东太平洋中国调查区粘土沉积物地球化学特征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了海洋粘土资源的合理有效利用,对东太平洋中国大洋调查区粘土沉积物进行了详细的矿物及地球化学特征研究。证实了大洋粘土沉积物具有成分组成复杂、富含集稀土元素和多种微量元素(个别样品La含量达到了工业指标要求)、粘土矿物含量高、颗粒组成细微、团聚差等特征。其中粘土矿物结晶差、形态不规则、结构缺陷多、八面体部分开放,由此导致大洋粘土活性高、吸附能力强,但白度低。大洋粘土沉积物的这种特殊的颗粒组成和特定的矿物结构为其后期的应用研究奠定了基础。
     采用悬浮扩散法将沉积物中的粘土进行了提纯,可使粘土矿物含量大于95%以上;采用酸溶氢气法使大洋粘土的白度提高了近50%;分别采用干法和湿法对大洋粘土进行了有机活化处理,提高了其在有机物中的分散性。针对大洋粘土的结构和成分特点设计了利用其制备白炭黑并回收氧化铝的工艺;利用沉淀法制备出了比表面积大于1000m~2/g的白炭黑,TEM显示内部有介孔存在;回收的晶态氧化铝达到了纳米级,非晶态氧化铝存模板剂作用下制成了介孔材料。优选了各个工艺过程的条件并探讨了各自的反应机理。
The sea clay has been paid attention by people since in 1930s, for the firsttime, foreign scholars discovered that the clay minerals, such as illite,montmorillonite and kaolinite, in the sediments from the Pacific are endowedwith crystal character. From then on, the research atmosphere on the sea claysediments has been activated, and while in 1960s, correlative works on thetype, distribution, cause of formation, and etc of the sea clay minerals.appeared one after the other. Nevertheless, our country began to study on it inlater period of 1970s, and in the middle stage of 1980s, investigations on theocean clay minerals, most of which is from the Pacific, started as well. The seaclay was mainly used for reflecting the change of the geologic environments,such as ancient geography, ancient climate, and ancient environment, due to itpossessing minute grain, out-of-order structure and variable composition. sothe research passion has been gone down to now.
     Investigation of the clay from the east Pacific, which was made to reflectthe change of the geologic environments, has already been exceedingly mature,especially the research on geochemistry characteristics of the REEs insediments and its indication meaning for the clay minerals. However, study onthe application of the ocean clay has not been reported yet. The resourcepotentiality of the clay and ooze in the world ocean is so tremendous, theamount of which is 2.1×10~7km~3 and 3.1×10~7km~3 respectively according to thereported data, that the application and development of these resources willhave significant meanings, in particular as the reserve resources. But first ofall, the geochemistry of pelagic clay should been researched and thenaccording the character to design the application research. Research on nanomaterial is the most important thing in the material preparation. It isrecognized that nano material is the most prospective material for 21 th century.Nesoporous material is a freshly inorganic non-metallic material. Since itsparticular structure and property it will have extensive application. So toprepare the nano/mesoporous material with pelagic clay is very important notonly in the application of sea clay but also in the material preparation.
     The paper contains five sections. They are geochemistry character ofpelagic clay sediments, purification and white increasing of pelagic clay.organic activation of pelagic clay, nano amorpher silica preparation withpelagic clay, crystal and mesoporous alumina reclaim from the deposed liquid.By test and analysis of the clay sediments, including mineral composition,chemical component, crystal structure, physical-chemistry properties, and etc,it demonstrates that the pelagic clay is provided with the characteristics ofminute granule, out-of-order structure, abundant organic substances and REEs.Bleaching test on the pelagic clay was carried out by adopting the chemicalreduction method and surface modification of the clay was conducted too.According the grain constitutes and the clay mineral's structure we preparedthe nano/mesoporous silica and alumina and optimized the technics parameters.The conclusions are as follow:
     1. The geochemical character of clay sediments
     There are seven kind of mineral compositions in the area of China investigation. Themain constituent is clay mineral whose content is much more (>70%). exceptthat several samples are carbonate sediments. Their main mineral constituent isirregular I/S mixed layer, with a small quantity of kaolinite and chlorite.Feldspars and quartz were also detected. The quantity of organic substances.most of which is more than 1%, with the minority reached 10%. is greaterwhile comparing with the homogeneous clay in earths surface. Chemicalcomposition of the representative clay sediments shows that the ocean clay isabundant in REEs, and iron, manganese oxides content is larger which resultsin the low whiteness of the samples. As a result of the physical-chemistryproperties test of the ocean clay, the granule is fine, the crystallization is bad,and its microcosmical conformation is mainly of floccule and sandwich.
     2. Purification and white increasing of pelagic clay
     To purify the pelagic clay with the method of suspend pervasion, theresult is that by drying the clay sediments and remake the slurry is better thanthe method of make the slurry directly, and the purity pelagic clay isincompact grain.
