Apelin对缺血—再灌注损伤导致的心脏功能障碍的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     本实验室于2008年发现Apelin能够增强心肌细胞SERCA功能并且增加钙瞬变幅度。本研究在以上研究基础上进一步研究Apelin对心肌缺血再灌注的保护作用。不同于已有的大量关于缺血再灌注的保护作用的研究,本研究着重从心肌的功能保护方面进行研究。因为我们相信缺血再灌注损伤除了直接导致心肌细胞凋亡、自噬或者坏死以外,还会导致一部分细胞功能障碍。这部分细胞并没有立即死亡,仍在发挥作用,但细胞的许多生化功能和收缩功能都受到了影响。这种功能方面的研究并不多,但我们认为细胞这时的功能极为重要,一方面良好的细胞功能可以保证即刻的心脏收缩功能,减少心律失常的发生,在临床上也就能减少患者即刻的死亡率。另一方面良好的细胞功能可以保证细胞的正常生理生化功能,并帮助细胞修复损伤,最终减少细胞的死亡。
     因此本研究从心肌收缩功能,SR功能,氧化应激状态,蛋白氧化修饰,细胞钙瞬变功能以及心肌代谢状况等几个方面分两部分作了研究。
     方法
     1.使用大鼠心脏,将心脏主动脉与心脏灌流装置(Langendorff)相连接,进行逆向灌流。同时记录冠脉血流量,左室收缩压(LVSP)以及左心室形成压(LVDP),同时在整个灌流过程中使用Acknowledge software (Biopac System Inc, USA)不断计算左室内压力的变化率最大值(±dp/dtmax)。采用Global缺血30min再灌注30min的I/R模型。
     2.心肌梗死面积采用TTC染色法测定。
     3.使用多种方法测量心脏氧化应激状态。测量心脏组织中丙二醛(MDA,一种脂质过氧化产物)的含量。心脏谷胱甘肽(GSH)含量的检测。GSH是谷胱甘肽过氧化酶清除ROS所必需的。测定细胞内氧化还原态的变化(i.e.NADH/NAD+)。
     4.心肌肌浆网SR囊泡分离。心脏左室组织被粉碎并混匀两次,每次20s。匀浆缓冲剂(mmol/L)包含10NaHCO3,5NaN3,15Tris-HCl (pH6.8),以及蛋白酶抑制剂(1μmol/L leupeptin,1μmol/L pepstatin以及100μmol/L phenylmethyl-sulfonylfluoride)。将混合物以9500rpm离心20min,取上清进一步离心19000rpm45min。离心后的沉淀物用缓冲液(0.6mol/LKCl和20mmol/LTris-HCl pH6.8)重悬,以19000rpm45min离心,离心后的沉淀物重悬于0.25mol/L sucrose和10mmol/L histidine (pH7.0)的混合液中。以上实验步骤在0°C至4°C的环境中进行操作。
     5.肌浆网钙泵(SERCA)摄取钙的测量。
     6.肌浆网钙释放通道蛋白(RyR)活性的测量。使用测量(3H)-ryanodine亲和力的方法测量。
     7.分离成年大鼠心肌细胞。
     8.建立细胞模拟心脏缺血再灌注模型。
     9.测量细胞收缩和钙瞬变。使用fluo-3负载荧光染色心肌细胞。
     10.测量细胞内ROS的生成。心肌细胞在室温下负载(DCFH-DA,10μmol/L)1小时。一旦进入细胞,DCFH-DA乙酸盐组在酯酶的作用下裂解产生极性,非荧光产物DCFH积聚在细胞内。活性氧产生氧化荧光产物二氯荧光素(DCF)。负载后,细胞在含有1.25mmol/L钙的改良Joklik MEM液中清洗3次,轻轻重悬然后沉淀去除细胞外DCFH-DA。新鲜分离的心肌细胞置于含介质的定制腔室,它被放置在尼康倒落射荧光显微镜上并与国际光子技术光电倍增管和Deltascan双波长激发荧光分光光度计相连接。在单一的杆状细胞内用Felix软件以1point/second记录DCF荧光(激发波长为488nm,发射波长为530nm)并用×200放大倍数观测。
     11.免疫沉淀法测量SERCA和RyR的氧化修饰状态。
     12.心脏灌流[1-13C]葡萄糖或2.5mM [3-13C]丙酮酸盐。
     13. NMR测量13C光谱和H光谱。
     结果
     1.100nmol/L和1μmol/LApelin-13组LDH释放量明显减少。
     2.各组心肌没有发现明显的心梗。
     3. Apelin改善了再灌注后的心脏收缩功能,降低了缺血过程中的左室舒张压,减轻了缺血挛缩的发生和发展。
     4. Apelin改善了心肌内的氧化还原状态。
     5. Apelin增强了SERCA摄取钙的能力改善了RyR释放钙的能力。
     6. Apelin减弱了SERCA和RyR的氧化修饰。
     7. Apelin减少了单细胞ROS的生成。
     8. Apelin改善了单细胞钙瞬变功能和收缩功能。
     9.使用PI3K,PKC,PKC,mitoKATPchannel的抑制剂或阻断剂可以抵消或部分抵消Apelin的保护作用。
     10. Apelin增加了心脏缺血时的糖酵解。
     11.Apelin增加了心脏缺血时的ATP含量。
     12. Apelin增加了丙氨酸转氨酶的活性。
     13. Apelin延迟了心肌缺血挛缩的发生时间。
     结论
     Apelin-13能够保护缺血再灌注损伤的心肌收缩功能,其机制可能是:一方面Apelin抑制心肌产生过多的ROS从而减少SR钙处理蛋白的氧化修饰,维持细胞内钙稳态,减轻钙超载的同时又保证收缩功能需要的钙。其作用依赖于PI3K-PKCs(PKC)-mitoKATPchannel通路。另一方面Apelin能够增加缺血时糖酵解的作用,补充ATP的损失,供应心肌所需能量,同时减轻或延迟缺血挛缩的发生。
Apelin is a peptide ligand for a G-protein coupled receptor (APJ receptor). Apelin/APJsystem is widely expressed in brain, heart, stomach, lung and the vascular system. Apelinregulates cardiovascular function, producing vasodilatory and positive inotropic effect.There is an increasing body of evidence to suggest that Apelin protects the heart againstischemia/reperfusion (I/R) induced infarction, but the mechanism is still controversial.
     While irreversible injuries inducing cardiomyocytes necrosis or apoptosis occurredduring I/R, myocardial contractile dysfunction resulting from I/R is also a commonclinical problem in patients with some heart diseases and therapies. But the effect ofApelin on cardiac dysfunction induced by I/R was not well investigated. During I/R, cardiac contractile dysfunction is attributed to the impairment of calcium handlingactivities of the cardiomyocyte. Ca2+enters the cardiomyocyte through the L-type Ca2+channels (LTCC) triggering further release of Ca2+via the ryanodine receptor (RyR) fromthe sarcoplasmic reticulum (SR), which lead to a large increase in cytosolic free calciumconcentration, known as the intracellular [Ca2+] transient ([Ca2+]i). The elevatedintracellular calcium concentration, which stimulates contraction of the myofilaments, isremoved mainly to the SR by the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)and out of the myocytes by the Na+/Ca2+exchanger (NCX) to initiate relaxation.Abnormalities in function of Ca2+handling has been suggested to explain contractiledysfunction of the heart following I/R in the heart.
