小麦K型细胞质雄性不育育性恢复基因的标记定位和效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦K型细胞质雄性不育系是非常有应用潜力的一种不育系,现已证明小麦K型雄性不育系的主效恢复基因有两对,分别是位于1BS上的Rfk1和2BL上的Rfk2,挖掘与恢复基因紧密连锁的分子标记,对恢复基因进行基因定位和搞清两对恢复基因的效应和作用方式,将有助于选育出恢复度高而稳定的恢复系。本文选用了不诱发单倍体的K型不育系豫麦3号与恢复系豫麦2号构建的遗传背景为豫麦3号的恢复基因Rfk1和Rfk2的近等位基因系,豫麦2号/豫麦3号F5重组近交系,以及5个K型不育系K豫麦3号、K豫农43、K豫教1号、K豫农93151和K豫麦21,对两个恢复基因Rfk1和Rfk2进行了分子标记的定位和效应分析。主要结论如下:
     1.利用所筛选的与恢复基因连锁的SSR标记对豫麦2号/豫麦3号F5重组近交系进行标记鉴定,根据杂交组合的育性分离和豫麦2号/豫麦3号F5重组近交系的带型对Rfk1和Rfk2进行基因定位,1BS染色体上的5个SSR标记TAGLGAP、Xgwm374、Xgwm18、Xgwm11、BARC061与恢复基因Rfk1的遗传距离分别为10.1 cM、7.1 cM、3.0 cM、3.0 cM、13.4 cM,该恢复基因位于标记Xgwm18和Xgwm11之间。恢复基因Rfk2与引物cfd26和Xgwm526遗传距离为5.2和18.8 cM。
     2.根据豫麦2号/豫麦3号F5重组近交系群体带型和重组近交系/K豫麦3号杂交F1群体育性恢复情况对重组近交系/K豫麦3号杂交F1群体的基因型进行判定,只携带Rfk1恢复基因的单株有69株,平均国内法恢复度为64.92%,国际法为106.68%;只携带Rfk2恢复基因的单株有56株,平均国内法恢复度为57.82%,国际法为93.35%;同时携带2个恢复基因的单株有66株,平均国内法恢复度为73.98%,国际法为117.37%。因此,可以初步证明Rfk1的恢复力较强,Rfk2的恢复力较弱,2个恢复基因有累加效应。同时,还可以看出,育性恢复度较低的单株(<45%),大多携带恢复基因Rfk2。
     3.利用5个K型不育系K豫麦3号、K豫农43、K豫教1号、K豫农93151和K豫麦21与Rfk1和Rfk2的近等位基因系组配杂交组合,进一步明确恢复基因Rfk1和Rfk2的效应大小,结果表明Rfk1对5个不育系的国内法、国际法恢复度均高于Rfk2,进一步证明恢复基因Rfk1的效应大于Rfk2。
Wheat male sterile line with Ae.kotschyi cytoplasm has the best potential application and was controlled by two pairs of major fertility restorer genes;The two pairs of major fertility restorer genes were located in Rfk1 for 1BS and Rfk2 for 2BL of wheat;Good restoring lines would be selected and hybrid wheat varieties would be developed by mapping restorer genes and analysising the effect of two restorer genes;In this study, the near-isogenic lines (NILs) were constructed using sterile line Yumai 3 with Ae.kotschyi cytoplasm which don’t induced haploid, restorer line Yumai 2 which have two pairs of major restorer genes of Rfk1和Rfk2;The F5 group of Yumai3/Yumai2 NILs and 5 sterile lines of Yumai3,Yunong43,Yujiao1,Yunong93151 and Yumai21;That materials wered be Markered and effect analysised,the results showed as follows:
     1,By using the SSR makers linkaged to restorer genes,which mapped and identified genes of Rfk1 and Rfk2 in F5 groups of Yumai3/Yumai2 NILs;5 SSR makers of TAGLGAP、Xgwm374、Xgwm18、Xgwm11、and BARC061wered identified in 1BS,which markers to Rfk1 distance are 10.1 cM、7.1 cM、3.0 cM、3.0 cM and13.4 cM, respectively. The Rfk1 mapped between Xgwm18 and Xgwm11;The genetic distance between Rfk2 and primer cfd267 was 5.2,Rfk2 and primer Xgwm526 was 18.8 cM.