     In order to increase the whiteness of pelagic clay we performed it by using acid dissolving hydrogen reduction method just after a great number ofexperiment methods were tried. The specific surface area of pelagic clay isincreased, and the dispersing ability in organic solvent becomes better whileincreasing its whiteness. The optimized conditions are vitriol 25%, reducer2.0g/L, solid to liquid 4:1, reacting time 4h. The whiteness will increasedabout 49% at best, and 98.5% iron can be removed. To calcine the pelagic clayat 800℃can increase the clay whiteness too.
     3. Organic activation of pelagic clay
     The purified sample was modified by mechanical chemistry surfacemodification method. After a series of modification conditions, modifiers, andetc were sieved, we draw a conclusion that the silane and alminate are the bestmodifiers. The water-absorbing ratio of the modified sample decreasesobviously, and its dispersing ability in organic medium improves evidently.X-ray diffraction analysis indicates that the out-of-order degree of the claymineral increases after modification, and the space between layers increase too.which demonstrates that organic modifier takes up partly interspaces betweenthe layers of the clay, improving the water absorbing ability between the layers.thus, in favour of the sample dispersing in organic medium easier. In the sameway, that the ratio surface area of the modified sample decreases is the resultof the modifier molecules entering the structure of the clay, and stuffing uppartial pores while grinding.
     Wet modification was the process of organic activation, during which thewashed, filtrated cake of the acid treated sample was made into slurryimmediately, and modified by adding into modifiers in the course of stirring. Itreveals that the modified result is the best when the slurry thickness was 30%,reaction time was 40 minutes, and the added silane quantity was 3.0%.
     4. Nano amorpher silica preparation with pelagic clay
     We investigate the leaching ratio of aluminum by acid soakage and alkalimelting. The result of acid soakage shows that the leaching ratio of aluminumhas not passed 50%, subordinate to the intending result. The result of alkalimelting shows that the leaching ratio of aluminum has achieved 100%, thebest synthesis condition is: More effective alkali to destroy the crystal structure of abyssal clay is NaOH, the dosage is 2.5272 g (the dosage ofabyssal clay is 1.0000 g); smelting temperature is 650℃; the time of smeltingis 30 min. silicon component exist in form of solvable liquor.
     Base on the specific surface area testing, there many factors influence itsspecific surface area as the dosage of dispersant, age time, and sinteringtemperature. The best synthesis conditions to acquire largest specific surfacearea are as below: gelatin liquor s volume is 40 mL(0.01 g/mL), the dosage ofhydrochloric acid is 6 mL, and the adding speed of acid is 3 mL/min; the agetime is 12 h; washing the filter residue to get pH=5-6, the sinteringtemperature is 700℃, then the product get max specific surface area, the datais 1056 m~2·g~(-1). compare with the flocculent and flake pattern of abyssal, theporous silica is branch-like or mesh-like pattern. So the porous silica haspotential to be modified.
     The transformation of abyssal to porous silica is detected by IR analysiswhen use alkali melting it. The acid adding system influence the structure ofsamples, the experiment approve that, at the low speed of acid adding, theproducts hold large specific surface area. Compare with many dispersant,samples hold most priority properties while use gelatin as dispersant.
     5. Nano and mesoporous alumina reclaim from the deposed liquid
     Add NH_3.H_2O to the liquid after amorpher silica preparation, andgain the sediments. Use NaOH solution to redissolve the sediments, and let theA1~(3+) separated from other ions. Add CO_2 gas to the solution and let NaAlO_2hydrolyae to form Al(OH)_3. To calcine the Al(OH)_3 we can gain theα-Al_2O_3.The optimized technic conditions are taking polyethylene glycol 6000 as thedispersant agent, stirring it for 0.5h, adding CO_2 let PH=6.0, stirring 2h,plating it for 24h, to calcine it at 1200℃for ln, we can get theα-Al_2O_3.SEM testing indicates that the grains of Al_2O_3 are smaller than 100nm.
     The optimized preparation conditions of mesoporours Al_2O_3 areneutralizing the Al(OH)_3 to A1(NO_3)_3, adding the mobile agent 1.5g and100ml0.5mol/L NH_3·H_2O to 18 mlAl(NO_3)_3 solution, stirring and heating it to75℃, using 1mol/L HNO_3 and 1mol/L NH_3·H_2O to accommodate the PH ofsolution, stirring it at 75℃for 140min, and the gelatine was obtained. Plating the gelatine at the room temperature for 48h, drying it at 80℃, to calcine it at250℃and holding the temperature for 1.5h, to rise the temperature to 500℃,holding the temperature for 4h, we can gain the mesoporous Al_2O_3. N_2absorption testing states that the porous of alumina are equality and theaperture is about 2.6 nm.
     By recycling the alumina the solution changed from acidity to neutralitywhich prevents the environmental pollution.
引文
[1] 孔祥乐,项海光.海洋沉积粘土矿物与全球变化研究的探讨[J].海洋湖沼通报,2003,(1):22-26.
    