     On the other hand, the increase in reactive oxygen species (ROS) within the first fewminutes of reperfusion has been proposed to explain the I/R-induced contractile changes inthe heart. Furthermore, SR Ca2+uptake and release activities have been reported to bedepressed by ROS in I/R hearts. In fact, exposure of the heart to different species of ROShas been shown to cause structural and functional alterations in the heart that are similarto those seen in I/R; these changes have been demonstrated to be due to abnormalities inCa2+handling by SR and sarcolemma.
     Therefore it is likely that, during I/R, over release of ROS impaired the SR Ca2+handling activities in the cardiomyocytes, inducing the contractile dysfunction. Apelincould increase SERCA activity and calcium transient in normal cardiomyocytes, but theeffects of Apelin on ROS and SR in I/R heart have not been investigated.
     Survival kinases, such as phosphatidylinositol-3-kinase (PI3K)/Akt and PKC may acton downstream mitochondrial targets to open mitochondrial ATP-sensitive potassium(mitoKATP) channels and to affect cellular survival, reducing both necrosis and apoptosis.The mitoKATPchannels may modulate ROS production, which may lead to a re-activationof a pool of PKCs. In particular, in concert with mitoKATPchannels, theintra-mitochondrial protein kinase C (PKC) activation may take part to the so-called“memory-associated protection”. In previous reports, PI3K/Akt pathway was involved inthe cardioprotective effect of Apelin against I/R. We supposed that these survival kinases and downstream targets might play a role in the effect of Apelin on ROS production andSR function in I/R.
     The present study was therefore undertaken for three purposes to examine:1)whether Apelin can improve the cardiac dysfunction induced by I/R;2) if Apelin canprevent abnormalities in ROS production and SR function in I/R hearts;3) the probablyunderlying mechanisms.Methods
     1. Heart perfusion
     The hearts of male Sprague-Dawley rats were rapidly excised, cannulated to theLangendorff’s apparatus and perfused under a constant pressure of80mmHg withKrebs-Henseleit (K-H) medium containing (mmol/L)120NaCl,25NaHCO3,4.7KCl,1.2KH2PO4,1.2MgSO4,1.25CaCl2, and11glucose (37°C, pH7.4). The left ventricularend-diastolic pressure (LVEDP) was adjusted at5mmHg. Such a volume of balloon wasmaintained throughout the experiment. The coronary flow, left ventricular systolicpressure (LVSP) and left ventricular developed pressure (LVDP) were recorded andmaximum derivatives of the ventricular pressure (±dp/dtmax) were calculated continuouslyby the Acknowledge software.
     2. Determination of myocardial infarct sizeInfarct size was determined by2,3,5-triphenyltetrazolium chloride (TTC) staining.
     3. Determination of oxidative stress, redox state and nitrotyrosine content in isolatedhearts.
     4. Isolation of SR vesicles.
     5. Measurement of calcium uptake by SERCA.
     6.3H-Ryanodine binding assay.
     7. Isolation of adult rat ventricular myocytes and treatment with simulated I/R.
     8. Measurement of [Ca2+]i transients and cell shortening in the single cardiomyocyte.
     9. Measurement of ROS Generation in cardiomyocytes.
     10. Immunoprecipitation with anti-SERCA or anti-RyR antibody.
     11. Tissue Biochemistry. Perchloric acid extractions were performed on frozen ventricle tissue.
     12. NMR Measurements. All NMR data were acquired on a spectrometer equipped withan Aspect3000series computer and a9.4-T, vertical-bore superconducting magnet.Relative metabolite levels within each spectrum were determined by integration of theareas under each resonance peak of interest using an analysis subroutine within the NMRdedicated software.Results
     1. Cardioprotection effects of Apelin-13. A significant reduction in the LDH release inthe100nmol/L and1μmol/L groups was observed.
     2. Apelin improved cardiac dysfunction of the I/R hearts.
     3. Apelin attenuated ischemic and reperfused contracture.
     4. Apelin ameliorated myocardial oxidative stress caused by I/R.
     5. Apelin-13restored the activities of SERCA and RyR during I/R.
     6. Apelin attenuated the tyrosine nitration of SERCA and maintained theS-glutathiolation of SERCA and S-glutathiolation of RyR in I/R rat hearts.
     7. Effect of Apelin-13on ROS Generation during I/R in Cardiomyocytes. To examinethe ROS generation during simulated I/R, we examined the fluorescence of DCFH-loadedcells. The ROS level was found to be increased after reperfusion and Apelin-13reducedthis increase.
     8. Apelin-13improved the impairment of Ca2+homeostasis and cell shorteninginduced by I/R.
     9. Tissue lactate content was similar, whereas alanine content was higher in controlhearts perfused with pyruvate versus glucose controls.
     10. Effects of Apelin on Tissue Metabolites. Apelin treatment did not affect tissuelactate levels under any of the experimental conditions, including ischemia. In contrast,Apelin treatment raised tissue alanine content.
     11. Exogenous Apelin was effective in preserving ATP levels at ischemia when glucose was available.
     12. Apelin treatment delayed the onset of contracture.
     Conclusion: Apelin protects SR function and cardiac performance during I/R byattenuating oxidation of SERCA and RyR and preserving ATP content.
引文
1. O'Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, et al.(1993) A human gene that showsidentity with the gene encoding the angiotensin receptor is located on chromosome11. Gene136:355-360.
    2. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, et al.(1998) Isolation andcharacterization of a novel endogenous peptide ligand for the human APJ receptor. BiochemBiophys Res Commun251:471-476.
    3. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, et al.(2003) Inhibition of myocardialinjury by ischemic postconditioning during reperfusion: comparison with ischemicpreconditioning. Am J Physiol Heart Circ Physiol285: H579-588.
    4. Karmazyn M (1988) Amiloride enhances postischemic ventricular recovery: possible role ofNa+-H+exchange. Am J Physiol255: H608-615.
    5. Hausenloy DJ, Mocanu MM, Yellon DM (2004) Cross-talk between the survival kinases duringearly reperfusion: its contribution to ischemic preconditioning. Cardiovasc Res63:305-312.
    6. Hanlon PR, Fu P, Wright GL, Steenbergen C, Arcasoy MO, et al.(2005) Mechanisms oferythropoietin-mediated cardioprotection during ischemia-reperfusion injury: role of proteinkinase C and phosphatidylinositol3-kinase signaling. FASEB J19:1323-1325.
