染率,Real-Time PCR检测感染2、4、5天的HBB\HBG基因表达情况,Western Blot检测感染7天的HBB蛋白表达。
     6.人脐血CD34+细胞,体外用高浓度细胞因子预刺激培养过夜后感染慢病毒24小时,经皮注射入SCID新生小鼠腹腔,密切观察小鼠存活情况。
     7.移植后3周,用FM和FCM检测小鼠外周血中人HbF细胞和成人红细胞,外周血有核细胞中的GFP阳性细胞;骨髓细胞中的GFP阳性细胞,并观察小鼠肝、脾、肾脏、小肠等组织中的GFP阳性细胞分布。
     结果
     1.构建了3个HBB基因的RNAi-LV载体(PSC1、PSC2、PSC3)及一个对照质粒PSCNC。
     2.构建了含有相应HBB基因片段的过表达载体HBB- pdsRED2-N1-3Flag质粒。
     3.外源筛靶试验中PSC1、PSC3对HBB融合蛋白有明显敲减作用,随着浓度增加敲减作用增强,其中PSC1靶点的敲减效果最好。
     4.包装并获得高滴度的PSC1、PSC3和PSCNC慢病毒。
     5.慢病毒在CD34+细胞中的感染率为15~30%,病毒感染明显激活细胞中的HBB和HBG基因表达,PSC1促进HBB珠蛋白表达,PSC3则显著抑制HBB和HBG珠蛋白表达,其抑制效果与感染率有关。
     6.移植CD34+细胞后,小鼠外周血中人HbF细胞及成人红细胞为0.1~1.2%;有核细胞中GFP细胞,PSCNC组为3.2~10.2%, PSC3组为4.4~8.8%;骨髓细胞中GFP细胞PSCNC组为1.5~5.5%, PSC3组为1.3~6.2%,各组间均无统计学意义。肝、脾、肾和小肠等组织均未见明显的GFP阳性细胞。
     结论
     1.系统建立了完整的人脐带血CD34+细胞分离、无血清无基质培养和慢病毒感染的实验方法。
     2.成功构建了3个β-珠蛋白基因shRNA的慢病毒载体,通过外源筛靶方法初筛出2个有效序列,经慢病毒包装获得了高滴度的病毒颗粒。
     3.成功筛选到一条对HBB基因有抑制作用的RNAi序列。
     4.人脐血CD34+细胞移植入未骨髓抑制的免疫缺陷病新生小鼠腹腔,可成功归巢、增殖,主要增殖为自身缺陷的淋巴系统,红系缺乏表达优势。
Beta-hemoglobinopathies is caused by singleβ-globin genetic variation, of which the most frequent occurrence isβ-thalassemia and sickle cell disease. The patients with severe form maybe die without any treatment. For approaching the feasibility and potential value of gene RNA interference, the objective of this study is to design special RNAi target and to construct the lentiviral vector, to screen the effective target to specific bind and restrainβ-globin allele gene expression, and to observe the homing and repopulation of human infected CB CD34+ cells, and hope to conduce gene thrapy inβ-hemoglobinopathies by combination with other expression vector in follow-up experiment.
     Contents and Methods
     1. Based on the HBB mRNA sequence from GeneBank, we designed and selected target sequences for RNAi to HBB gene. After designed and synthesized, two single oligonucleotide DNA chains of each target were annealed and linked to enzyme lysised pGCL-GFP vector, then transferred to competence bacterial. The positive colony was amplified and extracted, and identified by PCR and sequencing.
     2. The relevantβ-globin gene fragment were copied and linked with pdsRED2-N1vector, then transferred to competence bacterial. The positive colony was amplified and extracted, and identified by PCR, sequencing and Blast analysis.
     3. HBB-RNAi-LV plasmid and HBB over-expression plasmid were cotransfected into 293T cells by lipofectamine 2000 with the low concentration group(0.5:1) and high concentration(1:1) experimental group. Cells were observed under fluorescence microscopy, and the Flag and HBB fusion protein were detected.
     4. Packaged lentivirus particles with HBB-RNAi-LV plasmid, pHelper 1.0 vector and pHelper 2.0 vector, the viral supernatant was then concentrated by Plus-20 ultrafiltration kit.
     5. CD34+ cells were isolated from human cord blood (CB) by MACS, cultured with cell factors and stroma-free SFM medium, and infected with MOI of 10 by LV particles. The ration of GFP positive cells was detected with FM and FCM. The HBB and HBG mRNA were detected by Real-Time PCR by 2, 4, or 5days after infection. The HBB protein level was determined by Western Blot.
     6. Human CB CD34+ cells prestimulated with high concentrated cell factors, and infected with LV virus, then injected into peritoneal cavity of SCID neonatal mice percataneously.
     7. Three weeks after transplantation, human HbF cells and adult red cells were deteced by FM and FCM in mouse blood. GFP positive cells were checked in both blood and bone marrow. GFP positive cells were also found in liver, speen, kidney and small intestine.
     Results
     1. Three HBB-RNAi-LV plasmids have been designed and constructed, named as PSC1, PSC2 and PSC3 respectively.
     2. The relevant HBB over-expression vector has been constructed, named as HBB- pdsRED2-N1-3Flag vectors.
     3. The RNAi effectiveness of PSC1 and PSC3 were confirmed by exogenous transfection experiment, and the effects were enhanced with the concentration of the RNAi plasmids increased, especially for PSC1.
     4. The high titer lentiviral virus of PSC1, PSC3 and PSCNC were obtained.
     5. After infection, the ratio of GFP positive cells was around 15~30% in CD34+cells. The HBB and HBG gene expressions were activated temporarily by lentivirus infection, and down-regulated relatively by PSC3 to which the degree of decrease is related to infection efficiency. In contrast, PSC1 up-regulated the HBB gene expression.
     6. After transplanted human infected CB CD34+ cells, percentage of human erythrocyte cells being 0.1-1.2% in peripheral blood, percentages of GFP positive cells being 4.4-8.8% vs 3.2-10.2%( PSC3 group vs PSCNC group) in peripheral nucleated cells, 1.3-6.2% vs 1.5-5.5%( PSC3 groups vs PSCNC groups) in bone marrow cells, there weren’t statistical significance between groups. GFP positive cells were not founded in spleen, liver, kidney and small intestine tissues.
     Conclusions
     1. Establish a set of methods for separation, serum-free and stroma-free culture, and infection of human CB CD34+ cells.
     2. Constructed three HBB-RNAi-LV vectors, confirmed the RNAi effectiveness of PSC1 and PSC3 by exogenous transfection experiment, packaged these two vectors and obtained high titer lentiviral virus.
     3. Obtained one efficient RNAi constrution for down-regulation HBB gene by infection human cord blood CD34+cells.
     4. After transplanted into nonmyelosuppressive SCID mouse, human CB CD34+cells with HBB shRNA may experience homing, repopulation and differentiation, in which lymphatic system were defective, and erythro-system being absence of competitive advantage.
引文
1. Sadelain M. Recent advances in globin gene transfer for the treatment ofβ-thalassemia and sickle cell anemia. Current Opinion in Hematology, 2006, 13(3): 142-148
    2.张俊武,龙桂芳。血红蛋白与血红蛋白病。广西科学技术出版社。2003:161-184
    3. Weatherall DJ, Clegg JB. Thalassemia- a global public health problem. Nat Med, 1996,2(8):847–849
    4. Dykxhoorn DM, Schlehuber LD, London IM, et al. Determinants of specific RNA interference-mediated silencing of humanβ-globin alleles differing by a single nucleotide polymorphism. Proc Natl Acad Sci U S A, 2006,103(15):5953-5958
    5. Giardina PJ, Grady RW. Chelation therapy in beta -thalassemia: an optimistic update. Semin Hematol, 2001, 38(4): 360-366.