    [2] 石学法.海洋粘土矿物的研究进展和发展趋势[J].海洋地质动态,1995,(1):1-3.
    
    [3] Biscaye,P.E..Mineralogy and sedimentation of recent deep-sea clay in the AtlanticOcean and adjacent seas and oceans [J].Geol.Soc.Am.Bull.,1965,76:803-832.
    
    [4] J.J.Griffin.The distribution of clay minerals in the world ocean [J].Deep-Sea.Res.,1968,15:433-459.
    
    [5] Chamley H..Clay Sedimentology [M].Berlin:Springer,1989,1-30.
    
    [6] S.Y.Yang,D.I.Lim,H.S.Jung,et al..Geochemical composition and provenancediscrimination of coastal sediments around Cheju Island in the southeastern YellowSea [J].Marine Geology,2004,206:41-53.
    
    [7] Rateev M.A.,Emel'Janov E.M.,Kheirov M.B..Peculiarities of the formation of clayminerals in the recent sediments of the Mediterranean Sea [C].Lit.Palezn.Isk.Akad.Nauk S.S.S.R.,1996,4:6-23.(in Russian)
    
    [8] Rainer Petschick,Gerhard Kuhn and Franz.Gingele.Clay minerals distribution insurface sediment of the south Atlantic:sources transport,and relation tooceanography [J].Mar.Geol.,1996,130:203-229.
    
    [9] Saburo Aoki,Norihiko Kohyama.The vertical change in clay mineral compositionand chemical characteristics of smectite in sediment cores from the southern part ofthe Central Pacific Basin [J].Marine Geology,1991,98:41-49.
    
    [10] Saburo Aoki,Norihiko Kohyama.Modern sedimentation in the Japan Trench:implication of the mineralogy and chemistry of clays sampled from sediment traps[J].Marine Geology,1992,108:179-185.
    
    [11] Saburo Aoki,Norihiko Kohyama.Cenozoic sedimentation and clay mineralogy inthe northern part of the Magellan Trough,Central Pacific Basin[J].Marine Geology,1998.148:21-37.
    
    [12] G.Rajasekaran,K.Murali,R.Srinivasaraghavan.Microfabric,chemical andmineralogical study of Indian marine clays [J].Ocean Engineering,1999,26:463-483.
    
    [13] N.Fagel,C.Robert,M.Preda,J.Thorez.Smectite composition as a tracer of deepcirculation:the case of the Northern North Atlantic [J].Marine Geology,2001,172:309-330.
    
    [14] Claus-Dieter Hillenbrand,Hannes Grobe,Bernhard Diekmann,et al..Distribution ofclay minerals and proxies for productivity in surface sediments of theBellingshausen and Amundsen seas (West Antarctica) - Relation to modern??environmental conditions [J].Marine Geology,2003,193:253-271.
    
    [15] C.Viscosi-Shirley,K.Mammone,N.Pisias,et al..Clay mineralogy andmulti-element chemistry of surface sediments on the Siberian-Arctic shelf:implications for sediment provenance and grain size sorting [J].Continental ShelfResearch,2003,23:1175-1200.
    
    [16] Zhifei Liu,Alain Trentesaux,Steven C.Clemens,et al..Clay mineral assemblagesin the northern South China Sea:implications for East Asian monsoon evolutionover the past 2 million years [J].Marine Geology,2003,201:133-146.
    
    [17] 程捷,唐德翔,张绪教,田明中,等.粘土矿物在黄河源区古气候研究中的应用[J].现代地质,2003,17(1):47-51.
    
    [18] 范德江,杨作升,毛登,等.长江与黄河沉积物中粘土矿物及地化成分的组成[J].海洋地质与第四纪地质,2001,21(4):7-12.
    
    [19] 蓝先洪.海洋沉积物中粘土矿物组合特征的古环境意义[J].海洋地质动态,2001,17(1):5-7.
    
    [20] 杨群慧,林振宏,张富元,等.南海中东部表层沉积物矿物组合分区及其地质意义[J].海洋与湖沼,2002,33(6):591-599.
    
    [21] Shen Shunxi,Shi Xuefa,Li Changzhen.Sedimentary characteristics of silty clayfacies in the south yellow sea shelf[J].Oceanography and Limnology,2000,18:274-279.
    
    [22] 刘志飞,A.Trentesaux,S.C.Clemens,et al..南海北坡ODP1146站第四纪粘土矿物记录:洋流搬运与东亚季风演化[J].中国科学(D辑),2003,33(3):271-280.
    
    [23] 地质矿产部广州海洋地质调查局.太平洋地质科学调查(二).北京:地质出版社,1992,1-116.
    
    [24] 地质矿产部广州海洋地质调查局.太平洋地质科学调查(三).北京:地质出版社,1993,1-175.
    
    [25] 许东禹,陈宗团,孟祥营.太平洋中部晚新生代古海洋环境及事件.北京:地质出版社,1994,1-11.
    
    [26] L.V.Godfrey.Temporal changes in the lead isotopic composition of redclays:comparison with ferromanganese crust records [J].Chemical Geology,2002,185:241-254.
    
    [27] Nalin P.Ratnayake,Noriyuki Suzuki,Masaaki Matsubara.Sources of long chainfatty acids in deep-sea sediments from the Bering Sea and the North Pacific Ocean[J].Organic Geochemistry,2005,36:531-541.
    
    [28] 刘季花,石学法,陈丽蓉,等.东太平洋沉积物中粘土组分的REEs和ε_(Nd):粘土来源的证据[J].中国科学D辑地球科学,2004,34(6):552-561.
    
    [29] 刘季花,梁宏锋,夏宁,等.东太平洋深海沉积物小于2微米组分的稀土元素地球??化学特征[J].地球化学,1998,27(1):49-58.
    
    [30] 张海平,石学法,陈晶,等.东太平洋表层沉积物中蒙皂石的矿物学特征及其指示意义[J].科学通报,2001,46(增刊):100-104.
    
    [31] 刘季花,林学辉,梁宏锋,等.东太平洋海底结核及相关沉积物的稀土元素地球化学特征[J].海洋学报,1999,21(2):134-141.
    
    [32] 吴萍,杨桂朋,赵润德.苯酚在海洋沉积物上的吸附作用[J].海洋与湖沼,2003,34(4):345-354.
    