    7. Inagaki K, Chen L, Ikeno F, Lee FH, Imahashi K, et al.(2003) Inhibition of delta-protein kinaseC protects against reperfusion injury of the ischemic heart in vivo. Circulation108:2304-2307.
    8. Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transitionpore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res60:617-625.
    9. Gross ER, Hsu AK, Gross GJ (2004) Opioid-induced cardioprotection occurs via glycogensynthase kinase beta inhibition during reperfusion in intact rat hearts. Circ Res94:960-966.
    10. Bolli R, Becker L, Gross G, Mentzer R, Jr., Balshaw D, et al.(2004) Myocardial protection at acrossroads: the need for translation into clinical therapy. Circ Res95:125-134.
    11. Flaherty JT, Pitt B, Gruber JW, Heuser RR, Rothbaum DA, et al.(1994) Recombinant humansuperoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patientsundergoing coronary angioplasty for acute myocardial infarction. Circulation89:1982-1991.
    12. Theroux P, Chaitman BR, Danchin N, Erhardt L, Meinertz T, et al.(2000) Inhibition of thesodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-riskischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis(GUARDIAN) Investigators. Circulation102:3032-3038.
    13. Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, et al.(2004) Multiple, brief coronaryocclusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. JAm Coll Cardiol44:1103-1110.
    14. Tang XL, Sato H, Tiwari S, Dawn B, Bi Q, et al.(2006) Cardioprotection by postconditioning inconscious rats is limited to coronary occlusions <45min. Am J Physiol Heart Circ Physiol291:H2308-2317.
    15. Stephanou A, Brar B, Liao Z, Scarabelli T, Knight RA, et al.(2001) Distinct initiator caspases arerequired for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusioninjury. Cell Death Differ8:434-435.
    16. Steenbergen C, Perlman ME, London RE, Murphy E (1993) Mechanism of preconditioning. Ionicalterations. Circ Res72:112-125.
    17. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiacmyocyte apoptosis. Circ Res95:957-970.
    18. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, et al.(2007) Cell death modalities:classification and pathophysiological implications. Cell Death Differ14:1237-1243.
    19. Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. TrendsBiochem Sci32:37-43.
    20. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) The interplay between pro-death andpro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meetsautophagy. Cardiovasc Drugs Ther20:445-462.
    21. Kajstura J, Bolli R, Sonnenblick EH, Anversa P, Leri A (2006) Cause of death: suicide. J Mol CellCardiol40:425-437.
    22. Takagi H, Matsui Y, Sadoshima J (2007) The role of autophagy in mediating cell survival and deathduring ischemia and reperfusion in the heart. Antioxid Redox Signal9:1373-1381.
    23. Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev20:1-15.
    24. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon withwide-ranging implications in tissue kinetics. Br J Cancer26:239-257.
    25. Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, et al.(1998) Apoptosis and myocardial infarction.Basic Res Cardiol93Suppl3:8-12.
    26. Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells: a paradigm shiftin cardiac biology. Circulation113:1451-1463.
    27. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, et al.(2003) Fas pathway is a critical mediator ofcardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart CircPhysiol284: H456-463.
    28. Bahi N, Zhang J, Llovera M, Ballester M, Comella JX, et al.(2006) Switch from caspase-dependentto caspase-independent death during heart development: essential role of endonuclease G inischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem281:22943-22952.
    29. Chen M, He H, Zhan S, Krajewski S, Reed JC, et al.(2001) Bid is cleaved by calpain to an activefragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem276:30724-30728.
    30. Czerski L, Nunez G (2004) Apoptosome formation and caspase activation: is it different in the heart?J Mol Cell Cardiol37:643-652.
    31. Gottlieb R (2005) ICE-ing the heart. Circ Res96:1036-1038.
    32. Mocanu MM, Baxter GF, Yellon DM (2000) Caspase inhibition and limitation of myocardial infarctsize: protection against lethal reperfusion injury. Br J Pharmacol130:197-200.
    33. Yaoita H, Ogawa K, Maehara K, Maruyama Y (1998) Attenuation of ischemia/reperfusion injury inrats by a caspase inhibitor. Circulation97:276-281.
    34. Vandenabeele P, Vanden Berghe T, Festjens N (2006) Caspase inhibitors promote alternative celldeath pathways. Sci STKE2006: pe44.
    35. Yu L, Wan F, Dutta S, Welsh S, Liu Z, et al.(2006) Autophagic programmed cell death by selectivecatalase degradation. Proc Natl Acad Sci U S A103:4952-4957.
    36. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, et al.(2007) Controlof macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell25:193-205.
    37. Neely JR, Grotyohann LW (1984) Role of glycolytic products in damage to ischemic myocardium.Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemichearts. Circ Res55:816-824.
    38. Imahashi K, Pott C, Goldhaber JI, Steenbergen C, Philipson KD, et al.(2005) Cardiac-specificablation of the Na+-Ca2+exchanger confers protection against ischemia/reperfusion injury. CircRes97:916-921.
    39. Koretsune Y, Marban E (1989) Cell calcium in the pathophysiology of ventricular fibrillation and inthe pathogenesis of postarrhythmic contractile dysfunction. Circulation80:369-379.
    40. Lim KH, Javadov SA, Das M, Clarke SJ, Suleiman MS, et al.(2002) The effects of ischaemicpreconditioning, diazoxide and5-hydroxydecanoate on rat heart mitochondrial volume andrespiration. J Physiol545:961-974.
    41. Piper HM, Abdallah Y, Schafer C (2004) The first minutes of reperfusion: a window of opportunityfor cardioprotection. Cardiovasc Res61:365-371.
    42. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calciumconcentration early in myocardial ischemia in perfused rat heart. Circ Res60:700-707.
    43. Steenbergen C, Murphy E, Watts JA, London RE (1990) Correlation between cytosolic free calcium,contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res66:135-146.
    44. Cobbold PH, Bourne PK (1984) Aequorin measurements of free calcium in single heart cells.Nature312:444-446.
    45. Kim JS, Jin Y, Lemasters JJ (2006) Reactive oxygen species, but not Ca2+overloading, trigger pH-and mitochondrial permeability transition-dependent death of adult rat myocytes afterischemia-reperfusion. Am J Physiol Heart Circ Physiol290: H2024-2034.
    46. Marban E, Kitakaze M, Chacko VP, Pike MM (1988) Ca2+transients in perfused hearts revealed bygated19F NMR spectroscopy. Circ Res63:673-678.
    47. Miyamae M, Camacho SA, Weiner MW, Figueredo VM (1996) Attenuation of postischemicreperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol271:H2145-2153.
    48. Namekata I, Shimada H, Kawanishi T, Tanaka H, Shigenobu K (2006) Reduction by SEA0400ofmyocardial ischemia-induced cytoplasmic and mitochondrial Ca2+overload. Eur J Pharmacol543:108-115.
    49. Bers DM (2002) Cardiac excitation-contraction coupling. Nature415:198-205.
    50. Eisner DA, Choi HS, Diaz ME, O'Neill SC, Trafford AW (2000) Integrative analysis of calciumcycling in cardiac muscle. Circ Res87:1087-1094.