     2. By identified genotypes in F5 groups of Yumai3/Yumai2 NILs and restoration performance in F1 groups of NILS/ Yumai3,which judged genotypes of F1 groups of NILS/ Yumai3;There are 69 plants carried Rfk1 restoring genes , which average restoring degrees was 64.92% with domestic method and 106.68% with international method; There are 56 plants carried Rfk2 restoring genes, which average restoring degrees is 57.82% with domestic method , 93.35% with international method;There are 66 plants carried two restoring genes, which average restoring degrees is 73.98% with domestic method and 117.37% with international method.Therefore, the restoring ability of Rfk1 is stroger than Rfk2 ,the 2 restoring genes have accumulative effect. At the same time , the low restoring ability (<45%) plants always carry Rfk2 gene.
     3, The hybridized combination NILs of 5 sterile lines with Ae.kotschyi cytoplasm Yunong43,Yujiao1,Yunong93151 and Yumai21 wered used in identifying the effect of Rfk1 and Rfk2 ;The result show the average restoring degrees of Rfk1 on 5 sterile lines was higher than Rfk2,Hence,the effect of Rfk1 is bigger than Rfk2.
引文
[1]田纪春.超级小麦的概念、育种目标和任务[J].山东农业科学, 2004, 5: 18-21.
    [2]万富世.新世纪中国的小麦及其发展对策[A].北京:中国农业出版社, 2001, 1-161.
    [3] Rosegrant M W, Sombilla M A, Gerpacio R V , et al. Global food markets and exports in twenty first century Paper presented at the Illions World Food and Sustainable Agriculture Program Conference[A], 1997.
    [4]肖世和.超级麦育种现状与展望[A].中国小麦育种产业化进展[C].北京:中国农业出版社, 2002, 34-44.
    [5]王苏,赵寅槐,邹明烈等.江苏省杂种小麦研究现状及其发展前景[J].江苏农业科学, 1996, 3: 15-171.
    [6]王鹏科,黄寿松.小麦核型不育杂种优势利用研究现状[J].国外农学-麦类作物, 1993, 2: 46-48.
    [7]邢朝柱,靖深蓉,邢以华.中国棉花杂种优势利用研究回顾和展望[J].棉花学报, 2007, 19(5): 337-345.
    [8]刘静,董振生.白菜型油菜杂种优势利用进展[J].西北农业学报, 2006, 15(5): 261-265.
    [9]滕文涛,曹靖生,陈彦惠等.十年来中国玉水杂种优势群及其模式变化的分析[J].中国农业科, 2004, 37(12): 1804-1811.
    [10]曾千春,周开达,朱祯等.中国水稻杂种优势利用现状[J].中国水稻科学, 2000, 14(4): 243-246.
    [11]黄铁城.杂种小麦研究进展一问题与展望[M].北京,中国农业大学出版, 1990, 10-31.
    [12]邹吉承,郑君海.麦杂种优势的研究现状及应用前景[J].辽宁农业科学, 2000, (1): 33-38.
    [13]关正君,杨学举.小麦杂种优势利用研究进展[J].河北农业科学, 2002, 12(4): 31-36.
    [14]刘宏伟,张改生,王军卫等.化学杂种小麦研究[J].陕西农业科学, 1998, (6): 3-5.