    [33] 李改枝,刘颖,李景峰.黄河水体对苯酚吸附作用的研究[J].内蒙古师范大学学报(自然科学版),2002,31(1):51-55.
    
    [34] 刘季昂,王怡中,汤鸿霄.有机污染物白洋淀地区水陆交错带上颗粒物上的吸附[J].环境化学,1996,17(3):19-22.
    
    [35] Zhao X K,Yang G P,Wu P,et al.Study on adsorption of chlorobenzene on marinesediment [J].J Colloid and Interface Science,2001,243 (2):273-279.
    
    [36] Yang G P,Zhang Z B.Adsorption of dibenzothiophene on marine sediments treatedby a sequential procedure [J].J Colloid Interface Sci.,1997,192:397-407.
    
    [37] 张培萍,迟效国,石学法,等.东太平洋粘土沉积物的增白实验研究和结构分析.海洋科学进展,2005,23(4):431-437
    
    [38] 田春燕,张培萍,田莉玉,等.海洋粘土的组成及性能测试[J].海洋科学,2005,29(4):25-28.
    
    [39] Zhang Peiping,Chi Xiaoguo,Tian Chunyan.Properties and organic activation ofocean clay in the East Pacific.Globle Geolgy,2006.9 (1):11-19
    
    [40] 张培萍,迟效国,石学法,等.东太平洋粘土沉积物组成和结构分析[J].吉林大学学报(地球科学版),2005,35(1):17-20.
    
    [41] 田春燕,张培萍,马丽艳,等.海洋粘土沉积物的组成及其增白试验[J].吉林大学学报(地球科学版),2006,36(1):142-147.
    
    [42] J.Madejová.FTIR techniques in clay mineral studies [J].Vibrational Spectroscopy,2003,31:1-10.
    
    [43] W.P.Gates,P.Komadel,J.Madejová,et al..Electronic and structural properties ofreduced-charge montmorillonites [J].Applied Clay Science,2000,16:257-271.
    
    [44] Lisa Heller-Kallai.Protonation-deprotonation of dioctahedral smectites[J].AppliedClay Science,2001,20:27-38.
    
    [45] 徐昶著.中国盐湖粘土矿物研究[M].北京:科学出版社,1993,37.
    
    [46] 地质矿产部科学技术司实验管理处编.岩石和矿石分析规程[M],第二分册.西安:陕西科学技术出版社,1994,480-512.
    
    [47] Charles E.Weaver and Lin D.Pollard著,张德玉译.粘土矿物化学[M].北京:地质出版社,1983.
    
    [48] 孙维林,王铁军,刘庆旺.粘土理化性能[M].北京:地质出版社,1992.
    
    [49] 张乃娴,李幼琴,赵惠敏,等.粘土矿物研究方法[M].北京:科学出版社,1990.
    
    [50] 姜贵兰,张培萍,季桂娟,等.膨润土加工与利用[M].化工出版社,2005.
    
    [51] 牛炳昆.膨润土提纯研究[J].化工矿物与加工,1999,(8):6-8.
    
    [52] 卫敏,李洪潮,冯安生,等.膨润土提纯及改型技术研究[J].化工矿物与加工,2004,3:4-7.
    
    [53] 吴东印,卫敏,杨康平,等.膨润土的湿法提纯研究[J].非金属矿.2000,23(3):23-24.
    
    [54] 闫景辉,李景梅,王巍,等.膨润土化学提纯研究[J].非金属矿,2002,25(3):8-9.
    
    [55] 汤庆国,沈上越,周咸立,等.板桥坡缕石矿提纯及性能研究[J].非金属矿,2003,26(5):38-40.
    
    [56] 艾显盛,何明照,韩跃新.赤峰硅藻土提纯工艺研究[J].有色矿冶,2002,18(3):14-17.
    
    [57] 陈方明,陆琦,于吉顺,等.方沸石的提纯及其对含硫酸盐的水的处理[J].化工矿物与加工,2004,11:14-17.
    
    [58] 袁继祖,晏全香,张凌燕.高纯累托石提纯试验研究[J].非金属矿,2004,27(2):33-35
    
    [59] V.R.Ambikadevi,M.Lalithambika.Effect of organic acids on ferric iron removalfrom iron-stained kaolinite [J].Applied Clay Science,2000,16:133-145.
    
    [60] F.Veglio.Factorial experiments in the development of a kaolin bleaching processusing thiourea in sulphuric acid solutions [J].Hydrometallurgy,1997,45:181-197.
    
    [61] 胡庆福,刘宝树,胡晓波.轻质碳酸钙增白研究[J].非金属矿,2002,25(6):11-13.
    
    [62] 曹庆林,朱兴旺,金立薰.膨润土的漂白处理新工艺[J].合肥工业大学学报,1998,21(5):77-81.
    
    [63] 侯太鹏.高岭土除铁、增白试验研究[J].非金属矿,2001,24(4):32-36.
    
    [64] 郑成,于欣伟,蔡肇佳,等.高岭土的还原、络合漂白工艺研究[J].无机盐工业,2004,36(1):32-34.
    
    [65] 孙彦彬,王泽利,罗传亮.吉林省长白地区瓷石除铁漂白试验研究[J].非金属矿,2002,25(5):50-52.
    
    [66] 祝启坤,黄志良,王西文,等.膨润土提纯增白与钠化改型联合处理工艺[J].中国矿业,2002,11(5):44-46.
    