    51. Murphy E, Perlman M, London RE, Steenbergen C (1991) Amiloride delays the ischemia-inducedrise in cytosolic free calcium. Circ Res68:1250-1258.
    52. Murphy E, Cross H, Steenbergen C (1999) Sodium regulation during ischemia versus reperfusionand its role in injury. Circ Res84:1469-1470.
    53. Wang Y, Meyer JW, Ashraf M, Shull GE (2003) Mice with a null mutation in the NHE1Na+-H+exchanger are resistant to cardiac ischemia-reperfusion injury. Circ Res93:776-782.
    54. Chen X, Zhang X, Kubo H, Harris DM, Mills GD, et al.(2005) Ca2+influx-induced sarcoplasmicreticulum Ca2+overload causes mitochondrial-dependent apoptosis in ventricular myocytes. CircRes97:1009-1017.
    55. du Toit EF, Opie LH (1994) Inhibitors of Ca2+ATPase pump of sarcoplasmic reticulum attenuatereperfusion stunning in isolated rat heart. J Cardiovasc Pharmacol24:678-684.
    56. Piper HM, Meuter K, Schafer C (2003) Cellular mechanisms of ischemia-reperfusion injury. AnnThorac Surg75: S644-648.
    57. Piper HM, Kasseckert S, Abdallah Y (2006) The sarcoplasmic reticulum as the primary target ofreperfusion protection. Cardiovasc Res70:170-173.
    58. del Monte F, Lebeche D, Guerrero JL, Tsuji T, Doye AA, et al.(2004) Abrogation of ventriculararrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. ProcNatl Acad Sci U S A101:5622-5627.
    59. Zucchi R, Ronca F, Ronca-Testoni S (2001) Modulation of sarcoplasmic reticulum function: a newstrategy in cardioprotection? Pharmacol Ther89:47-65.
    60. Donoso P, Mill JG, O'Neill SC, Eisner DA (1992) Fluorescence measurements of cytoplasmic andmitochondrial sodium concentration in rat ventricular myocytes. J Physiol448:493-509.
    61. Jung DW, Apel LM, Brierley GP (1992) Transmembrane gradients of free Na+in isolated heartmitochondria estimated using a fluorescent probe. Am J Physiol262: C1047-1055.
    62. Griffiths EJ, Ocampo CJ, Savage JS, Rutter GA, Hansford RG, et al.(1998) Mitochondrial calciumtransporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes. CardiovascRes39:423-433.
    63. Miyata H, Lakatta EG, Stern MD, Silverman HS (1992) Relation of mitochondrial and cytosolicfree calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res71:605-613.
    64. Murata M, Akao M, O'Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassiumchannels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possiblemechanism of cardioprotection. Circ Res89:891-898.
    65. Ruiz-Meana M, Garcia-Dorado D, Miro-Casas E, Abellan A, Soler-Soler J (2006) MitochondrialCa2+uptake during simulated ischemia does not affect permeability transition pore opening uponsimulated reperfusion. Cardiovasc Res71:715-724.
    66. Zhu L, Yu Y, Chua BH, Ho YS, Kuo TH (2001) Regulation of sodium-calcium exchange andmitochondrial energetics by Bcl-2in the heart of transgenic mice. J Mol Cell Cardiol33:2135-2144.
    67. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anionchannels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol9:550-555.
    68. Griffiths EJ, Ocampo CJ, Savage JS, Stern MD, Silverman HS (2000) Protective effects of low andhigh doses of cyclosporin A against reoxygenation injury in isolated rat cardiomyocytes areassociated with differential effects on mitochondrial calcium levels. Cell Calcium27:87-95.
    69. Arroyo CM, Kramer JH, Dickens BF, Weglicki WB (1987) Identification of free radicals inmyocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Lett221:101-104.
    70. Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB (1988) Demonstration of free radical generationin "stunned" myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butylnitrone. J Clin Invest82:476-485.
    71. Garlick PB, Davies MJ, Hearse DJ, Slater TF (1987) Direct detection of free radicals in thereperfused rat heart using electron spin resonance spectroscopy. Circ Res61:757-760.
    72. Zweier JL (1988) Measurement of superoxide-derived free radicals in the reperfused heart.Evidence for a free radical mechanism of reperfusion injury. J Biol Chem263:1353-1357.
    73. Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generationfollowing reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A84:1404-1407.
    74. Shuter SL, Davies MJ, Garlick PB, Hearse DJ, Slater TF (1990) Myocardial tissue preparation forESR spectroscopy: some methods may cause artifactual generation of signals. Free Radic ResCommun9:55-63.
    75. Becker LB, vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT (1999) Generation of superoxide incardiomyocytes during ischemia before reperfusion. Am J Physiol277: H2240-2246.
    76. Kevin LG, Camara AK, Riess ML, Novalija E, Stowe DF (2003) Ischemic preconditioning altersreal-time measure of O2radicals in intact hearts with ischemia and reperfusion. Am J PhysiolHeart Circ Physiol284: H566-574.
    77. Vanden Hoek TL, Shao Z, Li C, Zak R, Schumacker PT, et al.(1996) Reperfusion injury on cardiacmyocytes after simulated ischemia. Am J Physiol270: H1334-1341.
    78. Cascio WE, Yan GX, Kleber AG (1992) Early changes in extracellular potassium in ischemic rabbitmyocardium. The role of extracellular carbon dioxide accumulation and diffusion. Circ Res70:409-422.
    79. Bolli R (1998) Causative role of oxyradicals in myocardial stunning: a proven hypothesis. A briefreview of the evidence demonstrating a major role of reactive oxygen species in several forms ofpostischemic dysfunction. Basic Res Cardiol93:156-162.
    80. Ambrosio G, Becker LC, Hutchins GM, Weisman HF, Weisfeldt ML (1986) Reduction inexperimental infarct size by recombinant human superoxide dismutase: insights into thepathophysiology of reperfusion injury. Circulation74:1424-1433.
    81. Chi LG, Tamura Y, Hoff PT, Macha M, Gallagher KP, et al.(1989) Effect of superoxide dismutaseon myocardial infarct size in the canine heart after6hours of regional ischemia and reperfusion: ademonstration of myocardial salvage. Circ Res64:665-675.
    82. Kilgore KS, Friedrichs GS, Johnson CR, Schasteen CS, Riley DP, et al.(1994) Protective effects ofthe SOD-mimetic SC-52608against ischemia/reperfusion damage in the rabbit isolated heart. JMol Cell Cardiol26:995-1006.
    83. Naslund U, Haggmark S, Johansson G, Marklund SL, Reiz S, et al.(1986) Superoxide dismutaseand catalase reduce infarct size in a porcine myocardial occlusion-reperfusion model. J Mol CellCardiol18:1077-1084.
