七种含N有机膦系化合物的阻垢性能及其作用机理的MD研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文运用pH曲线法和分子动力学(MD)方法研究了工业循环冷却水系统中七种常用的含N有机膦系化合物:氨基亚甲基膦酸(AMP)、氨基二亚甲基膦酸(NDP)、氨基三亚甲基膦酸(NTMP),乙二胺四亚甲基膦酸(EDTMP)、丁二胺四亚甲基膦酸(TDTMP)、己二胺四亚甲基膦酸(HDTMP)和二乙烯三胺五亚甲基膦酸(DTPMP)的阻垢性能及其作用机理。通过pH曲线实验评定有机膦酸分子对CaCO3的阻垢能力;采用MD方法模拟了目标分子对CaCO3三种晶型的阻垢机理,并与pH曲线实验结果相比较,验证理论模型及MD模拟条件的合理可靠性;在上述相同模拟细节条件下分别系统地研究了目标分子对BaSO4、Ca10(PO4)6(OH)2、CaSO4及水分子存在条件下CaCO3的阻垢机理。
     pH曲线实验结果表明,在温度75±2℃条件下,搅拌速度500r/min, Ca2+浓度为8mmol/L的标准水样中,除了AMP和NDP以外其余五种膦酸分子均在低浓度时对此条件水样有高效、稳定、良好的阻垢效果,当NTMP、EDTMP、TDTMP、HDTMP和DTPMP的用量分别是5μmol/L、1μmol/L、0.8μmol/L、0.5μmol/L和0.2μmol/L时,阻垢效果良好,几乎完全抑制了此浓度下CaCO3的形成,得到有机膦系化合物的阻CaCO3垢效果排序为:DTPMP> HDTMP> TDTMP> EDTMP> NTMP> NDP≈AMP。
     对这七种阻垢剂与CaCO3三种晶型相互作用的MD研究表明,目标分子与方解石、文石及球霰石各晶面的结合能均为负值,相互作用是放热过程,主要是静电相互作用起主导,影响远远大于范德华作用力。总的修正结合能表明有机膦系分子对碳酸钙垢的阻垢效果强弱排序为DTPMP> HDTMP> TDTMP> EDTMP> NTMP>>NDP> AMP,与pH曲线实验结果基本一致,说明在此条件下的MD计算模拟是合理可行的。作用机理研究结果表明,膦酸基团个数越多阻垢效果越好,而骨架碳链长度的影响与CaCO3的晶型有关:在与方解石相互作用时,碳链越长阻垢效果越好;而对文石和球霰石,骨架长度的影响相对不明显。以HDTMP为例研究了阻垢剂中的膦酸基团与晶面的相互作用细节,结果表明膦酸基团中的氧原子与晶面上的Ca2+形成了强静电相互作用,占据了原本游离态CO32-在晶面上的活性生长空间,阻碍了晶格的正常生长,从而抑制了晶体的形成。同时测量了膦酸基团作用在晶面上的O原子与晶面Ca2+的有效距离,发现与实际中的Ca-O离子键长相接近,推断添加的阻垢剂与晶面间形成了Ca-O离子键。计算出晶面Ca2+与膦酸基团上氧原子的对关联函数g(r),也可以看出,七种有机膦酸分子的最高峰值均在2.5A左右,与实际的Ca-O离子键长相接近,进一步推测晶面上的Ca2+与有机膦酸分子中的O原子形成了离子键,即存在静电相互作用。
     根据周期性键链(PBC)理论模型讨论了水分子在方解石阶梯(011)面上的吸附,结果表明水分子主要聚集在边界A(Ca2+层与CO32-层形成的阶梯钝角边缘)和拐点B(CO32-层与Ca2+层形成的阶梯边缘锐角拐角点)位置上,测量出的二面角角度分别为129.4°和63.2°。再以HDTMP为例进一步探讨阶梯晶面的活性吸附点,发现膦酸基团也作用在A和B这两个位置,推测阶梯边缘和拐角点是阶梯晶面的最佳活性生长位置,这结果与PBC理论相符合。同时,根据上述研究将方解石(104)面切割为四种不同终端的阶梯面,分析目标分子与四种不同阶梯面的相互作用。以其中Ca-CO3面为例具体给出目标分子与晶面的作用细节,可以看出也主要作用在阶梯面的阶梯拐点(S位置),这也符合晶体生长PBC理论,说明S位置是Ca-CO3晶面的活性生长点。比较膦酸分子在四种不同晶面的作用,发现除了S位置,晶面的终端拐角点也是优先生长位置。同时比较DTPMP与这四个面的结合能,发现C03> CO3-Ca> Ca-CO3> Ca,即四个面的稳定性与之相反。
     以相同方法及条件对目标分子与BaSO4、Ca10(PO4)6(OH)2、CaSO4及水分子存在条件下CaCO3晶体的主要生长面进行MD研究,结果表明除AMP和NDP以外其余五种分子均能不同程度的与上述各无机盐晶型紧密结合。根据修正结合能数据,得到膦酸分子对BaSO4垢抑制作用强弱为TDTMP> DTPMP> EDTMP> HDTMP> NTMP> NDP> AMP;对HAP和CaSO4的抑制作用排序均为DTPMP> HDTMP> TDTMP> EDTMP> NTMP>NDP>AMP,与碳酸钙结果一致,说明在抑制上述三种Ca类晶型时结果是相似的。测量出的Ca-O和Ba-O距离,平均值都在2.3-2.5A之间,也说明有机膦酸分子中的O原子与晶面的金属阳离子形成了离子键,即静电相互作用力,是结合作用的主导力量。同时,比较了同一膦酸分子与不同晶面的结合能,结合能越大说明晶面越不稳定,更容易发生晶格转换,生长速度也更快。
In this dissertation, the functionary mechanisms of seven organic phosphonate inhibitors (AMP, NDP, NTMP, EDTMP, TDTMP, HDTMP and DTPMP) in the indrustrial circulating cooling water system have been investigated by the pH curve method (pHCM) and molecular dynamics (MD) method. The effect of seven phosphonates on the growth of CaCO3has been evaluated by the pHCM. And MD simulation has been used to study the interaction of the objects on three polymorphs of CaCO3crystal. The results are compared with the pHCM conclusions to validate the rationality and dependability of MD computational simulation. Afterwards, the same simulative conditions are used to study the inhibiting effect of the objects on BaSO4, Ca10(PO4)6(OH)2and CaSO4.