    6. Atweh GF, Loukopoulos D. Pharmacological induction of fetal hemoglobin in sickle cell disease and beta-thalassemia. Semin Hematol, 2001, 38(4):367-373
    7. Fathallah H, Atweh GF. Induction of fetal hemoglobin in the treatment of sickle cell disease. Hematology Am Soc Hematol Educ Program, 2006:58-62.
    8. Gaziev J, Sodani P, Lucarelli G. Hematopoietic stem cell transplantation in thalassemia. Bone Marrow Transplant, 2008 ,42( S 1):S41
    9. Sadelain M, Rivella S, Lisowski L,et al. Globin gene transfer for treatment of the beta-thalassemias and sickle cell disease. Best Pract Res Clin Haematol, 2004,17(3):517-34.
    10. Khanahmad H, Noori Daloii MR, Shokrgozar MA,,et al.A novel single step double positive double negative selection strategy forβ-globin gene replacement. Biochem Biophys Res Commun, 2006,345(1):14-20
    11. Cone RD, Weber-Benarous A, Baorto D, et al. Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector. Mol Cell Biol, 1987, 7(2): 887-897
    12. Karlsson S, Papayannopoulou T, Schweiger SG, et al. Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein. Proc Natl Acad Sci USA,1987, 84(8): 2411-2415
    13. Novak U, Harris EA, Forrester W, et al. High-level beta-globin expression after retroviral transfer of locus activation region-containing human beta-globin gene derivatives into murine erythroleukemia cells. Proc Natl Acad Sci USA,1990, 87(9): 3386- 3390
    14. May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature, 2000,406(6791):82-6.
    15. May C, Rivella S, Chadburn A, et al. Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene. Blood,. 2002, 99(6):1902–1908.
    16. Lisowski L, Sadelain M. Locus control region elements HS1 and HS4 enhance the therapeutic efficacy of globin gene transfer in -thalassemic mice. Blood, 2007,110(13):4175-8.
    17. Pawliuk R, Westerman KA, Fabry ME, et al. Correction of sickle cell disease in transgenic mouse models by genetherapy. Science, 2001, 294(5550):2368- 2371
    18. Oh IH, Fabry ME, Humphries RK, et al. Expression of an anti-sicklingβ-globin in human erythroblasts derived from retrovirally transduced primitive normal and sickle cell disease hematopoietic cells. Experimental Hematology,2004, 32(5): 461-469
    19. Levasseur D N, Ryan T M, Pawlik KM, et al. Correction of a mouse model of sickle cell disease. Blood, 2003, 102(13): 4312- 4319.
    20. Puthenveetil G, Scholes J, Carbonell D et al. Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood, 2004, 104(12): 3445–3453.
    21. Katsantoni EZ, Langeveld A, Wai AW, et al. Persistent gamma-globin expression in adult transgenic mice is mediated by HPFH-2, HPFH-3, and HPFH-6 breakpoint sequences. Blood, 2003,102(9):3412-9.
    22. Nishino T, Tubb J, Emery DW. Partial correction of murineβ-thalassemia with a gammaretrovirus vector for humanγ-globin. Blood Cells Mol Dis, 2006, 37(1): 1-7
    23. Li Q, Emery DW, Fernandez M, et al. Development of Viral Vectors for Gene Therapy of beta-Chain Hemoglobinopathies: Optimization of agamma-Globin Gene Expression Cassette. Blood,1999, 93( 7): 2208-2216
    24. Emery DW, Yannaki E, Tubb J, et al. Development of virus vectors for gene therapy ofβchain hemoglobinopathies: flanking with a chromatin insulator reducesγ-globin genesilencing in vivo. Blood,2002,100(6): 2012-2019
    25. Persons DA, Hargrove PW, Allay ER, et al. The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood, 2003,101(6):2175-83.
    26. Imren S, Payen E, Westerman KA, et al. Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc Natl Acad Sci U S A, 2002,99(22): 14380-14385.
    27. Sabatino DE, Seidel NE, Aviles-Mendoza GJ, et al. Long-term expression of gamma-globin mRNA in mouse erythrocytes from retrovirus vectors containing the human gamma-globin gene fused to the ankyrin-1 promoter. Proc Natl Acad Sci USA, 2000,97(24):13294-9.
    28. Baum C, Dullmann J, Li Z, et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood, 2003,101(6): 2099-2114.
    29. Samakoglu S, lisowski L, budak-alpdoganT, et al. A genetic strategy to treat sickle cell anemia gy coregulating globin transgene expression and RNA interference. Nature Biotechnology, 2006,24(1):89-94
    30. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ, 2008,86(6):480-7.
    31. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature,1998,391(6669):806-811
    32. Zamore PD. Ancient pathways programmed by small RNAs. Science,2002,296(5571):1265-1269
    33. Dykxhoorn D M, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med,2005, 56: 401–423.
    34. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol, 2004, 22(3):326–330.
    35. Elbashir SM,Harborth J, Lendeckel W,et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494-498
    36. Patrinos GP, de Krom M, de Boer E, et al. Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev, 2004,18(12):1495-1509
    37. Fu XH, Liu DP, Liang CC. Chromatin structure and transcriptional regulation of the beta-globin locus. Exp Cell Res, 2002,278(1):1–11.
    38. Sarakul O, Vattanaviboon P, Wilairat P, et al. Inhibition of alpha-globin gene expression by RNAi. Biochem Biophys Res Commun, 2008, 369(3): 935-8.
    39. Zhao N, Zu ZX, Liu CM, et al. Knockdown of mouse adult beta-globin gene expression in MEL cells by retrovirus vector-mediated RNA interference. Mol Biotechnol, 2004,28(3):195-9.
    40. Ute Schepers。实用RNAi技术-线虫、果蝇和哺乳动物细胞基因沉默的基本原则与方法(王俊宋尔卫,等译)。北京人民卫生出版社。2006:95-211
    41. Metcalf D. Hematopoietic regulator:redundancy or subtlety? Blood.1993,82(12):3515
    42. Nilsson M, Karlsson S, Fan X L. Functionally Distinct Subpopulations of Cord Blood CD34+ Cells: Are Transduced by Adenoviral Vectors with Serotype 5 or 35 Tropism. Molecular Therapy, 2004, 9(3): 377-388
    43. Yamada KM, Araki M. Tumor suppressor PTEN:modulator of cell signailing,growth, migration and apoptosis. J Cell Sci,2001, 114(13):2375-2382
    44. Aiuti A, Slavin S, Aker M, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning, Science,2002,296(5577):2410–2413
    45. Lu ZZ, Ni F, Hu ZB, et al. Efficient gene transfer into hematopoietic cells by a retargeting adenoviral vector system with a chimeric fiber of adenovirus serotype 5 and 11p. Experimental Hematology, 2006, 34(9): 1170-1181
    46. Paz H, Wong CA, Li W, et al. Quiescent subpopulations of human CD34-positive hematopoietic stem cells are preferred targets for stable recombinant adeno-associated virus type 2 transduction. Hum Gene Ther, 2007,18(7):614-26.