    84. Gallagher KP, Buda AJ, Pace D, Gerren RA, Shlafer M (1986) Failure of superoxide dismutase andcatalase to alter size of infarction in conscious dogs after3hours of occlusion followed byreperfusion. Circulation73:1065-1076.
    85. Nejima J, Knight DR, Fallon JT, Uemura N, Manders WT, et al.(1989) Superoxide dismutasereduces reperfusion arrhythmias but fails to salvage regional function or myocardium at risk inconscious dogs. Circulation79:143-153.
    86. Ooiwa H, Stanley A, Felaneous-Bylund AC, Wilborn W, Downey JM (1991) Superoxide dismutaseconjugated to polyethylene glycol fails to limit myocardial infarct size after30min ischemiafollowed by72h of reperfusion in the rabbit. J Mol Cell Cardiol23:119-125.
    87. Uraizee A, Reimer KA, Murry CE, Jennings RB (1987) Failure of superoxide dismutase to limitsize of myocardial infarction after40minutes of ischemia and4days of reperfusion in dogs.Circulation75:1237-1248.
    88. Vanhaecke J, Van de Werf F, Ronaszeki A, Flameng W, Lesaffre E, et al.(1991) Effect ofsuperoxide dismutase on infarct size and postischemic recovery of myocardial contractility andmetabolism in dogs. J Am Coll Cardiol18:224-230.
    89. Miki T, Cohen MV, Downey JM (1999) Failure of N-2-mercaptopropionyl glycine to reducemyocardial infarction after3days of reperfusion in rabbits. Basic Res Cardiol94:180-187.
    90. Murohara Y, Yui Y, Hattori R, Kawai C (1991) Effects of superoxide dismutase on reperfusionarrhythmias and left ventricular function in patients undergoing thrombolysis for anterior wallacute myocardial infarction. Am J Cardiol67:765-767.
    91. Jones SP, Hoffmeyer MR, Sharp BR, Ho YS, Lefer DJ (2003) Role of intracellular antioxidantenzymes after in vivo myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol284:H277-282.
    92. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, et al.(2005) Targeting an antioxidantto mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J19:1088-1095.
    93. Bognar Z, Kalai T, Palfi A, Hanto K, Bognar B, et al.(2006) A novel SOD-mimetic permeabilitytransition inhibitor agent protects ischemic heart by inhibiting both apoptotic and necrotic celldeath. Free Radic Biol Med41:835-848.
    94. Sheu SS, Nauduri D, Anders MW (2006) Targeting antioxidants to mitochondria: a new therapeuticdirection. Biochim Biophys Acta1762:256-265.
    95. Qin F, Yan C, Patel R, Liu W, Dong E (2006) Vitamins C and E attenuate apoptosis, beta-adrenergicreceptor desensitization, and sarcoplasmic reticular Ca2+ATPase downregulation after myocardialinfarction. Free Radic Biol Med40:1827-1842.
    96.(2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in20,536high-risk individuals: a randomised placebo-controlled trial. Lancet360:23-33.
    97. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, et al.(2005) Effects of long-term vitamin Esupplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA293:1338-1347.
    98. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation andcardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation StudyInvestigators. N Engl J Med342:154-160.
    99. Lesnefsky EJ, Chen Q, Moghaddas S, Hassan MO, Tandler B, et al.(2004) Blockade of electrontransport during ischemia protects cardiac mitochondria. J Biol Chem279:47961-47967.
    100.Sack MN (2006) Mitochondrial depolarization and the role of uncoupling proteins in ischemiatolerance. Cardiovasc Res72:210-219.
    101.Chen W, Gabel S, Steenbergen C, Murphy E (1995) A redox-based mechanism for cardioprotectioninduced by ischemic preconditioning in perfused rat heart. Circ Res77:424-429.
    102.Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requiressignaling through a redox-sensitive mechanism. Circ Res88:802-809.
    103.Pain T, Yang XM, Critz SD, Yue Y, Nakano A, et al.(2000) Opening of mitochondrial K(ATP)channels triggers the preconditioned state by generating free radicals. Circ Res87:460-466.
    104.Sun J, Steenbergen C, Murphy E (2006) S-nitrosylation: NO-related redox signaling to protectagainst oxidative stress. Antioxid Redox Signal8:1693-1705.
    105.Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, et al.(2007) Apelin-13andApelin-36exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic ResCardiol102:518-528.
    106.Kleinz MJ, Baxter GF (2008) Apelin reduces myocardial reperfusion injury independently ofPI3K/Akt and P70S6kinase. Regul Pept146:271-277.
    107.Rastaldo R, Cappello S, Folino A, Berta GN, Sprio AE, et al.(2011) Apelin-13limits infarct sizeand improves cardiac postischemic mechanical recovery only if given after ischemia. Am JPhysiol Heart Circ Physiol300: H2308-2315.
    108.Tao J, Zhu W, Li Y, Xin P, Li J, et al.(2011) Apelin-13protects the heart againstischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in atime-dependent fashion. Am J Physiol Heart Circ Physiol301: H1471-1486.
    109.Zeng XJ, Zhang LK, Wang HX, Lu LQ, Ma LQ, et al.(2009) Apelin protects heart againstischemia/reperfusion injury in rat. Peptides30:1144-1152.
    110.Pisarenko OI, Shulzhenko VS, Pelogeikina Iu A, Studneva IM, Kkhatri DN, et al.(2010)[Effectsof exogenous Apelin-12on functional and metabolic recovery of isolated rat heart after ischemia].Kardiologiia50:44-49.
    111.Li L, Yang G, Li Q, Tang Y, Yang M, et al.(2006) Changes and relations of circulating visfatin,Apelin, and resistin levels in normal, impaired glucose tolerance, and type2diabetic subjects. ExpClin Endocrinol Diabetes114:544-548.
    112.Heinonen MV, Purhonen AK, Miettinen P, Paakkonen M, Pirinen E, et al.(2005) Apelin, orexin-Aand leptin plasma levels in morbid obesity and effect of gastric banding. Regul Pept130:7-13.
    113.Castan-Laurell I, Vitkova M, Daviaud D, Dray C, Kovacikova M, et al.(2008) Effect ofhypocaloric diet-induced weight loss in obese women on plasma Apelin and adipose tissueexpression of Apelin and APJ. Eur J Endocrinol158:905-910.
    114.Ringstrom C, Nitert MD, Bennet H, Fex M, Valet P, et al.(2010) Apelin is a novel islet peptide.Regul Pept162:44-51.
    115.Sorhede Winzell M, Magnusson C, Ahren B (2005) The apj receptor is expressed in pancreaticislets and its ligand, Apelin, inhibits insulin secretion in mice. Regul Pept131:12-17.
    116.Boucher J, Masri B, Daviaud D, Gesta S, Guigne C, et al.(2005) Apelin, a newly identifiedadipokine up-regulated by insulin and obesity. Endocrinology146:1764-1771.
    117.Dray C, Knauf C, Daviaud D, Waget A, Boucher J, et al.(2008) Apelin stimulates glucoseutilization in normal and obese insulin-resistant mice. Cell Metab8:437-445.