     The experimental results of the pHCM show that the objects at the low concentration except AMP and NDP have a steady and favorable inhibitory effect at the temperature of75±2℃. The greatest inhibition concentrations of the five phosphonates are5μmol/L (NTMP),1μmol/L (EDTMP),0.8μmol/L (TDTMP),0.5μmol/L (HDTMP) and0.2μmol/L (DTPMP), respectively. It is shown that the inhibition effect of CaCO3precipitation is AMP≈NDP     The interactions of organic phosphonates on the three polymorphs of CaCO3crystal are simulated by MD method. The results show that the binding energies of calcite, aragonite and vaterite are negative, namely the interaction is exothermic. It also indicates that the strong electrostatic interactions between the oxygen atoms in phosphonic functional groups and the Ca2+ions of crystal surfaces play a dominant role in their adsorption, whereas the van der Waals interactions play a very small role in the non-bonded interaction. The corrected binding energies are obtained to discuss the inhibitor effectiveness:DTPMP> HDTMP> TDTMP> EDTMP> NTMP>>NDP> AMP, according with the previous pHCM experimental data. It proves that the MD modeling method in these conditions is a useful and reasonable tool in the pursuit of an atomistic understanding of interactions between surfaces and additive molecules. The results also clearly indicate the important of the number of phosphonate groups and the length of the backbone methylene chain connecting the two N atoms. In total, the greater the number of the-PO32-groups and the longer the length of the backbone chain, the better the inhibition of precipitation. But the backbone chain effect of aragonite and vaterite is unconspicuous. The Ca-0(P) distances are all close to2.5A in accordance with the Ca-0bond length from experiment. And the strongest adsorption peak at almost2.5A also shows the formation of Ca-0electrovalent bond between the calcium ions of crystal surfaces and the oxygen atoms of phosphonate groups.
     According to the periodic bond chains (PBC) theory, MD simulation has been employed to study the adsorption of water molecules onto the stepped calcite (011) surface. The results show that the great mass of water molecules are coordinated to the edge calcium ions and the oxygen atoms on the step edge labeled A or at the corner of the surface labeled B. Their interfacial angles are separately129.4°and63.2°. It suggests that the step edge and the corner are the optimal binding sites. Then, the interaction of HDTMP on the stepped surface is considered as an example. It is found that HDTMP closes with the calcium ions at the B site in accordance with the adsorption of water molecules. Based on the above study, the calcite (104) surface is divided into four different stepped surfaces, terminated by either calcium ions or carbonate groups. The results of the interaction of phosphonates with the four stepped surfaces also suggest that the step edge and the corner are the optimal binding sites. Compared with the binding energies of DTPMP on the four surfaces, it is found the stability of the surfaces:Ca> Ca-CO3> CO3-Ca> CO3.