    47. Chen L, Pulsipher M, Chen D, et al. Selective transgene expression for detection and elimination of contaminating carcinoma cells in hematopoietic stem cell sources. J Clin Invest, 1996,98 (11): 2539–2548.
    48. Mei YF, Segerman A, Lindman K, et al. Human hematopoietic (CD34+) stem cells possess high-affinity receptors for adenovirus type 11p. Virology,2004, 328(2): 198-207.
    49. Balamotis MA, Huang K, Mitani K. Gene transfer into a hematopoietic cell line using a helper-dependent adenoviral vector with the chimeric Ad5/35 fiber. Molecular Therapy,2004,9(s1): 43
    50. Gammaitoni L, Lucchi S, Bruno S, et al. Serial Transplantations in Nonobese Diabetic/Severe Combined Immunodeficiency Mice of Transduced Human CD34+ Cord Blood Cells: Efficient Oncoretroviral Gene Transfer and Ex Vivo Expansion Under Serum-Free Conditions. Stem Cells, 2006, 24(5): 1201-1212
    51. Relander T, Johansson M, Olsson K, et al. Gene Transfer to Repopulating Human CD34+ Cells Using Amphotropic-, GALV-, or RD114-Pseudotyped HIV-1-Based Vectors from Stable Producer Cells. Molecular Therapy, 2005,11(3): 452-459
    52. Kurre P, Anandakumar P, Harkey MA, et al. Efficient Marking of Murine Long-Term Repopulating Stem Cells Targeting Unseparated Marrow Cells at Low Lentiviral Vector Particle Concentration. Molecular Therapy,2004, 9(6):914-922
    53. Hanazono Y, Asano T, Ueda Y, et al. Genetic Manipulation of Primate Embryonic and Hematopoietic Stem Cells with Simian Lentivirus Vectors. Trends in Cardiovascular Medicine, 2003, 13(3):106-110.
    54. Pteiter A, Ikawa M,Dayn Y. Transgenesis by lentiviral vectors:lack of gene silence in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA,2002,9(4):2140-2145.
    55. Dull T, Zufferey R, Kelly M, et al. A third-generation lentiviral vectors with a conditional packaging system. J virol,1998,72(11):8463-8471.
    56. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science,2002, 296(5567):550-553
    57. Elbashir SM,Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J,2001,20(23);6877-6888
    58. Newton DA, Rao KM, Dluhy RA,et al. Hemoglobin Is Expressed by Alveolar Epithelial Cells. J Biol Chem, 2006,281(9): 5668-5676
    59. Emery DW, Tubb J, Nishino Y, et al. Selection with a regulated cell growth switch increases the likelihood of expression for a linked gamma-globin gene. Blood Cells, Molecules, and Diseases, 2005, 34(3):235-247
    60. Haussecker D, Proudfoot NJ. Dicer-Dependent Turnover of Intergenic Transcripts from the Human ?-Globin Gene Cluster. Molecular and Cellular Biology,2005,25(21):9724-9733
    61. Arnau J, Lauritzen C, Petersen G E, et al. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif, 2006,48(1): 1–13
    62. Buranda T, Lopez GP, Simons P, et al. Detection of Epitope-Tagged Proteins in Flow Cytometry: Fluorescence Resonance Energy Transfer-Based Assays on Beads with Femtomole Resolution. Analytical Biochemistry,2001, 98(2): 151–162
    63.王文礼,王云龙,李晨阳,陈小科,刘利锋。His标签单克隆抗体的制备、鉴定及初步应用。细胞与分子免疫学杂志。2008,24(4):399-400
    64.管晓翔,陈龙邦,张爱华,王靖华,德伟。抑癌基因p27kip1及其Ser10突变体对HepG2细胞周期和增生的影响。世界华人消化杂志,2004,12(9):2041-2044
    65. Einhauer A, Jungbauer A. Affinity of the monoclonal antibody M1 directed against the FLAG peptide. J Chromatogr A, 2001,921(2):25–30
    66. Terpe K. overview of tag protein fusions:from molecular and biochemical fundamentals to commercials systems.Appl Microbiol Biotechol,2003,60(5):523-533
    67. Einhauer A, Jungbauer A. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods, 2001,49(1-3):455-65
    68. Georgiev O, Bourquin JP, Gstaiger M, et al.Two versatile eukaryotic expression vectors permitting epitope tagging, radiolabelling and nuclear ocalization of expressed proteins. Gene, 1996,168(2):165-167
    69. Stiburek L, Fornuskova D,Wenchich L,et al. Knockdown of Human Oxa1l Impairs the Biogenesis of F1Fo-ATP Synthase and NADH: Ubiquinone Oxidoreductase. J Mol Biol, 2007,374(2):506–516
    70.史艳侠,韩文杰,彭柔君,张景航,黄慧强,姜文奇。使用FLAG标签肽及慢病毒载体共同筛选小鼠foxp3基因RNA干扰的有效靶点。中山大学学报:医学科学版,2007,28(6):641-644
    71. Ward M, Sattler R, Grossman I R, et al. A stable murine-based RD114 retroviral packaging line efficiently transduces human hematopoietic cells. Molecular Therapy, 2003, 8(5): 804-812
    72.张之南,单渊东,李蓉生等。协和血液病学。中国协和医科大学出版社。2004:13.
    73.李玉艳,梁志清,李彩霞,等。人脐带血cd34+细胞的提取及慢病毒载转染的初步研究。重庆医学,2008,37(14):1570-1571.
    74. Sousa T, de Sousa ME,Gdinho MI,et al. Umbilical cord blood processing volume reduction and recovery of CD34+cells. Bone Marrow Transplantation,1997,19(4):311
    75.朱永宝,王雪,马京香。脐血CD34+细胞的分离与纯化。医学检验与临床,2007,18(1):47-48
    76. Chao NJ, Emerson SG, Weinberg KI. Stem Cell Transplantation (Cord Blood Transplants) Hematology Am Soc Hematol Educ Program, 2004:354-71
    77.刘开彦,高志勇,姜永军,等。脐带血造血干细胞的采集、浓缩与低温冷冻保存。北京大学学报(医学版)。2003,35(2):119-122
    78.陆炯韩泽广张惠展造血干细胞(CD34+)表达谱数据分析.华东理工大学学报(自然科学版),2005,31(5):669-672
    79. Zhang QH,Ye M,WuXY,et al. Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells. Genome Research, 2000,10(10):1546-1560
    80.李群良,蔡海波,刘启威,等。脐血CD34+造血干、祖细胞基因表达图谱的研究。中国免疫学杂志,2007,23:59-62.
    81. Hows JM, Marsh JC, Bradley BA, et al. Human cord blood: a Source of transplan table stem cells. Bone Marrow Transplant,1992 ,9(suppl 1) :105-108.
    82. Frassoni F, Podesta M, Maccario R, et al. Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation. Blood, 2003,102(3): 1138-1141.
    83.陈燕春,于丽,刘焕彩,等。造血干细胞体外扩增的研究进展。解剖科学发展,2007,13(1),71-74.
    84. Bernstein A, Forrester L, Reith AD, et al. The murine W/c-kit and Steel loci and the control of hematopoiesis. Semin Hematol, 1991,28(2):138–142.
    85. Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 2000, 6(11):1278–1281.