    [15]姚景珍,张建诚,王秋叶.CHA杂种小麦国内外研究进展与现状.现代农业科技,2006,(5):56-57
    [16] Sasakuma T, & I, Ohtsuka. Cytoplasmic effects ofAegilops species having D genome in wheat, I. Cytoplasmic differentiation among five species regarding pistillody induction Seikenziho [J], 1979, 27-28, 59-65.
    [17]许育彬,康海岐.小麦光温敏型两系法研究进展[J].陕西农业科学, 2001, (9): 28-31.
    [18]蒲传永,胡昌川,游文平等.小麦杂种优势利用的前景[J].种子, 1999, (5): 35-38.
    [19]杜伟莉,张改生,刘宏伟.粘类小麦雄性不育系研究进展[J].陕西农业科学, 2000, (4): 16-20.
    [20]黄铁城.杂种小麦研究[J].北京农业大学出版社, 1990.
    [21]高庆荣,王大为,天纪春.超级麦育种的重要途径-杂交小麦的优势利用[J].山东农业科学2005, (4): 11-13.
    [22]王强,刘小宁,雷国材等.五种小麦雄性不育系的初步研究[J].麦类作物学报, 2002, 22(4): 58-62.
    [23]宋自仁,张爱国,荆鹏晏等.小麦雄性不育细胞质效应的比较研究[J].甘肃农业大学学报, 1994, 9(29): 255-261. [24 ]高庆荣,刘保申,孙兰珍等. K、V、A型杂种小麦细胞质效应的比较研究[J].麦类作物, 1998, 18(4): 1-9.
    [25]杨天章. K型小麦雄性不育系应用问题研究:细胞质效应和诱导单倍体问题[J].陕西农业科学, 1990,(3): 1-3.
    [26]乔利仙,张改生,刘宏伟等.粘、易、偏和二角型小麦雄性不育系杂种籽粒品质研究[J] .中国农业科学, 2001, 34(6): 587-591.
    [27] Kihara H. Wheat Studies: Restrospect and Prospects[M]. Kodensha Ltd Tokyo, 1988. 131-161.
    [28]詹克慧,赵鹏,吕德彬等. K型细胞质对普通小麦主要性状的影响[J].华北农学报, 2004, 19(2): 57-61.
    [29]高庆荣,于金凤,刘保申.不同小麦不育类型开颖特性的初步讨论[J].作物学报, 2004, 30(6): 622-625.
    [30] Qiao L-X, Zhang G-S, Liu H-W, Wan J-W, Wang X-L. Studies on seed quality of hbrids between some wheat male sterile lines and Ae. kotschyi, Ae.variabi lis, Ae. ventricosa and Ae.bicornis cytoplasms[J]. Scientia Agrcultura Sinica, 2001, 34(6): 587-591.
    [31] Gao Z, Zhao Y-H. Studies on the effects of allo plasms from T. timopheevi and Ae.ventricosa on photosynthetic traits in wheat flag leaves[J]. Scientia Agricultura Sinica, 1996, 29(6): 29-37.
    [32]高庆荣,张爱民,王瑞霞等. K、T、V、CHA型杂种小麦品质性状的细胞质效应[J].作物学报, 2005, 31(1): 43-47.
    [33]焦健,高庆荣,张爱民等.不同小麦雄性不育类型光合、生理参数日变化研究[J].作物学报, 2007, 33(8): 1267-1271.
    [34]邓量拓,高忠耐.太谷核不育小麦的发现和鉴定[J].作物学报. 1980, 2: 84-98.
    [35]刘秉华等.小麦显性雄性不育单基因的染色体定位[J].遗传, 1986, 8(2): 13-13.
    [36] Liu bing hua. A dominant gene for male-sterility in wheat [J]. Plant Breeding, 1986: 97: 204-209.
    [37]隋新霞,孙兰珍,李传友等.与太谷核不育小麦Tal基因连锁的PAPD标记的赛选[J].山东农业大学(自然科学版), 2001, 32(1): 1-5.