     The same method and conditions are used to investigate the inhibition mechanism of the seven phosphonates on the surfaces of BaSO4, HAP and CaSO4. The results indicate that the organic compounds except AMP and NDP can close well with all the surfaces. Based on the corrected binding energies, the inhibition effect of organic phosphonates on BaSO4is TDTMP> DTPMP> EDTMP> HDTMP> NTMP> NDP> AMP different with the conclusion of CaCO3. And the effect on HAP and CaSO4is DTPMP> HDTMP> TDTMP> EDTMP> NTMP> NDP> AMP according with CaCO3.The average of Ca-0and Ba-O distances is almost2.3-2.5A which suggests the formation of Ca-0and Ba-O electrovalent bonds.
引文
[1]严莲荷.水处理药剂及配方手册[M].北京:中国石化出版社,2003.
    [2]周本省.工业水处理技术[M].第2版.北京:化学工业出版社,2002.
    [3]何铁林.水处理化学品手册[M].北京:化学工业出版社,2000.
    [4]来海亮,汪党献,吴涤非.水资源及其开发利用综合评价指标体系[J].水科学进展,2006,17(1):95-100.
    [5]白颖,王红瑞,许新宜,谢琼.水资源利用效率及评价方法若干问题研究[J].水利经济,2010,28(3):1-5.
    [6]汪恕城.怎样解决中国4大水问题[J].水利经济,2005,23(2):1-6.
    [7]陆柱,蔡兰坤,陈中兴等.水处理药剂[M].第一版.北京:化学工业出版社,2002.
    [8]姜跃文,丁子钧,张红岐.提高城市污水回用技术解决城市水资源供需矛盾[J].现代农业,2008,4(1):21-26.
    [9]陈复.水处理技术与药剂大全[M].北京:中国石化出版社,2000.
    [10]唐受印.工业循环冷却水处理[M].北京:化学工业出版社,2005.
    [11]齐冬子.敞开式循环冷却水系统的化学处理[M].北京:化学工业出版社,2001.
    [12]纪芳田,包义华.循环冷却水处理基础知识[M].北京:化学工业出版社,1996.
    [ 13]John W. M., RolfS. A., Andreas L. Calcium Carbonate Formation and Dissolution[J]. Chem. Rev.,2007,107:342-381.
    [14]Wang L. J., George H. N. Calcium Orthophosphates:Crystallization and Dissolution[J]. Chem. Rev.,2008,108:4628-4669.
    [15]Fiona C. M., Helmut C. Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems[J]. Chem. Rev.,2008,108(11):4332-4432.
    [16]张曙光.有机阻垢缓蚀剂作用机理的理论研究[D].南京:南京理工大学博士论文,2006.
    [17]戴林宏.膦系缓蚀阻垢剂分子结构与性能的研究[D].南京:南京理工大学硕士论文,2009.
    [18]Yutko D., Roberto G. R., Monica G., Hiram I. B. Corrosion Inhibitors:Design, Performance, and Computer Simulations [J]. J. Phys. Chen. B,2005,109:22674-22684.
    [19]Cusack M., Freer A. Biomineralization:Elemental and Organic Influence in Carbonate Systems[J]. Chem. Rev.,2008,108:4433-4454.
    [20]Lin Y. P., Philip C. S., George R. A. Inhibition of Calcite Precipation by Natural Organic Material:Kinetics, Mechanism, and Thermodynamics[J]. Environ. Sci. Technol,2005,39: 6420-6428.
    [21]Anne G, Arthur V. Phosphorylated Proteins and Control over Apatite Nucleation, Crystal Growth, and Inhibition[J]. Chem. Rev.,2008,108:4670-4693.
    [22]周超.帕米系列二膦酸与羟基磷灰石的作用机理研究[D].南京:南京理工大学硕士论文,2011.
    [23]雷武,赵志仁,夏明珠.pH位移法评定阻垢剂的阻垢性能[J].理化检验(化学分册),2002,38(3):125-127.
    [24]张曙光,雷武,王金祥.电导法评定阻垢剂的阻垢性能[J].理化检验(化学分册),2004,40(1):27-32.
    [25]张曙光,雷武,陈卓.极限碳酸盐硬度法评定阻垢剂的阻垢性能[J].工业水处理,2004,24(4):27-29.
    [26]雷武,夏明珠,王风云.冷却水系统中阻垢剂性能的评定方法[J].化工进展,2002,21(4):275-277.
    [27]张曙光,王风云.有机膦酸阻垢剂与方解石晶体相互作用的DFT研究[J].计算机与应用化学,24(11):1489-1492.
    [28]夏明珠,雷武,王风云.膦酰基羧酸的合成方法与阻垢性能的关系[J].精细化工,2003,20(30):172-178.
    [29]张曙光,石文艳,雷武.水溶性聚合物与方解石晶体相互作用的MD模拟[J].物理化学学报,2005,21(11):1193-1199.
    [30]石文艳,张曙光,夏明珠.甲叉膦酸型化合物阻垢机理的量子化学研究[J].水处理技术,2006,32(1):37-40.