    86. Tong W, Ibarra YM, Lodish HF. Signals Emanating From the Membrane Proximal Region Of The Thrombopoietin Receptor (Mpl) Support Hematopoietic Stem Cell Self-Renewal. Exp Hematol, 2007,35(9): 1447–1455.
    87. Flores-Guzman P, Gutierrez-Rodriguez M, Mayani H, et al. In vitro proliferation, expansion, and differentiation of a CD34+ cell-enriched hematopoietic cell population from human umbilical cord blood in response to recombinant cytokines. Arch Med Res, 2002,33(2) :107-114.
    88. Kobari L, Pflumio F, Giarratana M, et al . In vitro and in vivo evidence for the long-term multilineage (myeloid, B, NK, and T) reconstitution capacity of ex vivo expanded human CD34+ cord blood cells. Exp Hematol,2000,28 (12) :1470-1480.
    89. Ng YY,BloemAC ,van Kessel B , et al . Selective in vitro expansion and efficient retroviral transduction of human CD34+ CD38- haematopoietic stem cells. Br J Haematol, 2002,117(1) :226-237.
    90. Yamaguchi M, Hirayama F, Murahashi H, et al . Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy,2002 ,4 (2) :109-118.
    91.周敦华,黄绍良,张旭超,魏箐,吴燕峰,黄科。人脐血间充质干细胞对脐血CD34+细胞体外扩增作用的研究。中华儿科杂志。2005,43(7):494-498
    92. Piacibello W, Sanavio F, Garetto L, et al . The role of c-Mpl ligands in the expansion of cord blood hematopoietic progenitors. Stem Cells,1998,16 (2) :243-248.
    93. Kusadasi N, Koevoet JL, van Soest PL, et al. Stromal support augments extended long-term ex vivo expansion of hemopoietic progenitor cells. Leukemia, 2001,15 (9) :1347-1358.
    94. Flores-Guzmán P, Gutiérrez-Rodríguez M, Mayani H. In vitro proliferation, expansion, and differentiation of a CD34+cell-enriched Hematopoietic cell population from human umbilical cord blood in response to recombinant cytokins. Archi Med Res,2002, 33(2):107-114
    95. Shih CC, Hu MC, Hu J, et al. A secreted and LIF-mediated stromal cell derived activity that promoters ex vivo expansion of human hematopoietic stem cells.Blood,2000, 95(6):1957-1966.
    96. Li Y,Ma T ,Kniss DA , et al . Human cord cell hematopoiesis in three dimensional nonwoven fibrous matrices: in vitro simulation of the marrow microenvironment. J Hematother Stem Cell Res,2001 ,10 (3) :355-368.
    97. Gilmore GL, Depasquale DK, Lister J, et al. Ex vivo expansion of human umbilical cordblood and peripheral blood CD34 hematopoietic stem cells. Experimental Hematologs, 2000,28(9);1297-1305
    98. Lerner NM, Montpied P, Rousset MC, et al. Sequential expression of surface antigens and transcription factors NF kappa B by hippocampal cells in excitotoxicity and experimental epilepsy. Epilepsy Res,2000,41(2):141-154
    99. HuangYL,Sun D,Liu YL. Pathological changes of brain at different maturational stages caused by pentyleneterazol induced repeated seizure in rat models.Zhonghua Er ke Za Zhi, 2005,43(12):930-934
    100.164. Villella AD,Yao J,Getty RR,et al. Real-Time PCR:an Effective Tool for Measuring Transduction Efficiency in Human Hematopoietic Progenitor Cells. Molecular Therapy,2005, 11(3): 483-491
    101.Baksh D, Davies JE, Zandstra PW. suluble factor cross-talk between human bone marrow-derived hematopoietic and mesenchymal cells enhances in vitro CFU-F and CFU-O growth and reveals heterogeneity in the mesenchymal progenitor cell compartment. Blood, 2005,106(9):3012-9
    102.Gieble B, Corbeil D, Beckmann J, et al. Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood,2004, 104(8):2332-2338
    103.Takiyama N, Mohney T,Swaney W, et al., Comparison of methods for retroviral mediated transfer of glucocerebrosidase gene to CD34+ hematopoietic progenitor cells, Eur J Haematol,1998,61(1):1–6.
    104.Hanenberg H, Hashino K, Konishi H, et al. Optimization of fibronectin-assisted retroviral gene transfer into human CD 34+ hematopoietic cells. Hum Gene Ther,1997, 8(18):2193–2206
    105.Kuhlcke K, Fehse B, Schilz A, et al. Highly efficient retroviral gene transfer based on centrifugation-mediated vector preloading of tissue culture vessels, Molecular Therapy, 2002, 5(4): 473–478.
    106.Malik P, Fisher TC, Barsky LL, et al. An In Vitro Model of Human Red Blood Cell Production From Hematopoietic Progenitor Cells. Blood, 1998, 91(8): 2664-2671
    107.Dykxhoorn DM,Lieberman J. Silencing Viral Infection. PLoS Med, 2006, 3(7): e242.
    108.郝光荣。实验动物学(第二版)第二军医大学出版社。2002:215-220
    109.Ando K,Yahata T, Sato T, et al.Direct evidence for ex vivo expansion of human hematopoietic stem cells.Blood. 2006,107(8):3371-7
    110.Leonie M. Kamminga, Gerald de Haan。Cellular Memory and Hematopoietic Stem Cell Aging. Stem Cells, 2006,24(5): 1143 -1149
    111.Miyake N, Brun AC, Magnusson M, et al. HOXB4-Induced Self-Renewal of Hematopoietic Stem Cells Is Significantly Enhanced by p21 Deficiency. Stem Cells, 2006,24(3): 653 -661
    112.Yin T, Li H. The stem cell niches in bone. J Clin Invest, 2006, 116(5): 1195–1201.
    113.Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 2005,121(7):1109–1121
    114.Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, 425(6960):841–846.
    115.Magnusson M, Brun AC, Miyake N,et al. HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood, 2007, 109(9):3687-3696.
    116.Yu X, Aldera JK, Chuna JH, et al. HES1 Inhibits Cycling of Hematopoietic Progenitor Cells via DNA Binding. Stem Cells, 2006, 24(4): 876 -888
    117.Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 2000, 6(11):1278–1281.
    118.Priestley GV, Scott LM, Ulyanova T, et al. Lack of alpha4 integrin expression in stem cells restricts competitive function and self-renewal activity. Blood, 2006, 107(7):2959–2967.
    119.Nilsson SK, Johnston HM, Whitty GA, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 2005, 106(4):1232–1239.
    120.Pearson S, Sroczynska P, Lacaud G, et al. The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF. Development, 2008: 135(8):1525-35.
    121.Chadwick N, Nostro MC, Baron M,et al. Notch Signaling Induces Apoptosis in PrimaryHuman CD34+ Hematopoietic Progenitor Cells. Stem Cells, 2007,25(1): 203 -210
    122.Trowbridge JJ, Scott MP, Bhatia M. Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration。Proc Natl Acad Sci U S A, 2006, 103(38): 14134–14139.
    123.Wright D.E., Wagers A.J., Gulati A.P., et al. Physiological migration of hematopoietic stem and progenitor cells. Science, 2001,294(5548):1933–1936.