    38 Aarts M G M, Dirkse W G, Stiekema W J, Pereira A Transposon tagging of a male sterility gene in Arabidopsis[J]. Nature, 1993, 363: 715-717.
    [39]常青山,周荣华,余增亮等.用差减抑制杂交方法鉴定太谷核不育小麦花粉败育过程中的特异表达基因[J].高技术通讯, 2003, 3: 30-32.
    [40]刘秀珍,李传友,孙兰珍等.用DDRT-PCR技术对太谷核不育小麦基因差异表达的研究[J].西北植物学报, 2003, 23(12):2163-2166.
    [41] Zhou K J, Zhou W L, Wang S.Yetal. 4E-mssystem of hybrid wheat production InHybid Wheat-A new cropping going to farmer [J]. Beijing, CAUpress, 1998: 57-63.
    [42] Tian H,Liu ZQ. Development of dominant nuclear malesterile lines with a blue seed marker in durum and common wheat[J]. Plantbreeding, 2001, 120: 79-81.
    [43] Sasakuma T I, Ohtsuka. Cytoplasmic effects of Aegilops species having D2 genome in wheat.I.Cytoplasmic diiferentiation among five species regarding pistillody induction[J]. Seiken Ziho, 1979, 27-28: 59-65.
    [44]杨海燕,宗学风,余国东等.温光敏核不育小麦育性转换与激素间关系的研究[J].西南农业大学学报, 2006, 28(3): 369-372.
    [45]杨万年,何之常.光敏胞质雄性不育小麦NAD激酶和NADP磷酸酶对光周期的反应[J].武汉大学学报, 1998, 44(6): 737-741.
    [46]宋国琦,何蓓如. YS型小麦温敏雄性不育系A3017育性相关基因的ssH分析[J].西北植物学报, 2006, 26(7): 1301-1308.
    [47]刘卫,陈蕊红,张改生.小麦遗传型与生理型雄性不育花药蛋白质双向电泳分析[J].遗传, 2008, 30(8) :1063-1068.
    [48] Xing Quanhua, Ru Zhen gang, Li Jun eta1. Cloning a second form of adenine phosphoribosyl transferees gene(TaAPT2) from wheat and analysis of its association with thermo-senaitive genic male sterility(TGMS)[J]. Plant Science, 2005, 169: 37-45.
    [49] R X Guo, D F Sun, Z B Tan eta1. Two recessivegenes controlling thermo photoperiod- sensitive male sterility in wheat[J]. Theoritieal and Applied Genetics, 2006, 112: 1271-1276.
    [50] Xing Q H, Ru Z G, Zhou C J, etal. Genetics analysis molecular tagging and mapping of the thermo-sensitive geneic male-sterile gene(tvtmsl) in wheat[J]. Thcoritical and Applied Genetics, 2003. 107(8): 1500-1504.
    [51]叶景秀,陈蕊红,张改生等.杀雄剂SQ-1诱导小麦雄性不育花药蛋白质组分分析[J].农业生物技术学报, 2009, 17(5):858-864.
    [52]王永军,张改生,王军卫等.小麦遗传性与生理型雄性不育花药同工酶的比较研究[J].麦类作物学报, 2005, 25(4): 44-49.
    [53] Block MD, Debrouwer D, Moens T, eta1. The development Of a nuclear male sterility systemin wheat[J]. Expression of the bamase gene under the control of tapeturnspecific promoters[J]. TAG, 1997, 95: l25-131.
    [54]李艳红,肖兴国,赵广朵等.麦栽培品种的研究初报一将新的人工雄性不育基因导入[J].农业生物技术学报, 1999, 7(3): 235-258.
    [55]李英贤,张爱民,黄铁成.小麦细胞质雄性不育与花药组织内源激素的关系[J].农业生物技术学报, 1996, 12(4): 307-313.
    [56] Rath burn HB. Hedgcoth C.A ehimeric open reading frame in the 5 flanking region 0f COXI mitochondral. DNA from cytoplasmic male sterile wheat [J]. Plant Mol Bio.1991, 16: 909-912.