    [31]Parker S. C., Nora H. de L., Redfern S. E. Atomistic simulation of oxide surface and their reactivity with water[J]. Faraday Discuss,1999,114:381-393.
    [32]Nora H. de L., Timothy G C. A computer modeling study of the inhibiting effect of organic adsorbates on calcite crystal growth[J]. Cryst. Growth & Design,2004,4(1):123-133.
    [33]Matthias G, Thomas M. Potentials and limitations of molecular modeling approaches for scaling and scale inhibiting mechanisms[J]. Desalination,2006,199:26-28.
    [34]Harding J. H., Harris D. J., Parker S. C. Atomistic simulation of steps on the MgO (100) surface [J]. Surface Science Letters,1999,422:183-187.
    [35]Andrew L. R. Computer prediction of crystal morphology [J]. Current Opinion in Solid State and Materials Science,2003,7:21-26.
    [36]Aparna P., Xavier T., Klaus A., Jordi R. Competitive adsorption of glycine and water on the fluorapatite(100) surface[J]. Langmuir,2009,25:1453-1458.
    [37]Gill J. S., Varsanik R. G Computer modeling of the specific matching between sacle inhibition and crystal structure of scale forming minerals[J]. J. Cryst. Growth,1986,76: 57-62.
    [38]Alder B. J., Wainwright T. E. Phase transition for a hard sphere system[J]. Chem. Phys, 1957,27:1208,1209.
    [39]Jamshed A., Papa K. B. Computer simulation of crystallization from solution[J]. J. Am. Chem. Soc.,1998,120:9600-9604.
    [40]Daniel S., Bosco E. Computing shapes of nanocrystals from X-ray diffraction data[J]. Cryst. Growth & Design,2006,6(6):1415-1419.
    [41]Michael S., Ake C. R. Force field and point charges for crystal structure modeling[J]. Ind. Eng. Chem. Res.,2009,48:2899-2912.
    [42]Gler A T, Dauber P, Lifson S. Consistent forcefield studies of intermolecular forces in hydrogen bonded crystals. Ⅲ. The C=O...H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids[J]. Am. Chem. Soc,1979,101:5131-5141.
    [43]Sun H, Rigby D. Polysiloxanes:ab initio force and structural, conformational and thermophysical properties[J].Spectrochimica Acta A,1997,153:1301-1323.
    [44]Sun H, Ren P, Fried J R. The COMPASS force field:parameterization and validation for phosphazenes[J]. Comput. Theor. Polym. Sci.,1998,8 (1/2):229-246.
    [45]Sun H. An ab Initio Force Field Optimized for Condensed-Phase Application, Overview with Detail on Alkane and Benzene Compounds[J]. Phys. Chem. B,1998,102(43):
    [46]Jolanta P. Morphological importance of crystal faces in connection with growth rate and crystallographic structure of crystal[J]. Cryst. Growth & Design,2002,2(4):281-286.
    [47]Sindhu S., Jegadesan S., Valiyaveettil S. Morphosynthesis of mixed metal carbonates using micellar aggregation[J]. Cryst. Growth & Design,2006,6(6):1537-1541.
    [48]Zeng J. P., Zhang S. G, Gong X. D., Wang F. Y. Molecular dynamics simulation of interaction between calcite crystal and phosphonic acid molecules[J]. Chin. J. Chem., 2010,28:337-343.
    [49]Nora H. de L. Molecular dynamics simulation of the Growth inhibiting effect of Fe2+, Mg2+, Cd2+, and Sr2+ on calcite crystal growth[J]. J. Phys. Chem. B,2002,106: 5241-5249.
    [50]Bromley L. A., Cottier D., Davey R. J. Interactions at the organic/inorganic interface: molecular design of crystallization inhibitors for barite[J]. Langmuir,1993,9:3594-3599.
    [51]Franca J., Phillip J., Mark I. O., William R. R., Andrew L. R. The interaction of EDTA with barium sulfate[J]. J. Colloid Interface Sci.,2007,316:553-561.
    [52]Parsiegla K. I., Katz J. L. Calcite growth inhibition by cooper(II)-an introduction, holt[J]. J. Cryst. Growth,1999,200:213-226.
    [53]Franca J., William R. R., Andrew L. R. Molecular modeling of phosphonate molecules onto barium sulfate terraced surface[J]. J. Phys. Chem. B,2006,110:7414-7424.
    [54]Nora H. de L. Computer of the adsorption of citric acid at hydroxyapatite surface[J]. J. Cryst. Growth,2006,294:60-68.
    [55]Janine R., Ignacy C., Helder M. M. Modeling the interaction of several bisphosphonates with hydroxyapatite using the generalized AMBER force field[J]. J. Mol. Struct.,2006, 825:134-142.