    124.Flynn CM, Kaufman DS. Donor cell leukemia: insight into cancer stem cells and the stem cell niche. Blood, 2007,109(7): 2688-2692
    125.Donahue J, Gilpin E, Lee TH, et al. Microchimerism does not induce tolerance and sustains immunity after in utero transplantation.transplantation,2001,71(3):359-368
    126.Flake AW, Harrison MR, Adzick NS, et al. Transplantation of fetal hematopoietic stem cell in utero:the creation of hematopoietic chimeras.Science,1986,233(4765):776-778
    127.Cowan MJ, Chou SH, Tarantal AF. Tolerance induction post in utero stem cell transplantation. Ernst Schering Res Found Workshop, 2001,(33):145-71.
    128.Zanjani ED, Flake AW, Rice H, et al. Long-term repopulating ability of xenogeneic transplanted human fetal liver hematopoietic stem cells in sheep. J Clin Invest,1994,93(3):1051-1055
    129.Flake AW. In utero transplantation of haemopoietic stem cells. Best Pract Res Clin haematol, 2001,14(4):671-683
    130.Archer DR, Turner CW, Yeager AM, et al. Sustained multilineage engraftment of allogeneic hematopoietic stem cells in NOD/SCID mice after in utero transplantation. Blood,1997,90(8):3222-3229
    131.Westgren M,Ringdern O,Bartmann P,et al. Prenatal T-cell reconstitution after in utero transplantation with fetal liver cells in a patient with X-linked severe combined immunodeficiency. Am J Obstet Gynecol,2002,187(2):475-482
    132.Hayward A, Ambruso D, Battaglia F, et al. Microchiemerism and tolerance following intrauterine transplantation and transfusion forα-thalassemia-1. Fetal Diagn Ther,1998,13(1):8-14
    133.Peranteau WH, Hayashi S, Hsieh M, et al. High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmeloablative bone marrow transplantation. Blood,2002,100(6):2225-2234
    134.Stier S, Ko Y, Forkert R, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med, 2005, 201(11):1781–1791
    135.Troeger C, Surbek D, Sch?berlein A, In utero haematopoietic stem cell transplantation。Swiss Med Wkly, 2006,136:498-503
    136.Flake AM, Zanjani ED. In utero hematopoietic stem cell transplantation:ontogenic opportunies and biologic barriers. Blood,1999,94(7):2179-2197
    137.Donahue J, Carrier E. Non-myeloablative transplants for congenital diseases. Cancer Treat Res,2002,110:177-211
    138.Jones DR. In utero stem cell transplantation:two steps forward but one step back? Expert Opin Ther,2001,1(2):205-212
    139.Nomura A,Takada H,Ohga S,et al.T-cell-depleted CD34+ cell transplantation from an HLA-mismatched donor in a low-birthweight infant with X-linked severe combined immunodeficiency. J Pediatr Hematol Oncol, 2005 ,27(2):80-4.
    140.Kohn DB, Weinberg KI, Nolta JA, et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med, 1995,1(10): 1017-1023.
    141.Ginn SL, Curtin JA, Kramer B,et al.Treatment of an infant with X-linked severe combined immunodeficiency (SCID-X1) by gene therapy in Australia. : Med J Austm, 2005 ,182(9):458-63.
    142.165.Hall KM, Horvath TL, Abonour R,et al. Decreased homing of retrovirally transduced human bone marrow CD34+ cells in the NOD/SCID mouse model.Experimental Hematology, 2006; 34(4): 433-442
    143.Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood, 2005, 106( 6): 1901-1910
    144.Almeida-Porada G, Flake AW, GlimpHA, et al. Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol,1999,27(10):1569-1575
    145.Mazurier F, Doedens M, Gan OI, et al. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med, 2003,9(7): 959-963.
    146.Castello S, Podesta M, Menditto VG, et al. Intra-bone marrow injection of bone marrow and cord blood cells: an alternative way of transplantation associated with a higher seeding efficiency. Exp Hematol, 2004,32(8): 782-787
    147.Ueda K, Hanazono Y, Shibata H, et al. High-level in vivo gene marking after gene-modified autologous hematopoietic stem cell transplantation without marrow conditioning in nonhuman primates. Mol Ther, 2004,10(3): 469-477.
    148.Chabner KT, Adams GB, Qiu J, et al. Direct vascular delivery of primitive hematopoietic cells to bone marrow improves localization but not engraftment. Blood, 2004,103(12): 4685-4686
    149.Ravin SS, Kennedy DR, Naumann N, et al. Correction of canine X-linked severe combined immunodeficiency by in vivo retroviral gene therapy.Blood, 2006, 107(8): 3091–3097.
    1. Bueren JA, Guenechea G, Casado JA, et al. Genetic modification of hematopoietic stem cells: recent advances in the gene therapy of inherited diseases .Archives of Medical Research. 2003; 34(6):589-599
    2. Graf T. Differentiation plasticity of hematopoietic cells. Blood .2002;99:3089–3101.
    3. Stathopulos PB. Taking the good out of the bad: lentiviral-based gene therapy of the hemoglobinopathies. Biotechnology Advances . 2003;21( 6): 513-526
    4. Lu ZZ, Ni F, Hu ZB, et al. Efficient gene transfer into hematopoietic cells by a retargeting adenoviral vector system with a chimeric fiber of adenovirus serotype 5 and 11p. Experimental Hematology, 2006; 34(9): 1170-1181
    5. Paz H, Wong CA, Li W, et al. Quiescent subpopulations of human CD34-positive hematopoietic stem cells are preferred targets for stable recombinant adeno-associated virus type 2 transduction. Hum Gene Ther. 2007;18(7):614-26.