    [57] Mihr C, Baumg rtner M, Dieterich J H etal. Proteomic approach for investigation of cytoplasmic male sterility (CMS) in Brassica[J]. Plant Physiol, 2001, 158(6): 787-794.
    [58] Hochholdinger F,Guo L,Schnable P S.Cytoplasmic regulation of the accumulation of nuclear-encoded proteins in the mitochondrial proteome of maize[J]. The Plant Journal, 2004, (2): 199-208.
    [59] Wen L, Liu G, Li S Q etal. Proteomic analysis of anthers from Honglian cytoplasmic male sterility line rice and its corresponding maintainer and hybrid[J]. Botanical Studies, 2007, (3): 293-309.
    [60]陈蕊红,叶景秀,张该生等.小麦质核互作型雄性不育系及其保持系花药差异蛋白质组学分析[J].生物化学与生物物理进展, 2009, 36(4): 431-400.
    [61] Hemould M, Suharsono S. Male sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat[J]. Pro.Nad.Acad Sci.USA, 1993, 90(7): 2370-2374.
    [62] Tsuae waki K. Genome-plasmon interactios in whea[J]t. Jap.T.Genet.1993, 68: 1-34.
    [63] Kojima T, Tsujimoto H, Ogihara Y High-resolution RFLP mapping of the fertility restoration(Rf3)gene against Triticum timpheevi cytoplasm located on chromosome 1BS of common wheat[J]. Genes and Genetic Systems, 1997, 72: 353-359.
    [64]张萃,王宏英.用微卫星标记定位小麦T型CMS的恢复基因[J].遗传学报, 2003, 30(5): 459-464.
    [65]石运庆等. V型小麦细胞质雄性不育系育性恢复基因的SSR分子标记分析[J].山东农业科学, 2005. (3): 3-5.
    [66]刘春光,吴郁文,侯宁等.普通小麦D2型CMS系恢复基因的遗传分析[J].遗传学报, 2002, 29(6): 531-36.
    [67] Li X L , Liu L K, Hou N etal. SSR and SCAR markers inked to fertility restoring gene for D2 -Type cytoplasmic malesterile line in wheat [J]. Plant Breeding, 2005, 127: 413-415.
    [68]刘春光.普通小麦D2型CMS系及其育性恢复的遗传学研究[D].北京:中国科学院遗传研究所、中国科学院研究生院博士学位论文, 2000.
    [69] Mukai Yand, Tsunewaki K. Theoret.ppl. Genet. 1979, 54: 153-160.
    [70] Tsunewaki K and Mukai Y. 64th Meat.Japan Breed.Society. 1983, Oct.5-6.
    [71] Tsunewaki K, Mukai Y and EndoT R. 5th. Int wheat Genet.Symp.1978, 261-272.
    [72] Mukai Yand Tsunewaki K, Theoret.ppl.Genet.1979, 54: 153-160.
    [73]张改生,杨天章.山羊草细胞质的1B/lR小麦-黑麦型雄性不育学研究初报[J].陕西农业科学, 1987, (5): l-5.
    [74]张改生,杨天章.偏型和易型小麦雄性不育系的初步研究[J].作物学报, 1989, 15(l): 1-10.
    [75]范濂,武耀廷,吕德彬等.小麦(K)型雄性不育系得选育与应用研究.杂交小麦和小麦遗传育种研究[J].中国科学技术出版社, 1999, 168-173.
    [76]孙兆全,杨天章,刘宏伟等. K型1B/1R易位小麦雄性不育系的育性恢复遗传[J].杂种小麦研究进展,农业出版社: 1993, 87-92.
    [77]张改生,赵惠燕,吴兆苏等.几类异质1B/1R小麦雄性不育系育性稳定性与育性恢复性的研究[J].中国农业科学, 1996, 29(5): 41-50.