    [56]Liang Y., Baer D. R. Anisotropic dissolution at the CaCO3(1014)-water interface[J]. Surf. Sci.,1997,373:275-287.
    [57]Albert R., Marta C., Claudio M., Piero U. Ab initio modeling of protein/biomaterial interactions:Glycine adsorption at hydroxyapatite surfaces[J]. J. Am. Chem. Soc.,2008, 130:16181-16183.
    [58]Haihua P., Jinhui T., Xurong X., Ruikang T. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level[J]. Langmuir,2007,23:8972-8981.
    [59]Jiang W., Pan H., Cai Y., Tao J. Liu P. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level[J]. Langmuir,2008,24:12446-12451.
    [60]Andrew G. S., James R. R. Structure and dynamics of water on aqueous barium ion and the (001) barite surface[J]. J. Phys. Chem. C.,2007,111:16387-16391.
    [61]Fenter P., McBride M. T., Srajer G, Sturchio N. C., Bosbach D. Structure of barite (001) and (210) water interfaces [J]. J. Phys. Chem. B,2001,105:8112-8119.
    [62]Wang L., Guan X., Tang R., John R. H., George H. N. Phosphorylation of Osteopontin is required for inhibition of calcium oxalate crystallization[J]. J. Phys. Chem. B,2008,112: 9151-9157.
    [63]张怡.一种新的阻垢剂评定方法—pH曲线法的研究[D].上海:同济大学,2008.
    [64]Matthias G, Thomas M. Potentials and limitations of molecular modeling approaches for scaling and scale inhibiting mechanisms [J]. Desalination,2006,199:26-28.
    [65]Materials Studio 4.2. Discover/Accelrys, San Diego, Ca, U.S.A.,2007.
    [66]Vojtech K., Jan K., Petr H., Ivan L. Aminoalkylbis(phosphonates):their complexation properties in solution and in the solid state[J]. Eur. J. Inorg. Chem.2007,333-344.
    [67]Neil A. C., Christopher I. P., David J. H., Michael G. B. The synthesis of novel bisphosphonates as inhibitors of phosphoglycerate kinase (3-PGK)[J]. J. Chem. Soc. Perkin Trans.,2000,1:421-437.
    [68]Corina L., Rolf S. A., Andreas L., Andrew R. B. Phosphonate mediated surface reaction and reorganization:implications for the mechanism controlling cement hydration inhibition[J]. Chem. Commun.,2005,2354-2356.
    [69]Celine L., Michael P., Maria F. Photodegradation of phosphonates in water[J]. Chemosphere,2005,59:685-691.
    [70]Ralph G. J., Kevin R., Brian W., William D. G. Effect of phosphonate inhibitors on calcite nucleation kinetics as a function of temperature using light scattering in an autoclave [J]. Chem. Geology,1996,132:215-225.
    [71]Tang Y., Yang W., Yin X., Liu Y., Yin P. Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP[J]. Desalination,2008,228:55-60.
    [72]Eleni B., Konstantinos D. D., Sandra R. F., Franca J., Mark I. O. Barium sulfate crystallization in the presence of variable chain length aminomethytenetetraphosphonates and cations (Na+or Zn2+)[J]. Gryst. Growth & Design,2007,7(2):321-327.
    [73]Encarnacion R. A., Daniel M. R., Carlos R. N. Mechanism and kinetics of Dehydration of epsmite crystals formed in the presence of organic additives[J]. J. Phys. Chem. B,2007, 111:41-52.
    [74]Polewska W., Vogt M. R., Magnussen O. M., Behn R. J. In situ STM study of Cu(111) surface structure and corrosion in pure and benzotriazole-containing study acid solution[J]. J. Phys.Chem. B,1999,103:10440-10451.
    [75]Dange C., Phan T. N. T., Andre V., Rieger J., Persello J., Foissy A. Adsorption mechanism and dispersion efficiency of three anionic additives [poly(acrylic acid), poly(styrene sulfonate) and HEDP] on zinc oxide[J]. J. Colloid Interface Sci.,2007,315:107-115.
    [76]Bernd N., Alan T. S. Adsorption of phosphonates onto the Goethite-water interface[J]. J. Colloid Interface Sci.,1999,214:20-30.
    [77]Barja B. C., Afonso M. S. Aminomethylphosphonic acid and glyphosate adsorption onto goethite:a comparative study[J]. Environ. Sci. Technol,2005,39:585-592.
    [78]Bernd N., Alan T. S. Competitive adsorption of phosphate and phosphonates onto goethite[J]. Water Research,2006,40:2201-2209.
    [79]Bernd N. Aminopolyphosphonate removal during wastewater treatment[J]. Water Research,2002,36:4636-4642.