    6. Jong JC, Wermenbol AG, Verweij-Uijterwaal MW, et al. Adenoviruses from human immunodeficiency virus-infected individuals, including two strains that represent new candidate serotypes Ad50 and Ad51 of species B1 and D, respectively. J Clin. Microbiol. 1999; 37 (12): 3940–3945
    7. Mei YF, Segerman A, Lindman K, et al. Human hematopoietic (CD34+) stem cells possess high-affinity receptors for adenovirus type 11p. Virology.2004; 328(2): 198-207
    8. Chen L, Pulsipher M, Chen D, et al. Selective transgene expression for detection and elimination of contaminating carcinoma cells in hematopoietic stem cell sources, J Clin Invest. 1996; 98 (11): 2539–2548
    9. Mei YF, Wadell G. Highly heterogeneous fiber genes in the two closely related adenovirus genome types Ad35p and Ad34a. Virology. 1995;206 (1): 686–689
    10. Balamotis MA, Huang K, Mitani K. Gene transfer into a hematopoietic cell line using a helper-dependent adenoviral vector with the chimeric Ad5/35 fiber. Molecular Therapy, 2004;9(s1): 43
    11. Nilsson M, Karlsson S, Fan X. Functionally Distinct Subpopulations of Cord Blood CD34+ Cells Are Transduced by Adenoviral Vectors with Serotype 5 or 35 Tropism.Molecular Therapy. 2004; 9(3):377-388
    12. Gammaitoni L, Lucchi S, Bruno S, et al. Serial Transplantations in Nonobese Diabetic/Severe Combined Immunodeficiency Mice of Transduced Human CD34+ Cord Blood Cells: Efficient Oncoretroviral Gene Transfer and Ex Vivo Expansion Under Serum-Free Conditions. Stem Cells. Vol. 2006;24 (5): 1201-1212
    13. Aiuti A. Slavin S, Aker M et al., Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning, Science. 2002;296:2410–2413
    14. Brenner S, Malech HL. Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2003;1640(1):1-24
    15. Moayeri M, Ramezani A, Morgan RA, et al. Sustained phenotypic correction of hemophilia a mice following oncoretroviral-mediated expression of a bioengineered human factor VIII gene in long-term hematopoietic. Molecular Therapy.2004; 10(5):892-902
    16. Dewey RA, Díez IA, Ballmaier M, et al. Retroviral WASP gene transfer into human hematopoietic stem cells reconstitutes the actin cytoskeleton in myeloid progeny cells differentiated in vitro. Experimental Hematology. 2006;34(9):1161-1169
    17. Ward M, Sattler RI. Bank A, et al. A stable murine-based RD114 retroviral packaging line efficiently transduces human hematopoietic cells. Molecular Therapy .2003;8(5): 804-812
    18. Hall KM, Horvath TL, Abonour R, et al. Decreased homing of retrovirally transduced human bone marrow CD34+ cells in the NOD/SCID mouse model. Experimental Hematology, 2006; 34(4): 433-442
    19. Takiyama N, Mohney T, Swaney W, et al., Comparison of methods for retroviral mediated transfer of glucocerebrosidase gene to CD34+ hematopoietic progenitor cells, Eur J Haematol.1998;61: 1–6
    20. kotani H, Newton PB 3rd, Zhang S, et al. Improved methods of retroviral vector transduction and production for gene therapy.Hum.Gene Ther.1994;5:19-28
    21. O’Doherty U,Swiggard WJ, Malim MH. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding.J.Virol.2000;74:10074-10080
    22. Hanenberg H, Hashino K, Konishi H, et al. Optimization of fibronectin-assisted retroviral gene transfer into human CD 34+ hematopoietic cells, Hum Gene Ther.1997; 8:2193–2206
    23. Kuhlcke K, Fehse B,Schilz A, et a.l Highly efficient retroviral gene transfer based on centrifugation-mediated vector preloading of tissue culture vessels. Molecular Therapy, 2002; 5: 473–478
    24. Ruggieri L, Aiuti A, Salomoni M, et al. Cell-surface marking of CD34+ restricted phenotypes of human hematopoietc progenitor cells by retrovirus-mediated gene transfer. Hum Gene Ther. 1997;8:1611–1623
    25. Kurre P, Anandakumar P, Harkey MA, et al. Efficient Marking of Murine Long-Term Repopulating Stem Cells Targeting Unseparated Marrow Cells at Low Lentiviral Vector Particle Concentration. Molecular Therapy.2004;9(6):914-922
    26. Crcareva A, Saito T, Kunisato A, et al. Hematopoietic stem cells expanded by fibroblast growth factor-1 are excellent targets for retrovirus-mediated gene delivery. Experimental Hematology. 2005;33(12):1459-1469
    27. Hong Y, Lee K, Yu SS, et al. Factors affecting retrovirus-mediated gene transfer to human CD34+ cells. J Gene Med. 2004 Jul;6(7):724-33.
    28. Hanazono Y, Asano T, Ueda Y, et al. Genetic Manipulation of Primate Embryonic and Hematopoietic Stem Cells with Simian Lentivirus Vectors. Trends in Cardiovascular Medicine.2003;13(3):106-110
    29. Roesler J, Brenner S, Bukovsky AA, et al. Third-generation, self-inactivating gp91(phox) lentivector corrects the oxidase defect in NOD/SCID mouse-repopulating peripheral blood-mobilized CD34+ cells from patients with X-linked chronic granulomatous disease. Blood. 2002;100: 4381–4390
    30. Relander T, Johansson M, Olsson K, et al. Gene Transfer to Repopulating Human CD34+ Cells Using Amphotropic-, GALV-, or RD114-Pseudotyped HIV-1-Based Vectors from Stable Producer Cells. Molecular Therapy. 2005;11(3):452-459
    31. Siapati EK, Bigger BW, Miskin J, et al. Comparison of HIV- and EIAV-Based Vectors on Their Efficiency in Transducing Murine and Human Hematopoietic Repopulating Cells。Molecular Therapy. 2005; 12(3): 537-546
    32. Li Z, Modlich U, Baum C. Safety and efficacy in retrovirally modified haematopoietic cell therapy. Best Practice & Research Clinical Haematology.2004;17(3):493–503
    33. David B, Prideaux Y, Chow V, et al. Inactivation of the p53 oncogene by internal deletionor retroviral integration in erythroleukemic cell lines induced by Ffiend leukemia virus.Oncogene.1988;3:179-185
    34. Schroder AR, Shinn P, Chen H, et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002; 110: 521–529
    35. Stocking C, Bergholz U, Friel J, et al. Distinct classes of factor-independent mutants can be isolated after retroviral mutagenesis of a human myeloid stem cell line. Growth Factors. 1993;8: 197–209.
    36. Li Z, Dullmann J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking. Science. 2002;296: 497
    37. Hacein-Bey-Abina S, Kalle VC, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003; 302: 415–419
    38. Thomas CE, Ehrhardt A , Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics. 2003; 4: 346–358
    39. Ailles LE , Naldini L. HIV-1-derived lentiviral vectors. Current Topics in Microbiology and Immunology. 2002;261: 31–52
    40. Gammaitoni L, Weisel KC, Gunetti M, et al. Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood. 2004;103:4440–4448
    41. Li Z, Schwieger M, Lange C, et al. Predictable and efficient retroviral gene transfer into murine bone marrow repopulating cells using a defined vector dose. Experimental Hematology.2003; 31(12):1206-1214
    42. Santoni FR, Cascio P, Zingale A, et al. Proteasome Activity Restricts Lentiviral Gene Transfer into Hematopoietic Stem Cells and Is Down-Regulated by Cytokines That Enhance Transduction . Molecular Therapy. 2006; 13(s1):S26
    43. Zielske SP,.Gerson SL. Lentiviral transduction of p104K MGMT into human CD34+ hematopoietic progenitors at low multiplicity of infection confers siginificant resistance to BG/BCNU and allows selection in vitro. Molecular Therapy.2002;5(4):381-387
    44.药立波。医学分子生物学:基因治疗。人民卫生出版社,2004:333-349
    45. Shin JY, Suh D, Kim JM, et al. Low molecular weight polyethylenimine for efficient transfection of human hematopoietic and umbilical cord blood-derived CD34+cells.Biochimica et Biophysica Acta (BBA) - General Subjects. 2005;1725(3):377-384
    46. Hollis RP, Nightingale SJ, Wang Xl, et al. Stable gene transfer to human CD34+ hematopoietic cells using the Sleeping Beauty transposon. Experimental Hematology. 2006; 34(10): 1333-1343
    47. Ivics Z., Hackett PB, Plasterk RH,et al. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997;91: 501–510
    48. Izsvak Z, Ivics Z. Sleeping Beauty transposition: biology and applications for molecular therapy. Mol Ther. 2004;9:147–156
    49. Robertson HM. The Tc1-mariner superfamily of transposons in animals, J Insect Physiol.1995; 41: 99–105
    50. Vanderbyl SL, Sullenbarger B, White N, et al. Transgene expression after stable transfer of a mammalian artificial chromosome into human hematopoietic cells. Experimental Hematology. 2005; 33(12):1470-1476
    51. Lindenbaum M, Perkins E, Csonka E, et al. A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy. Nucleic Acids Res. 2004; 32:172
    52. Podsakoff GM, Engel BC, Carbonaro DA, et al. Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34+ cells. Molecular Therapy.2005;12(1):77-86
    53. Persons DA, Allay ER, Sawai N, et al. Successful treatment of murine beta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood. 2003; 102:506–513
    54. Eszterhas SK, Bouhassira EE, Martin DI. et al. Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration positions, Mol Cell Biol. 2002;22: 469–479
    55. Duch M, Paludan K, Jorgensen P, et al. Lack of correlation between basal expression levels and susceptibility to transcriptional shutdown among single-gene murine leukemia virus vector provirus. J Virol. 1994; 68: 5596–5601
    56. Allay JA, Persons DA, Galipeau J, et al. In vivo selection of retrovirally transduced hematopoietic stem cells. Nat Med. 1998;4: 1136–1143
    57. Jin L, Zeng H, Chien S, et al. In vivo selection using a cell-growth switch, Nat Genet. 2000;26:64–66
    1. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480-7.