    [67] L.M.S.de Mesquita,T.Rodrigues,S.S.Gomes.Bleaching of Brazilian kaolinsusing organic acids and fermented medium [J].Minerals Engineering,1996,9 (9):965-971.
    
    [68] Claudio Cameselle,M José Nú(?)ez,Juan M.Lema.Leaching of Kaolin Iron Oxideswith Organic Acids [J].J.Chem.Tech.Biotechnol.,1997,70:349-354.
    
    [69] Veglio,F.,Passariello,P.,Toro,L,et al..Development of a bleaching process for a??kaolin of industrial interest by oxalic,ascorbic and sulfuric acids:preliminary studyusing statistical methods of experimental design [J].Ind.Eng.Chem.Res.,1996,35:1680-1687.
    
    [70] 郑骥,马鸿文,陈煌.钾长石粉酸浸除铁的实验研究[J].地球科学——中国地质大学学报,2001,26(6):658-661.
    
    [71] 陈霞,倪嘉宝,李新华,等.煤系高岭岩酸溶氢气还原法增白提质新工艺[J].非金属矿,1997,(4):53-55.
    
    [72] 张其春,叶巧明.活泼金属对白色非金属矿酸浸除铁处理的促进机理[J].非金属矿,2001,24(6):23-25.
    
    [73] 容葵一,宋秀敏.非金属矿物与岩石材料学.武汉:武汉工业大学出版社,1996,94-96.
    
    [74] 周张健,陈代璋.伊利石的物化性能及其高温演化[J].矿物岩石,1999,19(3):20~22.
    
    [75] S.Joly,G.Garnaud,R.Ollitrault,et al..Oranically modified layered silicates asreinforcing fillers for natural rubber [J].Chem.Mater.,2002,14:4202-4208.
    
    [76] Faiza Bergaya,Gerhard Lagaly.Surface modification of clay minerals [J].AppliedClay Science,2001,19:1-3.
    
    [77] E.Tombácz,M.Szekeres.L.Baranyi,et al..Surface modification of clay mineralsby organic polyions [J].Colloids and Surfaces A.,1998,141:379-384.
    
    [78] X.Lu,X.Cui,M.Song.Study on the alteration of chemical composition andstructural parameters of modified montmorillonite [J].Minerals Engineering,2003,16:1303-1306.
    
    [79] Yoshihiko Komori,Hiroyuki Enoto,Ryoji Takenawa,et al..Modification of theinterlayer surface of kaolinite with methoxy groups [J].Langmuir,2000,16:5506-5508.
    
    [80] Liliane Bokobza,Gilles Garnaud,James E.Mark.Effects of fillerparticle/elastomer distribution and interaction on composite mechanical properties[J].Chem.Mater.,2002,14:162-167.
    
    [81] P.Mareri,S.Bastide,N.Binda,et al..Mechanical behaviour of polypropylenecomposites containing fine mineral filler:effect of filler surface treatment [J].Composites Science and Technology,1998,58:747-752.
    
    [82] Z.M.Wang,H.Nakajima,E.Manias,et al..Exfoliated PP/clay nanocompositesusing ammonium terminated PP as the organic modification for montmorillonite [J].Macromolecules,2003,36:8919-8922.
    
    [83] Dr.Chris DeArmitt (MRSC CChem).Fillers and surface treatment [J].PlasticsAdditives & Compounding,2002,5:12-14.
    
    [84] 姜兆华等.应用表面化学与技术[M].哈尔滨:哈尔滨工业大学出版社,2000年3月,236-246.
    
    [85] 赵丽颖.橡胶用矿物补强材料的活化改性研究[M].长春:吉林大学出版社,2002年5月,20-25.
    
    [86] 郑水林.2000-2001年中国粉体表面改性技术研究进展[J].非金属矿,2002,25(增刊):3-7.
    
    [87] 刘雪东,卓震.机械化学法粉体表面改性技术的发展与应用[J].江苏石油化工学院学报,2002,14(4):32-35.
    
    [88] 吴美升,盖国胜,黄佳木,等.无机非金属矿物填料的研究进展[J].化工矿物与加工,2003,(4):1-5.
    
    [89] 赵丽颖,蒋引珊,张培萍.机械力化学表面改性对蒙脱石结构和性能的影响[J].非金属矿,2001,24(4):11-13.
    
    [90] 李珍,杨春蓉,沈上越,等.机械力化学法超细改性硅灰石实验研究[J].矿产综合利用,2002,2:3-7.
    
    [91] 孔德玉.机械力化学表面改性叶蜡石填料的性质及应用[J].非金属矿,1998,21(5):19-21.
    
    [92] 钱海燕,叶旭初,张少明.非金属矿粉体改性及其效果评价[J].非金属矿,2001,24(2):10-13.
    
    [93] 许丽,徐杭庆,盖国胜,等.硅灰石针状粉的表面改性及在橡胶中的应用[J].高分子材料科学与工程,2004,20(3):175-178.
    
    [94] 沈上越,李珍,张德.硅灰石表面改性及其在丁苯橡胶中的应用[J].合成橡胶工业,2003,26(1):28-31.
    
    [95] M. Lipi(?)ska,M.Zaborski,L.Slusarski.Modification of precipitated calciumcarbonate to improve its activity toward elastomers [J].Macromol.Symp.,2003,194:287-294.
    
    [96] Rui Yang ,Yujuan Liu,Kunhua Wang,etc.Characterization of surface interaction ofinorganic fillers with silane coupling agents [J].J.Anal.Appl.Pyrolysis.,2003,70:413-425.
    