    [78]谢迎秋,孙兰珍,王海峰.小麦K、V型胞质雄性不育系F2群体育性分离多态性[J].华北农学报, 1999, 14(1): l-5.
    [79]刘保申,孙兰珍,高庆荣等. K型杂交小麦恢复基因的遗传研究[J].华北农学报, 1999, 14(2): l-5.
    [80]詹克慧,范平,孙笑梅等.小麦K型杂种F2的育性及性状表现[J].中国农学通报, 1999, 15(2): 5-7.
    [81] Mukai Y K, Tsunewaki. Basic studies on hybrd wheat breedingⅧ: A new male sterility-fertility restoration system in commom wheat utilizing the cytoplansmas of Ae.koteschyi and Ae.Variabilis[J]. Theor Appl genct, 1979, 54: 153-160.
    [82]孙兆全,杨天章,刘宏伟等. K型1B1R易位小麦雄性不育系的育性恢复遗传[J].杂种小麦研究进展.北京:农业出版社, 1993: 97-92.
    [83]刘保申,孙兰珍,高庆荣等. K型杂交小麦恢复基因的遗传研究[J].华北农学报, 1999, 14(2): l-5.
    [84]范濂,武耀廷,詹克慧等.小麦K型雄性不育育性恢复性能的研究[J].河南农业大学学报, 1998, 103(3): 212-215.
    [85]詹克慧,程静,崔党群等.小麦型不育系育性恢复基因的遗传分析[J].作物学报. 2006, 32(6): 873-877.
    [86] Hamawaki H, Mukai Y. Telocentric mapping of the fertility-restoring gene Rfv1 againstAegilops variabilis cytoplasm in wheat[J]. Jpn J Genet. 1980, 55: 453-469.
    [87] Mukai Y and Tsunewaki K. Basic studies on hybrid wheat breedingⅧ. A new male Sterility-fertility restoration ystem in common wheat utilizing the cytoplasms of Aegilops kotschi and Ae. Variabilis and Ae. variabilis[J]. Theor Appl Genet 1979, 54: 153-160.
    [88] Mukai Y, Endo T R. Physical mapping of a fertility-restoring gene against Aegilops Kotschyi cytoplasm in whea[J]t. Jpn.J.Genet. 1992, 7: 199-207.
    [89] Mukai Y. Ineractions of Aegilops kotschyi and Ae.variabilis cytoplasms with omeologws group 1 chromosomes in common wheat.In Proc.6th Int[J]. Wheat Genetics Sym. 1983, 517-527.
    [90]刘保申,孙其信. K型小麦细胞质雄性不育系育笥恢复基因的RAPD和ISSR标记.植物学报[J]. 2002, 44(4): 446-450.
    [91]吴少方.小麦K型不育系育性恢复基因的效应分析[硕士学位论文].河南农业大学, 2007.
    [92]詹克慧,程静,崔党群等.小麦K型不育系育性恢复基因的遗传分析[J].作物学报, 2006, 32(6): 873-877.
    [93]程静.小麦K型不育系育性恢复的遗传机理研究[硕士学位论文] .河南农业大学,2005.
    [94]宋迎辉.小麦不同K型恢复系恢复基因的遗传分析[硕士学位论文].河南农业大学, 2007.
    [95]詹克慧等.小麦K型不育系的易恢性及育性恢复的稳定性研究[J].作物学报, 31(11): 1490-1494.
    [96] Trupp C R. Fertility restoration in soft winter wheat hybrid [J]. Crop Sci, 1976, 16: 453-4 56.
    [97]范濂,王福亭.提莫菲维核范质体系杂交小麦杂种优势问题的初步探析[J].遗传学报, 1978, 5(1): 31-40.
    [98]杨天章.小麦新型不育系的研究与应用[c].北京:北京农业大学出版社, 1990: 110-136.