    2.张俊武,龙桂芳。血红蛋白与血红蛋白病[B]。广西科学技术出版社。2003年3月:161-184
    3. Weatherall DJ, Clegg JB. Thalassemia -a global public health problem. Nat Med. 1996;2: 847–849
    4. Sadelain M. Recent advances in globin gene transfer for the treatment ofβ-thalassemia and sickle cell anemia. current opinion in hematology. 2006; 13: 142-148
    5. Steinberg MH, Forget B G, Higgs D R , et al. Disorders of haemoglobin: genetics, pathophysiology, and clinical management. Cambridge,UK:Cambridge University Press.2001: 252-276.
    6. Angelucci E, Barosi G, Camaschella C,et al. Italian Society of Hematology practice guidelines for the management of iron overload in thalassemia major and related disorders.Haematologica. 2008;93(5):741-52.
    7. Bernaudin F, Socie G, Kuentz M, et al. Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood. 2007;110(7):2749-56.
    8. Sadelain M. Genetic treatment of the haemoglobinopathies: recombinations and new combinations. Br J Haematol. 1997; 98: 247-253
    9. Cone RD, Weber-Benarous A, Baorto D, Mulligan R C. Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector. Mol Cell Biol. 1987 ; 7: 887-897
    10. Karlsson S, Papayannopoulou T, Schweiger S G, et al. Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein. Proc Natl Acad Sci U S A. 1987; 84: 2411-2415
    11. Fu X H, Liu D P, Liang C C. Chromatin structure and transcriptional regulation of the beta-globin locus. Exp Cell Res. 2002;278: 1–11.
    12. Chang J C, Liu D , Kan Y W. A 36-base-pair core sequence of locus control region enhances retrovirally transfer red human beta-globin gene expression. Proc Natl Acad SciUSA. 1992; 89: 3107- 3110
    13. Novak U , Harris EA , Forrester W, et al . High -level beta -globin expression after retroviral transfer of locus activation region-containing human beta -globin gene derivatives into murine erythroleukemia cells. Proc Natl Acad Sci USA.1990; 87: 3386- 3390
    14. Leboulch P, Huang G M , Humphries RK , et al . Mutagenesis of retroviral vectors transducing human beta–globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. EMBO J. 1994; 13: 3065-3076.
    15. Sadelain M , Wang CH, Antoniou M, et al. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta -globin gene . Proc Natl Acad Sci USA. 1995; 92:6728-6732
    16. Navas PA , LiO , Peterson K R, et al . Activation of the beta -like globin genes in transgenic mice is dependent on the presence of the beta-locus control region. Hum Mol Genet. 2002; 11: 893- 903
    17. Ren S, Wong BY, Li J, et al. Production of genetically stable high-titer retroviral vectors that carry a human gamma-globin gene under the control of the alpha-globin locus control region. Blood. 1996;87:2518-24.
    18. Sabatino DE, Seidel NE, Aviles-Mendoza GJ, et al. Long-term expression of gamma-globin mRNA in mouse erythrocytes from retrovirus vectors containing the human gamma-globin gene fused to the ankyrin-1 promoter. Proc Natl Acad Sci USA. 2000;97:13294-9.
    19. Katsantoni EZ, Langeveld A, Wai AW, Drabek D, Grosveld F, Anagnou NP, et al. Persistent gamma-globin expression in adult transgenic mice is mediated by HPFH-2, HPFH-3, and HPFH-6 breakpoint sequences. Blood. 2003;102:3412-9.
    20. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature. 2000;406:82-6.
    21. May C, Rivella S, Chadburn A, Sadelain M. Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene. Blood. 2002; 99:1902–1908.
    22. Rivella S, May C, Chadburn A, et al. A novel murine model of Cooley’s anemia and itsrescue by lentiviral mediated human ?-globin gene transfer. Blood. 2003; 101:2932–2939.
    23. Lisowski L, Sadelain M. Locus control region elements HS1 and HS4 enhance the therapeutic efficacy of globin gene transfer in -thalassemic mice. Blood. 2007;110:4175-8.
    24. Pawliuk R , Westerman KA , Fabry M E, et al . Correction of sickle cell disease in transgenic mouse models by genetherapy. Science. 2001; 294:2 368- 2371
    25. Imren S, Fabry ME, Westerman KA,etal. High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J Clin Invest. 2004;114(7):953-62.
    26. Oh I H, Fabry M E, Humphries R K, et al.Expression of an anti-sicklingβ-globin in human erythroblasts derived from retrovirally transduced primitive normal and sickle cell disease hematopoietic cells. Experimental Hematology.2004; 32(5): 461-469
    27. Trudel M, De Paepe ME, Chretien N, et al. Sickle cell disease of transgenic SAD mice. Blood. 1994; 84:3189–3197.
    28. Paszty C, Brion CM, Manci E, et al. Transgenic knockout mice with exclusively. human sickle hemoglobin and sickle cell disease. Science. 1997; 278:876–878.
    29. Levasseur D N , Ryan T M, Pawlik KM , Townes TM . Correction of a mouse model of sickle cell disease . Blood. 2003; 102: 43 12- 4319.
    30. Puthenveetil G, Scholes J, Carbonell D et al. Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood. 2004; 104: 3445–3453.
    31. Levasseur DN, Ryan TM, Reilly MP, et al. A recombinant human hemoglobin with anti-sickling properties greater than fetal hemoglobin. J Biol Chem. 2004;279: 27518–27524.
    32. He S, Russell JE. Anti-sickling effects of an endogenous human alpha-like globin. Nat Med 2004; 10:365–367.
    33. Swank RA , Stamatoyannopoulos G. Fetal gene reactivation. Curr Opin Gene Dev. 1998; 8: 366-370
    34. Atweh GF , Loukopoulos D. Pharmacological induction of fetal hemoglobin in sickle cell disease and beta-thalassemia . Semin Hematol. 2001; 38:367-373
    35. Perrine SP , Castaneda SA , Boosalis MS , et al. Induction of fetal globin in beta -thalassemia : cellular obstacles and molecular progress. Ann N Y Acad Sci. 2005; 1054:2 57-265.
    36. Stamatoyannopoulos G. Prospects for developing a molecular cure for thalassemia. Hematology. 2005; 10 ( S l 1): 255-257.