    [97] Jihuai Wu,Jinling Huang,Naisheng Chen,et ai..Preparation of modified ultra-finemineral powder and interaction between mineral filler and silicone rubber [J].Journal of Materials Processing Technology,2003,137:40-44.
    
    [98] 汤志松,刘润静,郭奋,等.偶联剂在纳米CaCO_3表面改性中的作用[J].北京化工大学学报,2004,31(4):1-4.
    
    [99] 赵春贵,阳明书,冯猛.氯硅烷改性蒙脱土的制备与性能[J].高等学校化学学报,2003,24(5):928-931.
    
    [100] 吴永功,戚长谋,张培萍,等.不同试剂改性滑石性质和结构对比[J].非金属矿,??2002,21(1):9-10.
    
    [101] 许峰林,方旋,徐传云,等.改性剂与矿物填料界面结合关系研究[J].中国非金属矿工业导刊,1998,(1):15-18.
    
    [102] 卓存诚.铝酸酯偶联剂在塑料复合材料中的应用[J].福建师大福清分校学报,1996,31(2):63-66.
    
    [103] 中西香尔,P.H.索罗曼著,王绪明译.红外光谱分析100例[M].北京科学出版社,1984,139.
    
    [104] [美]A.W.Adamson著,顾惕人译.表面的物理化学[M].北京:科学出版社,1984,208.
    
    [105] Ishida H,Koenig J L.Fourier transform infrared spectroscopic study of the silanecoupling agent / porous silica interface [J].J.Colloid Interface Sci.,1978,64(3):555.
    
    [106] 郭云亮,张涑戎,李立平.偶联剂的种类和特点及应用[J].橡胶工业.2003,50:692-696.
    
    [107] 沈德言编著.红外光谱法在高分子研究中的应用[M].北京:科学出版社,1982,51-55.
    
    [108] 闻辂(主编)等.矿物红外光谱学[M].重庆:重庆大学出版社,1988,89.
    
    [109] 李玲,向航编.功能材料与纳米技术[M].北京:科学出版社,2002,5-49.
    
    [110] 周光,王廷吉.利用非金属矿制备白炭黑现状及发展前景[J].华东地质学院学报,2001,24(4):298-302.
    
    [111] 刘莉,李仕华.气相白炭黑在涂料中的应用[J].涂料工业,2003,33(8):18-21.
    
    [112] 卢新宇,仇普文.气相白炭黑的生产应用与市场分析[J].氯碱工业,2002,(4):1-4.
    
    [113] 杨本意,段先健,李仕华,等.气相法白炭黑的应用技术[J].有机硅材料,2003,17(4):28-32.
    
    [114] 任国明.闪蒸干燥技术在白炭黑生产中的应用[J].化学设计通讯,2001,27(4):44-45.
    
    [115] 李建中,赵健,曲其昌.溶胶法制白炭黑的工艺研究[J].无机盐工业,2000,32(6):29-31.
    
    [116] 涂华,周永华,余嘉耕,等.碳化法生产白炭黑工艺研究及反应动力学分析[J].无机盐工业,2001,33(6):8-11.
    
    [117] 许莹,沈毅.体系PH值对纳米白炭黑制备的影响[J].中国非金属矿业导刊,2004,(3):18-20.
    
    [118] 许莹,沈毅.盐酸沉淀法制备纳米白炭黑[J].应用化工,2004,3(4):30-31.
    
    [119] 卢兆忠,刘建林,林家胜.用高岭土制备聚合氯化铝和超细白炭黑的研究[J].福建化工,2003,(3):40-43.
    
    [120] 侯太鹏,刘英魁.用膨润土制备白炭黑试验研究[J].非金属矿,2000,23(1):26-29.
    
    [121] 杨婕,郭俊,吴满芳.用新方法研制白炭黑[J].江西化工,2002,(2):101-104.
    
    [122] 伍沅,陈煜.撞击流反应制取白炭黑[J].化工学报,2003,54(10):1381-1386.
    
    [123] 龙成坤,刘莉,桑国仁.气相法白炭黑合成工艺的研究[J].有机硅材料,2001,17(5):12-14.
    
    [124] 周良玉,尹荔松,周克省,等.白炭黑的制备表面改性及应用研究进展[J].材料导报,2003,17(11):56-59.
    
    [125] 易发成,宋绵新,陈庭芳,等.利用埃洛石粘土制备白炭黑的研究[J].非金属矿,1999,22(1):17-19.
    
    [126] J.A.Yerian,S.A.Khan,P.S.Fedkiw.Crosslinkable fumed silica-basedanocomposite electrolytes:role of methacrylate monomer in formation of crosslinkedsilica network [J].Journal of Power source,2004,(135):232-239.
    
    [127] E.F.Voronin,V.M.Gun'ko,N.V.Guzenko,et al.,Interaction of poly(ethyleneoxide) with fumed silica[J],Journal of Colloid and Interface Science,2004,(279):326-340.
    
    [128] M.C.G.Juenger,C.P.Ostertag.Alkali-silica reactivity of large silica fume-derivedparticles[J].Cement and Concrete Research2004,(34):1389-1402.
    
    [129] E.KalKan,S.Akbulut.The positive effects of silica fume on the permeability,swelling pressure and compressive strength of natural clay liners[J].EngineeringGeology,2004,(73):145-156.
    