    [80]Telegdi J., Shaglouf M. M., Shaban A., Karman F. H., Betroti I., Mohai M., Kalman E. Infulence of cations on the corrosion inhibition efficiency of aminophosphonic acid[J]. Electr. Acta,2001,46:3791-3799.
    [81]Tomson M. B., Kan A. T., Oddo J. E. Acid/Base and metal complex solution chemistry of the polyphosphonate DTPMP versus temperature and ionic strength[J]. Langmuir,1994, 10:1442-1449.
    [82]Tang Y. M., Yang W. Z., Yin X. S. Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP[J]. Desalination,2008,228:55-60.
    [83]Westin K. J., Rasmuson A. C. Crystal growth of aragonite and calcite in presence of citric acid, DTPA, EDTA and pyromellitic acid[J]. J. Colloid Interface Sci.,2005,282:359-369.
    [84]Chen C. Y., Xia M. Z., Wang F. Y. Influence of three Organic Phosphonates on Calcite Crystal Growth[J]. Advanced Materials Research,2010,154-155:437-442.
    [85]James E. D., Aaron A. K., Michael J. R., Bobby L. B., Frank H. E., Graham G. R., Udo O., Kanthryn L. K. Structure-activity relationships among the nitrogen containing bisphosphonates in clinical use and other analogues:time-dependent inhibition of human farnesyl pyrophosphate[J]. J. Med. Chem.,2008,51:2187-2195.
    [86]Nikos S., Dimitra G K., Petros G K. The interaction of diphosphonates with calcite surfaces:understanding the inhibition activity in marble dissolution[J]. Langmuir,2006, 22:2074-2081.
    [87]Yang H. Y, Yao W. G, Yang L., Ma X. M., Wang H. J., Ye F., Wong K. W. The self-assembly of CaCO3 crystals in the presence of protein [J]. J. Cryst. Growth,2009,311: 2682-2688.
    [88]Christine V. P., Magdalena K., Andrew P. The mechanism and kinetics of DTPA-promoted dissolution of barite[J]. Appl. Geochem.,2008,23:2778-2788.
    [89]Celine L., Michael P., Maria F. Photodegradation of phosphonates in water[J]. Chemosphere,2005,59:685-691.
    [90]Franca J., Stanley A., Oliveira A., Rohl A. L., Reyhani M. M. The role of phosphonate speciation on the inhibition of barium sulfate precipitation[J]. J. Cryst. Growth,2003,249: 584-593.
    [91]袁瑞瑞,孙桂春,高胜华,王娜,沈丽萍,朱玉萍.缓蚀阻垢剂阻垢效果评定方法的探讨[J].石油与天然气化工,2012,6:23-26.
    [92]梁志群,李景宁,黄南哲.聚天冬氨酸衍生物及其复配物的阻垢性能研究[J].工业水处理,2006,26(8):23-25.
    [93]曹英霞,杨坚,李杰.阻垢剂HEDP和PBTCA阻垢机理探讨[J].同济大学学报,2004,32(4):556-560.
    [94]Ghizellaoui S., Ledion J. Calcite crystal growth kinetics in the presence of charged synthetic polypeptides[J]. Desalination,2004,16:315.
    [95]Tzotzi C., Pahiadaki T., Yiantsios S. G., Karabelas A. J., Andritsos N. A study of CaCO3 scale formation and inhibition in RO and NF membrance processes[J]. J. Mem. Sci.,2007, 296:171-184.
    [96]Gill J. S. A novel inhibitor for scale control in water desalination[J]. Desalination,1999, 124:43-50.
    [97]John W. M., Rolf S. A., Andreas L. Calcium carbonate formation dissolution [J]. Chem. Rev.,2007,107:342-381.
    [98]贾丰春,李自托,董泉玉.工业循环水阻垢剂研究现状与发展[J].工业水处理,2006,24(4):1-4.
    [99]李杰,林紫烟.基于分子模拟方法的HEDP阻垢机理研究[J].同济大学学报,2006,34(4):518-522.
    [100]黄玉成,胡应杰,肖继军.TATB基PBX结合能的分子动力学模拟[J].物理化学学报,2005,21(4):425-429.
    [101]Sonia A. O., Lee W., Ben S., Richard A. C. Understanding nucleation and growth using computer simulation[J]. Solid State Sci.,2001,3:821-826.
    [102]Alder B. J., Wainwright T. E. Phase transition for a hard sphere system[J]. Chem. Phys., 1957,27:1208-1209.
    [103]Tingjun H., Ron Y. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors:mechanism for binding and drug resistance[J]. J. Med. Chem.,2007,50: 1177-1188.
    [104]Graham E. H., Benjamin J. M., Kathryn M. M. Controlled variation of calcite morphology using simple carboxylic acids[J]. J. Cryst. Growth,2008,310:4190-4198.