    37. Li Q, Emery DW, Fernandez M, et al. Development of Viral Vectors for Gene Therapy of beta-Chain Hemoglobinopathies: Optimization of agamma-Globin Gene Expression Cassette. Blood.1999; 93( 7): 2208-2216
    38. Nishino T, Tubb J, Emery DW. Partial correction of murineβ-thalassemia with a gammaretrovirus vector for humanγ-globin. Blood Cells, Molecules, and Diseases. 2006; 37(1):1-7
    39. Emery DW, Yannaki E, Tubb J, et al. Development of virus vectors for gene therapy ofβchain hemoglobinopathies: flanking with a chromatin insulator reducesγ-globin gene silencing in vivo. Blood.2002;100(6): 2012-2019
    40. Persons DA, Hargrove PW, Allay ER, et al. The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood. 2003;101:2175-83.
    41. Imren S, Payen E, Westerman KA, et al. Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc Natl Acad Sci U S A. 2002;99: 14380-14385.
    42. Baum C, Dullmann J, Li Z, et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood. 2003;101: 2099-2114.
    43. Hanawa H, Hargrove PW, Kepes S. et al. Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia. Blood. 2004;104(8):2281-90.
    44. Wang G, Xu X, Pace B,et al. Peptide nucleic acid (PNA) binding-mediated induction of human [gamma]-globin gene expression. Nucleic Acids Research.1999;27(13):2806-2813
    45. Zhao N, Zu ZX, Liu CM, et al. Knockdown of mouse adult beta-globin gene expression in MEL cells by retrovirus vector-mediated RNA interference. Mol Biotechnol. 2004;28(3):195-9.
    46. Dykxhoorn D M, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med. 2005;56: 401–423.
    47. Reynolds A, Leake D, Boese Q,et al. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–330.
    48. Elbashir S M, Martinez J, Patkaniowska A,et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate.EMBO J. 2001;20: 6877–6888.
    49. Doench J G., Petersen C P, Sharp P A. siRNAs can function as miRNAs. Genes Dev. 2003;17: 438–442
    50. Dykxhoorn D M, Schlehuber L D, London I M, et al. Determinants of specific RNA interference-mediated silencing of humanβ-globin alleles differing by a single nucleotide polymorphism.PNAS.2006;103(15):5953-5958
    51. Samakoglu S, Lisowski L,Budak-alpdogan T,et al. A genetic strategy to treat sickle cell anemia gy coregulating globin transgene expression and RNA interference. Nature Biotechnology.2006;24(1):89-94
    52. S l edz C A, Hol ko M, d e Veer M J, et al. Activation of the interferon system by short-interfering RNAs . Nat Cell Biol .2003;5:834-839
    53. Matsumoto S, Miyagishi M, Akashi H, et al. Analysis of dsRNA - induced apoptosis pathways using IFN response - noninducible siRNA -expression vector library . J Biol Chem.20 0 5;280(27):25687-96
    54. Unwalla HJ, Li MJ, Kim JD, et al. Negative feedback inhibition o f HIV -1 by TAT- inducible expression of siRNA . Nat Biotechnol .2004; 22:1573-1578
    55. Song J, Pang S, Lu Y, Yokoyama KK, Zheng JY, Chiu R. Song J, et al . Gene silencing in androgen-responsive prostate cancer cells from the tissue-specific prostate-specific antigen promoter. Cancer Res. 2004;64:7661-7663
    56. Vacek M M, Ma H, Gemignani F,et al. High-level expression of hemoglobin A in human thalassemic erythroid progenitor cells following lentiviral vector delivery of an antisense snRNA. Blood, 2003;101(1): 104-111
    57. Byun JH, Lan N, Long M, et al. Efficient and specific repair of sickle b-globin RNA by trans-splicing ribozymes. RNA. 2003; 9:1254–1263.
    58. Sadelain M, Rivella S, Lisowski L, et al. Globin gene transfer for treatment of theβ-thalassemias and sickle cell disease. Best Practice & Research Clinical Haematology.2004;17(3):517-534
    59. Crystal RG.. Transfer of genes to humans: early lessons and obstacles to success. Science. 1995;270: 404–410.
    60. Knowles MR, Hohneker KW, Zhou Z,et al. A controlled study of adenoviral–vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med. 1995;333: 823–831.
    61. Miller AR, McBride W H, Dubinett S M, et al. Transduction of human melanoma cell lines with the human interleukin-7 gene using retroviral-mediated gene transfer: comparison of immunologic properties with interleukin-2. Blood .1993; 82: 3686–3694.
    62. Emery D W, Stamatoyannopoulos G. Stem cell gene therapy for the beta-chain hemoglobinopathies. Problems and progress, Ann. N. Y. Acad. Sci. 1999;872: 94–107.
    63. Case S S, Price M A, Jordan C T, et al. Stable transduction of quiescent CD34(+)CD38(?) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc Natl Acad Sci U S A. 1999;96: 2988–2993.
    64. Naldini L, Verma I M. Lentiviral vectors. Adv. Virus Res. 2000;55: 599–609.
    65. Zufferey R, Dull T, Mandel RJ et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72:9873–9880.
    66. Grande A, Piovani B, Aiuti A, et al. Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells. Blood. 1999;93:3276–3285.
    67. Ren S, Wong BY, Li J, et al. Production of genetically stable high-titer retroviral vectors that carry a human gamma-globin gene under the control of the alpha-globin locus control region. Blood. 1996;87:2518–2524.
    68. Khanahmada H, Daloiib M R N, Shokrgozarc M A,et al.A novel single step double positive double negative selection strategy forβ-globin gene replacement. Biochemical and Biophysical Research Communications. 2006;345(1):14-20
    69. Persons D A, Allay E R, Sawai N,et al. Successful treatment of murineβ-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood. 2003;102( 2): 506-513
    70. Persons DA, Allay E R, Sabatino D E, et al. Functional requirements for phenotypiccorrection of murineβ-thalassemia: implications for human gene therapy. Blood. 2001;97(10): 3275-3282
    71. Wood W G, Weatherall D J, Clegg JB,et al. Heterocellular hereditary persistance of fetal hemoglobin (heterocelular HPFH) and its interaction with beta thalassemia. Br J Haematol. 1977;36: 461–473.
    72. Prchal J, Stamatoyannopoulos G. Two siblings with unusually mild homozygous beta-thalassemia: a didactic example of the effect of a nonallelic modifier gene on the expressivity of a monogenic disorder, Am J Med Genet. 1981;10: 291–300.
    73. Kohn DB. Gene therapy for genetic haematological disorders and immunodeficiencies. J Intern Med. 2001; 249:379–390.
    74. Mikkers B H, Allen J, Knipscheer P, et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 2002; 32:153–159.
    75. Suzuki T, Shen H, Akagi K, et al. New genes involved in cancer identified by retroviral tagging. Nat Genet. 2002; 32:166–174.
    76. Baum C, Dullmann J, Li Z, et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood. 2003; 101:2099–2114.
    77. Kohn DB, Sadelain M, Dunbar C, et al. American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol Ther.2003; 8:180–187.
    78. Li Z, Dullmann J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking. Science. 2002; 296:497.
    79. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science.2003; 302: 415–419.
    80. Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer. 2003; 3:477–488.
    81. Rivella S, Callegari JA, May C, et al. The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J Virol. 2000; 74:4679–4687.
    82. Yannaki E, Tubb J, Aker M, et al. Topological constraints governing the use of the chicken HS4 chromatin insulator in oncoretrovirus vectors. Mol Ther. 2002; 5:589–598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700