    [130] 宁延生,马惠斌,王惠玲,等.沉淀法白炭黑与纳米级二氧化硅[J].无机盐工业,2002,34(1):18-20.
    
    [131] 王志成,平琳,张惠勤.沉淀法纳米白炭黑的制备[J].有机硅材料,2005,19(2):23-25.
    
    [132] 张庆军,莫文玲,王占乐.沉淀法制备纳米白炭黑的结构及性质的研究[J].硅酸盐通报,2005,(4):118-121.
    
    [133] 许莹,沈毅.盐酸沉淀法制备纳米白炭黑[J].应用化工,2004,33(4):30-32.
    
    [134] D.W.Lee,S.K.Ihm,K.H.Lee.Mesoporous silica framed by sphere-shaped silicananoparticles[J].mecroporous and mesoporous materials.2005,83:262-268.
    
    [135] 刘海弟,贾宏,郭奋,等.超重力反应沉淀法制备白炭黑的研究[J].无机盐工业,2003,35(1):13-15.
    
    [136] 马惠斌,宁延生,朱春雨,等.沉淀法白炭黑化学指标与胶料物理性能的关系[J].无机盐工业,2004,36(6):46-48.
    
    [137] 熊剑.沉淀白炭黑的生成机理[J].江西化工,2004,(2):31-33.
    
    [138] 陈荣,沉淀法白炭黑的合成工艺研究[J].无机盐工业,2004,36(4):45-46.
    
    [139] 张旭光.超临界CO_2生产超微细白炭黑的初步研究[J].四川化工与腐蚀控制,2003,6(2):6-9.
    
    [140] 李春明,付振晓,黎红明,等.单分散二氧化硅超细颗粒的制备[J].电子元件与材料,2004,23(9):29-33.
    
    [141] 丛海林,曹维孝.二氧化硅胶体晶体及其为模板的多孔材料[J].高等学校化学学报,2005,26(3):535-539.
    
    [142] 蕲蓓,康惠宝,刘吉平.二氧化硅纳米管的制备与表征[J].化工新型材料,2003,31(10):21-23.
    
    [143] 殷志明,姚熹,吴小清.纳米多孔二氧化硅薄膜的制备及性能[J].材料研究学报,2003,17(2):200-224.
    
    [144] Biscaye,P.E..Mineralogy and sedimentation of recent deep-sea clay in the AtlanticOcean and adjacent seas and oceans [J].Geol.Soc.Am.Bull.,1965,76:803-832.
    
    [145] J.J.Griffin.The distribution of clay minerals in the world ocean [J].Deep-Sea.Res.,1968,15:433-459.
    
    [146] Chamley H..Clay Sedimentology [M].Berlin:Springer,1989,1-30.
    
    [147] S.Y.Yang,D.I.Lim,H.S.Jung,et al..Geochemical composition and provenancediscrimination of coastal sediments around Cheju Island in the southeastern YellowSea [J].Marine Geology,2004,206:41-53.
    
    [148] Rateev M.A.,Emel'Janov E.M.,Kheirov M.B..Peculiarities of the formation of clayminerals in the recent sediments of the Mediterranean Sea [C].Lit.Palezn.lsk.Akad.Nauk S.S.S.R.,1996,4:6-23.(in Russian)
    
    [149] Rainer Petschick,Gerhard Kuhn and Franz.Gingele.Clay minerals distribution insurface sediment of the south Atlantic:sources transport,and relation to oceanography[J].Mar.Geol.,1996,130:203-229.
    
    [150] Saburo Aoki,Norihiko Kohyama.The vertical change in clay mineralcomposition and chemical characteristics of smectite in sediment cores from the??southern part of the Central Pacific Basin [J],Marine Geology,1991,98:41-49.
    
    [151] Saburo Aoki,Norihiko Kohyama.Modern sedimentation in the Japan Trench:implication of the mineralogy and chemistry of clays sampled from sediment traps [J].Marine Geology,1992,108:179-185.
    
    [152] Saburo Aoki,Norihiko Kohyama.Cenozoic sedimentation and clay mineralogy inthe northern part of the Magellan Trough,Central Pacific Basin[J].Marine Geology,1998,148:21-37.
    
    [153] G.Rajasekaran,K.Murali,R.Srinivasaraghavan.Microfabric,chemical andmineralogical study of Indian marine clays [J].Ocean Engineering,1999,26:463-483.
    
    [154] N.Fagel,C.Robert,M.Preda,J.Thorez.Smectite composition as a tracer of deepcirculation:the case of the Northern North Atlantic [J].Marine Geology,2001,172:309-330.
    
    [155] Claus-Dieter Hillenbrand,Hannes Grobe,Bernhard Diekmann,et al..Distribution ofclay minerals and proxies for productivity in surface sediments of the Bellingshausenand Amundsen seas (West Antarctica) -Relation to modern environmental conditions[J].Marine Geology,2003,193:253-271.
    
    [156] C.Viscosi-Shirley,K.Mammone,N.Pisias,et al..Clay mineralogy andmulti-element chemistry of surface sediments on the Siberian-Arctic shelf:implications for sediment provenance and grain size sorting [J].Continental ShelfResearch,2003,23:1175-1200.
    
    [157] Zhifei Liu,Alain Trentesaux,Steven C.Clemens,et al..Clay mineral assemblagesin the northern South China Sea:implications for East Asian monsoon evolution overthe past 2 million years [J].Marine Geology,2003,201:133-146.
    