    [105]Nan Z. D., Yan B. Q., Wang X. Z., Guo R., Hou W. Fabrication of calcite aggregates and aragonite rods in a water/pyridine solution[J]. Cryst. Growth & Design,2008,8(11): 4026-4030.
    [106]Westin K. J., Rasmuson A. C. Crystal growth of aragonite and calcite in presence of citric acid, DTPA, EDTA and pyromellitic acid[J]. J. Colloid Interface Sci.,2005,282: 359-369.
    [107]Nico A. J. M., Gijsbertus de W. Biomimetic CaCO3 mineralization using designer molecules and interfaces[J]. Chem. Rev.,2008,108:4499-4550.
    [108]Bunte S. W., Sun H. Molecular modeling of energetic materials:the parameterization and validation of nitrate esters in the COMPASS force field. J. Phys. Chem. B,2000: 2477-2489.
    [109]褚玉婷,石文艳,吕志敏,夏明珠,雷武,王风云.HEDP及其取代物对碳酸钙阻垢机理的研究[J].计算机与应用化学,2011,28(4):485-489.
    [110]Yuan P. Q., Kong N., Cheng Z. M., Semiat R. Electrostatic potential on anti-scalants modified CaCO3(104) surface:a molecular simulation study[J], Desalination,2009,238: 246-256.
    [111]Titiloye J. O., Nora H. de L., Parker S. C. Atomistic simulation of the differences between calcite and dolomite surfaces[J]. Geoch. Cosm. Acta,1998,62(15):2637-2641.
    [112]Dorothy M. D., John H. H. Modeling the interfaces between calcite crystals and Langmuir monolayers[J]. J. Mater. Chem.,2002,12:3419-3425.
    [113]Adrian V. J., Alfonso M., Michael A. W. Theoretical insights into the hydrated(104) calcite surface:Structure, energetic and bonding relationships [J]. Langmuir,2009,11: 121-128.
    [114]Aquilano D., Rubbo M., Catti M., Pavese A. Theoretical equilibrium and growth morphology of CaCO3 polymorphs[J]. J. Cryst. Growth,1997,182:168-184.
    [115]Pilati T. The structure of aragonite[J]. Acta Crystallogr.,1963,16:770-772.
    [116]Kamhi S. R. The structure of vaterite[J]. Acta Crystallogr. B,1998,54:515.
    [117]Sun H., Mumby S. J., Maple J. R. Ab initio calculations on small molecule analogs of polycarbonates[J]. Phys. Chem.,1995,99:5873-5882.
    [118]Sun H. Ab initio calculations and force field development for computer simulation of polysilanes[J]. Macromolecules,1995,28(3):701-712.
    [119]Sun H., Mumby S. J., Maple J. R. An abinitio CFF93 all-atom force field for polycarbonates[J]. J. Am. Chem. Soc.,1994,116:2978-2987.
    [120]Sun H. Ab initio characterizations of molecular structures, conformation energies, and hydrogen-bonding properties for polyurethane hard segments[J]. Macromolecules,1993, 26(22):5924-5936.
    [121]Timothy G. C., Nora H. de L. A computer modeling study of the competitive adsorption on calcite crystal growth[J]. Langmuir,2004,20:3986.
    [122]Heermann D. W. Computer simulation methods in the theoretical physics[M]. Beijing, Peking University Press,1996.
    [123]Hartman P., Perdok W. G. On the relations between structure and morphology of crystals[J]. Acta crystallogr.,1955,8:49-52.
    [124]Pina C. M., Bosbach D., Prieto M., Putnis A. Microtopography of the barite (001) face during growth:AFM observations and PBC theory[J]. J. Cryst. Growth,1998,187:119-125.
    [125]Ray D. R., Kumar A., Reddy S., Sainkar S. R., Pavaskar N. R. Morphology of BaSO4 crystals grown at the liguid-liguid interface[J]. Cryst. Eng. Comm.,2001,45:1-4.
    [126]Leeden M. C., Rosmalen G. M. Adsorption behavior of polyelectrolytes on barium sulfate crystals[J]. J. Colloid Interface Sci.,1995,171:142-149.
    [127]Risthaus P., Bosbach D., Becker U., Putnis A. Barite scale formation and dissolution at high ionic strength studied with atomic force microscopy [J]. Colloid Surf. A:Phys. Eng. Aspects,2001,191:201-214.
    [128]Qi L. M., Colfen H., Markus A. Control of barite morphology by double-hydrophilic block copolymers[J]. Chem. Mater.,2000,12:2392-2403.
    [129]Coveney P. V., Davey R., Griffin L. W., Hamlin J. D., Stephen S. Andrew W. A new design strategy for molecular recognition on heterogeneous systems:a universal crystal-face growth inhibitor for barium sulfate[J]. J. Am. Chem. Soc.,2000,122:11557-11558.