    118.Attane C, Daviaud D, Dray C, Dusaulcy R, Masseboeuf M, et al.(2011) Apelin stimulates glucoseuptake but not lipolysis in human adipose tissue ex vivo. J Mol Endocrinol46:21-28.
    119.Yue P, Jin H, Aillaud M, Deng AC, Azuma J, et al.(2010) Apelin is necessary for the maintenanceof insulin sensitivity. Am J Physiol Endocrinol Metab298: E59-67.
    120.Zhu S, Sun F, Li W, Cao Y, Wang C, et al.(2011) Apelin stimulates glucose uptake through thePI3K/Akt pathway and improves insulin resistance in3T3-L1adipocytes. Mol Cell Biochem353:305-313.
    121.Xu S, Han P, Huang M, Wu JC, Chang C, et al.(2012) In vivo, ex vivo, and in vitro studies onApelin's effect on myocardial glucose uptake. Peptides37:320-326.
    122.Attane C, Foussal C, Le Gonidec S, Benani A, Daviaud D, et al.(2012) Apelin treatment increasescomplete Fatty Acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle ofinsulin-resistant mice. Diabetes61:310-320.
    123.Naga Prasad SV, Jayatilleke A, Madamanchi A, Rockman HA (2005) Protein kinase activity ofphosphoinositide3-kinase regulates beta-adrenergic receptor endocytosis. Nat Cell Biol7:785-796.
    124.Tong H, Chen W, Steenbergen C, Murphy E (2000) Ischemic preconditioning activatesphosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res87:309-315.
    125.Williams MR, Arthur JS, Balendran A, van der Kaay J, Poli V, et al.(2000) The role of3-phosphoinositide-dependent protein kinase1in activating AGC kinases defined in embryonicstem cells. Curr Biol10:439-448.
    126.Mora A, Komander D, van Aalten DM, Alessi DR (2004) PDK1, the master regulator of AGCkinase signal transduction. Semin Cell Dev Biol15:161-170.
    127.Wick MJ, Dong LQ, Riojas RA, Ramos FJ, Liu F (2000) Mechanism of phosphorylation of proteinkinase B/Akt by a constitutively active3-phosphoinositide-dependent protein kinase-1. J BiolChem275:40400-40406.
    128.Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipidsecond messenger, phosphatidylinositol3,4,5-trisphosphate. J Biol Chem273:13375-13378.
    129.Wain CM, Westwick J, Ward SG (2005) Heterologous regulation of chemokine receptor signalingby the lipid phosphatase SHIP in lymphocytes. Cell Signal17:1194-1202.
    130.Mocanu MM, Yellon DM (2007) PTEN, the Achilles' heel of myocardial ischaemia/reperfusioninjury? Br J Pharmacol150:833-838.
    131.Cai Z, Semenza GL (2005) PTEN activity is modulated during ischemia and reperfusion:involvement in the induction and decay of preconditioning. Circ Res97:1351-1359.
    132.Tong H, Rockman HA, Koch WJ, Steenbergen C, Murphy E (2004) G protein-coupled receptorinternalization signaling is required for cardioprotection in ischemic preconditioning. Circ Res94:1133-1141.
    133.Drake MT, Shenoy SK, Lefkowitz RJ (2006) Trafficking of G protein-coupled receptors. Circ Res99:570-582.
    134.Ping P, Takano H, Zhang J, Tang XL, Qiu Y, et al.(1999) Isoform-selective activation of proteinkinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitricoxide-induced and ischemia-induced preconditioning. Circ Res84:587-604.
    135.Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, et al.(2005) Protein kinase G transmitsthe cardioprotective signal from cytosol to mitochondria. Circ Res97:329-336.
    136.Baines CP, Goto M, Downey JM (1997) Oxygen radicals released during ischemic preconditioningcontribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol29:207-216.
    137.Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, et al.(2002) Mitochondrial PKCepsilon andMAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPKinteractions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res90:390-397.
    138.Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, et al.(2003) Protein kinase Cepsiloninteracts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res92:873-880.
    139.Liu Y, Gao WD, O'Rourke B, Marban E (1996) Synergistic modulation of ATP-sensitive K+currents by protein kinase C and adenosine. Implications for ischemic preconditioning. Circ Res78:443-454.
    140.Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxidegeneration from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol291:H2067-2074.
    141.Wang C, Du JF, Wu F, Wang HC (2008) Apelin decreases the SR Ca2+content but enhances theamplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes.Am J Physiol Heart Circ Physiol294: H2540-2546.
    142.Dhalla NS, Panagia V, Singal PK, Makino N, Dixon IM, et al.(1988) Alterations in heartmembrane calcium transport during the development of ischemia-reperfusion injury. J Mol CellCardiol20Suppl2:3-13.
    143.Cohen MV, Yang XM, Downey JM (2007) The pH hypothesis of postconditioning: staccatoreperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation115:1895-1903.
    144.Penna C, Alloatti G, Cappello S, Gattullo D, Berta G, et al.(2005) Platelet-activating factor inducescardioprotection in isolated rat heart akin to ischemic preconditioning: role of phosphoinositide3-kinase and protein kinase C activation. Am J Physiol Heart Circ Physiol288: H2512-2520.
    145.Penna C, Mancardi D, Rastaldo R, Losano G, Pagliaro P (2007) Intermittent activation ofbradykinin B2receptors and mitochondrial KATP channels trigger cardiac postconditioningthrough redox signaling. Cardiovasc Res75:168-177.
    146.Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, et al.(2006) Post-conditioninginduced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrialATP-sensitive K+channel and protein kinase C activation. Basic Res Cardiol101:180-189.
    147.Philipp S, Yang XM, Cui L, Davis AM, Downey JM, et al.(2006) Postconditioning protects rabbithearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res70:308-314.
    148.Pieroni M, Corti A, Tota B, Curnis F, Angelone T, et al.(2007) Myocardial production ofchromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J28:1117-1127.
    149.Pravdic D, Sedlic F, Mio Y, Vladic N, Bienengraeber M, et al.(2009) Anesthetic-inducedpreconditioning delays opening of mitochondrial permeability transition pore via protein KinaseC-epsilon-mediated pathway. Anesthesiology111:267-274.
    150.Pei H, Qu Y, Lu X, Yu Q, Lian K, et al.(2013) Cardiac-derived adiponectin induced by long-terminsulin treatment ameliorates myocardial ischemia/reperfusion injury in type1diabetic mice viaAMPK signaling. Basic Res Cardiol108:322.
    151.Tang WH, Kravtsov GM, Sauert M, Tong XY, Hou XY, et al.(2010) Polyol pathway impairs thefunction of SERCA and RyR in ischemic-reperfused rat hearts by increasing oxidativemodifications of these proteins. J Mol Cell Cardiol49:58-69.