    [99]张改生.粘、易型1B/1R小麦雄性不育系产生单倍体的遗传机理及育性恢复性能的研究[J].遗传学报, 1992, 19(3): 266~277.
    [100]詹克慧,高翔,程西永等.小麦K型不育系的易恢性的差异研究[J].华北农学报, 2008, 23(5): 67-72.
    [101]曹双河,郭小丽,刘冬成,张相岐,张爱民.小麦光温敏核雄性不育基因的初步定位[J].遗传学报, 2004, 31(3): 293-298.
    [102]马翎健,何蓓如,宋喜悦,胡银岗.小麦光敏雄性不育基因的遗传分析及RAPD标记,作物学报, 2004, 30(9): 912-915.
    [103] Mukai Y, Tsunewaki K. Basic studies on hybrid wheat breeding:Ⅷ.a new male sterility-fertility restoration system in common wheat utilizing the cytoplasms of Ae.kotschyiand Ae. variabilis[J]. Theor Appl Genet, 1979, 54: 153-160.
    [104]李红霞,张改生,龙雨,牛娜.粘类小麦育性恢复基因的遗传分析及SSR分子标记[J].西北农林科技大学学报, 2008, (36):65-68.
    [105]李红霞,张改生,牛娜,粘类小麦育性恢复基因的遗传分析及PAPD分子标记[J].西北植物学报, 2005, 25(9): 1747-1750.
    [106]石运庆,牟秋焕,李鹏.刘保申V型小麦细胞质雄性不育系育性恢复基因SSR分子标记分析[J].山东农业科学, 2005, 3: 3-5.
    [107] Chen H B, Martin J.M.Lavin M.and Talbert L.E. Genetic diversity in ha rd red spring wheat based on sequence-targeted-site PCR[J]. Crop Sci. 1994, 34: 1628-1632.
    [108] Plaschke J, Ganal M.W and Roder M.S. Detection of genetic diversity in closely related bread wheat using micr osatellite markers[J], Theor App1 Genet. 1995, 9l: l001-1007.
    [109]孙其信,黄铁城,倪中福,小麦杂种优势群研究I.利用RA PD标记研究小麦品种间遗传差异[J],农业生物技术学报, 1996, 4(2): l03-1l0.
    [110]吴卫,郑有良,魏育明,周永红,刘登才,张志清.利用SSR标记分析小麦强优势组合亲本遗传差异[J].西南农业学报, 2002, l5(3): l-6.
    [111]崔国惠,倪中福,吴利民,李元清,孙其信.小麦杂种优势群研究V.微卫星分子标记遗传距离与普通小麦和斯卑尔脱小麦种间杂种优势的关系[J],麦类作物学报, 2002, 22(1): 5-9.
    [112] Cho Y G, Ishii T, Temnykh S, Chen X, LipovichL, ParkWD, Ayres N, Cartinhour S, McCouch S R Diversity of microsatellites derivedfrom genomic libraries and GenBank sequences in rice (Oryza sativaL). Theor Appl Genet, 2000, 100: 713-722.
    [113] Eujayl I, Sorrells M E, Baum M, Wolters P, Powell W·Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat[J]. TheorAppl Genet, 2002, 104: 399-407.
    [114] Holton R A, Christopher J T, McClure L, Harker N, Henry R J·Identification and mapping of polymorphic SSR markers from expressed genes equences of barley and wheat[J].·Molecular Breeding, 2002, 9: 63-71.
    [115] Kantety RV, Rota M L, Matthews D E, Sorrells M E·Data mining for Simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat.[J]·Plant Mol Bio, 2002, 48: 501-510.
    [116] Thiel T, Michalek W, Varshney R K, Graner A·Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgareL)[J].·Theor Appl Genet, 2003, 106: 411-422.
    [117]陈军方等,从小麦EST序列中开发新的SSR引物[J],作物学报, 2005, 31, (2): 154-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700