    [130]Nuria S. P., Pina C., M., Lurdes F. D., Astilleros J. M. The effect of CO32- on the growth of barite{001} and{210} surfaces:an AFM study[J]. Surf. Sci.,2006,600:1369-1381.
    [131]Chrissanthopoulos A., Malkaj P., Dalas E. Calcium phosphate crystallization on polyglycine, polytyrosine and polymethionine[J]. Mater. Lett.,2006,60:3874-3878.
    [132]Ashok M., Sundaram N. M., Kalkura S. N. Crystallization of hydroxyapatite at physiological temperature [J]. Mater. Lett.,2003,57:2066-2070.
    [133]Onuma K., Ito A., Tateishi T., Kameyama T. Growth kinetics of hydroxyapatite crystal revealed by atomic force microscopy [J]. J. Cryst. Growth,1995,154:118-125.
    [134]Leu C. T., Luegmayr E., Freedman L. P., Rodan G. A., Reszka A. A. Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy[J]. Bone,2006,38:628-636.
    [135]Cukrowski I., Popovic L., Barnard W., Paul S. O., Rooyen P. H., Liles D. C. Modeling and spectroscopic studies of bisphosphonate-bone interactions:the raman, NMR and crystallographic investigations of Ca-HEDP complexes [J]. Bone,2007,41:668-678.
    [136]Dirk Z., Oliver H. Computational study of interfaces between hydroxyapatite and water[J]. Phys. Chem. Chem. Phys.,2003,5:4004-4007.
    [137]Marta C., Claudia B., Vera B., Sergio T., Piero U. Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite:A periodic B3LYP study [J]. Langmuir,2009,25:2188-2198.
    [138]Neves M., Gano L., Pereira N. Synthesis, characterization and biodistribution of bisphosphonates Sm-153 complexes:correlation with molecular modeling interaction studies[J]. Nucl. Med. Biol.,2002,29(3):329-338.
    [139]Filgueiras M. R. T., Mkhonto D., Nora H. de L. Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces[J]. J. Cryst. Growth,2006,294:60-68.
    [140]Nasser Y. M., Paul W. B. Computer simulation of stoichiometric hydroxyapatite: structure and substitutions [J]. J. Phys. Chem. Solids,2007,68:431-437.
    [141]Neyvis A. B., Kat F. A., Nora H. de L. Desity functional theory study of the binding of glycine, proline, and hydroxyproline to the hydroxyapatite (0001) and (0110) surfaces[J]. Langmuir,2009,25(9):5018-5025.
    [142]Wierzbicki A., Cheung H. S. Molecular modeling of inhibition of hydroxyapatite by phosphocitrate[J]. J. Mol. Struct.,2000,529:73-82.
    [143]Zhu W. H., Wu P. Surface energetics of hydroxyapatite:a DFT study[J]. Chem. Phys. Lett.,2004,396:38-42.
    [144]方胜强,陈吉春,徐玉萍.硬石膏改性研究[J].资源环境与工程,2006,20(2):182-184.
    [145]Maria G. L., Christakis A. P., Petros G. K., Alkiviades C. P. Calcium sulfate precipitation in the presence of water-soluble polymers[J]. J. Colloid Interface Sci.,2006,303:164-170.
    [146]Elisabeth B., Stephane V., Roland B. Crystallization of gypsum from hemihydrates in presence of additives [J]. J. Cryst. Growth,1999,198/199:704-709.
    [147]Jiang W. G, Pan H. H., Tao J. H., Xu X. R., Tang R. K. Dual roles of borax in kinetics of calcium sulfate dehydrate formation[J]. Langmuir,2007,23:5070-5076.
    [148]Shall H. E., Rashad M. M., Abdelall E. A. Effect of phosphonate additive on crystallization of gypsum in phosphoric and sulfuric acid medium[J]. Cryst. Res. Technol.,2002,37(12):1264-1273.
    [149]Dirk B., Michael F. H. Gypsum growth in the prensence of growth inhibitors:a scanning force microscopy study[J]. Chem. Geol.,1996,132:227-236.
    [150]Nora H. de L., Timothy G. C. A computer modeling study of the inhibiting effect of organic adsorbates on calcite crystal growth[J]. Cryst. Growth & Design,2004,4(1): 123-133.
    [151]Gratz A. J., Hillner P. E., Hansma P. K. Step dynamics and spiral growth on calcite[J]. Geochim. Cosmochim. Acta,1993,57:491-495.
    [152]Hadicke E., Rieger J., Rau I. U., Boeckh D. Effect of phosphonate inhibitors on calcite nucleation kinetics as a function of temperature using light scattering in an autoclave [J]. Phys. Chem. Chem. Phys.,1999,1:3891-3894.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700