    152.Luan R, Liu S, Yin T, Lau WB, Wang Q, et al.(2009) High glucose sensitizes adultcardiomyocytes to ischaemia/reperfusion injury through nitrative thioredoxin inactivation.Cardiovasc Res83:294-302.
    153.Harigaya S, Schwartz A (1969) Rate of calcium binding and uptake in normal animal and failinghuman cardiac muscle. Membrane vesicles (relaxing system) and mitochondria. Circ Res25:781-794.
    154.Inesi G, Ebashi S, Watanabe S (1964) Preparation of Vesicular Relaxing Factor from Bovine HeartTissue. Am J Physiol207:1339-1344.
    155.Sulakhe PV, Dhalia NS (1971) Excitation-contraction coupling in heart. VII. Calciumaccumulation in subcellular particles in congestive heart failure. J Clin Invest50:1019-1027.
    156.Alto LE, Dhalla NS (1981) Role of changes in microsomal calcium uptake in the effects ofreperfusion of Ca2+-deprived rat hearts. Circ Res48:17-24.
    157.Temsah RM, Netticadan T, Chapman D, Takeda S, Mochizuki S, et al.(1999) Alterations insarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am JPhysiol277: H584-594.
    158.Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS (1983) Defective sarcoplasmic reticular calciumtransport in diabetic cardiomyopathy. Am J Physiol244: E528-535.
    159.Zucchi R, Ronca-Testoni S, Yu G, Galbani P, Ronca G, et al.(1994) Effect of ischemia andreperfusion on cardiac ryanodine receptors--sarcoplasmic reticulum Ca2+channels. Circ Res74:271-280.
    160.Gao WD, Liu Y, Marban E (1996) Selective effects of oxygen free radicals onexcitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunnedmyocardium. Circulation94:2597-2604.
    161.Yamada S, Ikemoto N (1978) Distinction of thiols involved in the specific reaction steps of theCa2+-ATPase of the sarcoplasmic reticulum. J Biol Chem253:6801-6807.
    162.Zucchi R, Cerniway RJ, Ronca-Testoni S, Morrison RR, Ronca G, et al.(2002) Effect of cardiacA(1) adenosine receptor overexpression on sarcoplasmic reticulum function. Cardiovasc Res53:326-333.
    163.Holmberg SR, Williams AJ (1990) The cardiac sarcoplasmic reticulum calcium-release channel:modulation of ryanodine binding and single-channel activity. Biochim Biophys Acta1022:187-193.
    164.Kloner RA, Hale SL, Dai W, Gorman RC, Shuto T, et al.(2012) Reduction of ischemia/reperfusioninjury with bendavia, a mitochondria-targeting cytoprotective Peptide. J Am Heart Assoc1:e001644.
    165.Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlyingexcitation-contraction coupling in heart muscle. Science262:740-744.
    166.Merritt JE, McCarthy SA, Davies MP, Moores KE (1990) Use of fluo-3to measure cytosolic Ca2+in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in thepresence of plasma, and buffering of cytosolic Ca2+. Biochem J269:513-519.
    167.Tajima M, Weinberg EO, Bartunek J, Jin H, Yang R, et al.(1999) Treatment with growth hormoneenhances contractile reserve and intracellular calcium transients in myocytes from rats withpostinfarction heart failure. Circulation99:127-134.
    168.Shipolini AR, Yokoyama H, Galinanes M, Edmondson SJ, Hearse DJ, et al.(1997) Na+/H+exchanger activity does not contribute to protection by ischemic preconditioning in the isolated ratheart. Circulation96:3617-3625.
    169.Feher JJ, LeBolt WR, Manson NH (1989) Differential effect of global ischemia on theryanodine-sensitive and ryanodine-insensitive calcium uptake of cardiac sarcoplasmic reticulum.Circ Res65:1400-1408.
    170.Adachi T, Matsui R, Xu S, Kirber M, Lazar HL, et al.(2002) Antioxidant improves smooth musclesarco/endoplasmic reticulum Ca(2+)-ATPase function and lowers tyrosine nitration inhypercholesterolemia and improves nitric oxide-induced relaxation. Circ Res90:1114-1121.
    171.Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, et al.(2004) S-Glutathiolation byperoxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med10:1200-1207.
    172.Suzuki YJ, Cleemann L, Abernethy DR, Morad M (1998) Glutathione is a cofactor forH2O2-mediated stimulation of Ca2+-induced Ca2+release in cardiac myocytes. Free Radic BiolMed24:318-325.
    173.Sanchez G, Pedrozo Z, Domenech RJ, Hidalgo C, Donoso P (2005) Tachycardia increases NADPHoxidase activity and RyR2S-glutathionylation in ventricular muscle. J Mol Cell Cardiol39:982-991.
    174.Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res87:275-281.
    175.Stokke MK, Briston SJ, Jolle GF, Manzoor I, Louch WE, et al.(2011) Ca(2+) wave probability isdetermined by the balance between SERCA2-dependent Ca(2+) reuptake and threshold SR Ca(2+)content. Cardiovasc Res90:503-512.
    176.Hwang H, Arcidi JM, Jr., Hale SL, Simkhovich BZ, Belardinelli L, et al.(2009) Ranolazine as acardioplegia additive improves recovery of diastolic function in isolated rat hearts. Circulation120:S16-21.
    177.Apstein CS, Mueller M, Hood WB, Jr.(1977) Ventricular contracture and compliance changes withglobal ischemia and reperfusion, and their effect on coronary resistance in the rat. Circ Res41:206-217.
    178.Palmer BS, Hadziahmetovic M, Veci T, Angelos MG (2004) Global ischemic duration andreperfusion function in the isolated perfused rat heart. Resuscitation62:97-106.
    179.Osada M, Netticadan T, Tamura K, Dhalla NS (1998) Modification of ischemia-reperfusion-induced changes in cardiac sarcoplasmic reticulum by preconditioning. Am J Physiol274:H2025-2034.
    180.Temsah RM, Dyck C, Netticadan T, Chapman D, Elimban V, et al.(2000) Effect of beta-adrenoceptor blockers on sarcoplasmic reticular function and gene expression in theischemic-reperfused heart. J Pharmacol Exp Ther293:15-23.
    181.Katz AM, Tada M (1972) The "stone heart": a challenge to the biochemist. Am J Cardiol29:578-580.
    182.Mohazzab HK, Kaminski PM, Wolin MS (1997) Lactate and PO2modulate superoxide anionproduction in bovine cardiac myocytes: potential role of NADH oxidase. Circulation96:614-620.
    183.Bassenge E, Sommer O, Schwemmer M, Bunger R (2000) Antioxidant pyruvate inhibits cardiacformation of reactive oxygen species through changes in redox state. Am J Physiol Heart CircPhysiol279: H2431-2438.
    184.Xu KY, Zweier JL, Becker LC (1997) Hydroxyl radical inhibits sarcoplasmic reticulumCa(2+)-ATPase function by direct attack on the ATP binding site. Circ Res80:76-81.
    185.Rousseau E, Smith JS, Meissner G (1987) Ryanodine modifies conductance and gating behavior ofsingle Ca2+release channel. Am J Physiol253: C364-368.
    186.Lattanzio FA, Jr., Schlatterer RG, Nicar M, Campbell KP, Sutko JL (1987) The effects of ryanodineon passive calcium fluxes across sarcoplasmic reticulum membranes. J Biol Chem262:2711-2718.
    187.Meissner G (1986) Ryanodine activation and inhibition of the Ca2+release channel of sarcoplasmicreticulum. J Biol Chem261:6300-6306.
    188.Feher JJ, Lipford GB (1985) Mechanism of action of ryanodine on cardiac sarcoplasmic reticulum.Biochim Biophys Acta813:77-86.
    189.Alderson BH, Feher JJ (1987) The interaction of calcium and ryanodine with cardiac sarcoplasmicreticulum. Biochim Biophys Acta900:221-229.
    190.Inui M, Wang S, Saito A, Fleischer S (1988) Characterization of junctional and longitudinalsarcoplasmic reticulum from heart muscle. J Biol Chem263:10843-10850.
    191.Holmberg SR, Cumming DV, Kusama Y, Hearse DJ, Poole-Wilson PA, et al.(1991) Reactiveoxygen species modify the structure and function of the cardiac sarcoplasmic reticulumcalcium-release channel. Cardioscience2:19-25.
    192.Zima AV, Copello JA, Blatter LA (2004) Effects of cytosolic NADH/NAD(+)levels onsarcoplasmic reticulum Ca(2+) release in permeabilized rat ventricular myocytes. J Physiol555:727-741.
    193.Aracena P, Sanchez G, Donoso P, Hamilton SL, Hidalgo C (2003) S-glutathionylation decreasesMg2+inhibition and S-nitrosylation enhances Ca2+activation of RyR1channels. J Biol Chem278:42927-42935.
    194.Aracena P, Tang W, Hamilton SL, Hidalgo C (2005) Effects of S-glutathionylation andS-nitrosylation on calmodulin binding to triads and FKBP12binding to type1calcium releasechannels. Antioxid Redox Signal7:870-881.
    195.Tachampa K, Kobayashi T, Wang H, Martin AF, Biesiadecki BJ, et al.(2008) Increasedcross-bridge cycling kinetics after exchange of C-terminal truncated troponin I in skinned ratcardiac muscle. J Biol Chem283:15114-15121.
    196.Cohen MV, Downey JM (2011) Ischemic postconditioning: from receptor to end-effector. AntioxidRedox Signal14:821-831.
    197.Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P (2008) The paradigm of postconditioningto protect the heart. J Cell Mol Med12:435-458.
    198.Shinmura K, Nagai M, Tamaki K, Bolli R (2008) Loss of ischaemic preconditioning inovariectomized rat hearts: possible involvement of impaired protein kinase C epsilonphosphorylation. Cardiovasc Res79:387-394.
    199.Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiacischemia-reperfusion injury. Physiol Rev88:581-609.
    200.Kawamura S, Yoshida K, Miura T, Mizukami Y, Matsuzaki M (1998) Ischemic preconditioningtranslocates PKC-delta and-epsilon, which mediate functional protection in isolated rat heart. AmJ Physiol275: H2266-2271.
    201.Costa AD, Pierre SV, Cohen MV, Downey JM, Garlid KD (2008) cGMP signalling in pre-andpost-conditioning: the role of mitochondria. Cardiovasc Res77:344-352.
    202.Zhao ZQ, Vinten-Johansen J (2006) Postconditioning: reduction of reperfusion-induced injury.Cardiovasc Res70:200-211.
    203.Sherry AD, Nunnally RL, Peshock RM (1985) Metabolic studies of pyruvate-and lactate-perfusedguinea pig hearts by13C NMR. Determination of substrate preference by glutamate isotopomerdistribution. J Biol Chem260:9272-9279.
    204.Bartley W, Dean B (1968) Extraction and estimation of glycogen and oligosaccharides from ratheart. Anal Biochem25:99-108.
    205.Malloy CR, Sherry AD, Jeffrey FM (1988) Evaluation of carbon flux and substrate selectionthrough alternate pathways involving the citric acid cycle of the heart by13C NMR spectroscopy.J Biol Chem263:6964-6971.
    206.Lewandowski ED, Johnston DL (1990) Reduced substrate oxidation in postischemic myocardium:13C and31P NMR analyses. Am J Physiol258: H1357-1365.
    207.Flaherty JT, Weisfeldt ML, Bulkley BH, Gardner TJ, Gott VL, et al.(1982) Mechanisms ofischemic myocardial cell damage assessed by phosphorus-31nuclear magnetic resonance.Circulation65:561-570.
    208.Ogino T, Arata Y, Fujiwara S (1980) Proton correlation nuclear magnetic resonance study ofmetabolic regulations and pyruvate transport in anaerobic Escherichia coli cells. Biochemistry19:3684-3691.
    209.Hoekenga DE, Brainard JR, Hutson JY (1988) Rates of glycolysis and glycogenolysis duringischemia in glucose-insulin-potassium-treated perfused hearts: A13C,31P nuclear magneticresonance study. Circ Res62:1065-1074.
    210.Weiss RG, Chacko VP, Glickson JD, Gerstenblith G (1989) Comparative13C and31P NMRassessment of altered metabolism during graded reductions in coronary flow in intact rat hearts.Proc Natl Acad Sci U S A86:6426-6430.
    211.Devous MD, Sr., Lewandowski ED (1987) Inosine preserves ATP during ischemia and enhancesrecovery during reperfusion. Am J Physiol253: H1224-1233.
    212.Neely JR, Rovetto MJ, Whitmer JT, Morgan HE (1973) Effects of ischemia on function andmetabolism of the isolated working rat heart. Am J Physiol225:651-658.
    213.Hearse DJ, Garlick PB, Humphrey SM (1977) Ischemic contracture of the myocardium:mechanisms and prevention. Am J Cardiol39:986-993.
    214.Bricknell OL, Daries PS, Opie LH (1981) A relationship between adenosine triphosphate,glycolysis and ischaemic contracture in the isolated rat heart. J Mol Cell Cardiol13:941-945.
    215.Owen P, Dennis S, Opie LH (1990) Glucose flux rate regulates onset of ischemic contracture inglobally underperfused rat hearts. Circ Res66:344-354.
    216.Neely JR, Whitmer JT, Rovetto MJ (1975) Effect of coronary blood flow on glycolytic flux andintracellular pH in isolated rat hearts. Circ Res37:733-741.
    217.Rovetto MJ, Lamberton WF, Neely JR (1975) Mechanisms of glycolytic inhibition in ischemic rathearts. Circ Res37:742-751.
    218.Taegtmeyer H, Peterson MB, Ragavan VV, Ferguson AG, Lesch M (1977) De novo alaninesynthesis in isolated oxygen-deprived rabbit myocardium. J Biol Chem252:5010-5018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700