    [158] 庞雪蕾,唐芳琼.不同形貌介孔二氧化硅的可控制备与表征[J].感光科学与光化学,2004,22(5):397-397.
    
    [159] 乐园,陈建峰,汪文川.表面活性剂对二氧化硅空心微球结构的影响[J].现代化工,2004,23(3):43-44.
    
    [160] 朱海清.沉淀二氧化硅分散解聚用超声波的应用[J].2002,23(1):19-20.
    
    [161] 王娟,冯坚,杨大祥,等.纳米多孔二氧化硅薄膜的制备及表征[J].功能材料,2005,36(1):54-56.
    
    [162] 方彬,李延国,王刚.气相法二氧化硅应用机理及特性[J].无机盐工业,2004,??36(5):50-52.
    
    [163] 陈书艾,周应彦.水合二氧化硅的微米-亚微米-纳米结构[J].鞍山科技大学学报,2005,28(3-4):167-173.
    
    [164] 骆铎,阮建明,万千.微乳液法制备纳米二氧化硅粉末工艺的研究[J].硅酸盐通报,2004,(5)48-52.
    
    [165] 赵柄国,郭楷,谢小平.白炭黑制备工艺对比表面积和吸油值的影响[J].无机盐工业,2006,38(5):23-26.
    
    [166] 张贵华,王玉瑛,赵金钊.国内外气相法白炭黑的生产及市场分析[J].无机盐工业,2004,36(5):11-13.
    
    [167] 李株.白炭黑应用的新领域[J].当代化工,2001,30(2):114-116.
    
    [168] 张彬,李西平,白金锋.抗菌白炭黑的制备及抗菌效果[J].化工新型材料,2004,32(3):23-25.
    
    [169] 周良玉.尹荔松.白炭黑的制备、表面改性及应用研究进展[J].材料学导报,2003,17(11):56-59
    
    [170] PrKoh-ichi Usami Satoshi Sugahara eparation and properties of silica (?)lms withhigher-alkyl groups [J] Journal of Non-Crystalline Solids.1999,(260):199-207
    
    [171] 叶明泉,韩爱军.气溶胶用石墨/白炭黑超细复合粒子的制备及表征[J].化学世界,2004,3:120-122
    
    [172] 张三川,徐祖意.白炭黑对固液两相润滑剂摩擦学性能的影响[J].郑州大学学报(自然科学版),1996,28(4):58-60
    
    [173] 曹春兰.疏水型白炭黑在氧气系统润滑脂中的作用[J].合成润滑材料,2001,2:7-10
    
    [174] 敬相海,周光.利用非金属矿物制备白炭黑现状及发展前景[J].中国非金属矿工业导刊,2002,2:16-19
    
    [175] 汪忠根.白炭黑的制造[J].无机盐工业,1994,(3):22-25
    
    [176] 郭中权,徐海,周如禄.从自燃煤矸石中提取聚合铝铁的实验研究[J].能源环境保护,2004,18(6):26-28.
    
    [177] 李秋霞,戴永年,刘永成,等.低价化合物法直接提取铝的研究现状及展望[J].轻金属,2003,(8):3-5.
    
    [178] 黄杰明.非高温法提取粉煤灰中铝合硅的试验研究[J],电力环境保护,2002,18(2):27-29.
    
    [179] 党光耀,房建国,韩作振,等.矸石电厂粉煤灰制备微晶玻璃预提取铝铁的研??究[J],能源环境保护,2005,19(5):24-30.
    
    [180] 黄典同,张杰,郭建民,等.利用钛白费酸从粉煤灰中提取铝的研究[J],青岛建筑学院学报,2003,24(3):50-52.
    
    [181] 陆胜,方荣利.影响贫铝矾土中氧化铝提取率的工艺因素探讨[J],西南科技大学学报,2003,18(1):48-51.
    
    [182] W.P.Gates,P.Komadel,J.Madejova,et al.Electronic and structural properties ofreduced-charge montmorillonites[J].Applied Clay Science.2000,16:257-271
    
    [183] Lisa Heller-Kallai.Protonation-deprotonation of dioctahedral smectites[J].Applied Clay Science.2001,20:27-38
    
    [184] J.Madejová.FTIR techniques in clay mineral studies [J].VibrationalSpectroscopy.2003,31:1-10
    
    [185] 王晶,邱竹贤,谢朋等.有机醇盐Sol-Gel法纳米氧化铝粉体的制备及表征,有色金属,1999,51(3),76-78
    
    [186] 耿新玲,袁伟.纳米氧化铝的制备与应用进展[J].河北化工,2002,3:1-4
    
    [187] 王祝堂,易敏.高纯铝提取工艺.中国通报(镁铝篇),2003,43:7-8
    
    [188] 刘娟娟,张培萍,石学法,等.大洋粘土制备白炭黑后的铝回收实验研究.吉林大学学报(地球科学版),2006,36(z1):583-588
    
    [189] 邢雅莉,何杰,吴香发等.介孔氧化铝的合成及应用[J].精细与专用化学品,2005,13(15):11-14.
    
    [190] 李传润,冯乙巳,杨庆华.介孔氧化铝的研究进展[J].化学进展,2006,18(11):1482-1488.
    
    [191] Younghun Kim,Changmook Kim,Pil Kim,Jongheop Yi.Effect of preparationconditions on the phase transformation of mesoporous alumina[J].Journal ofNon-Crystalline Solids,2005,351:550-556.
    
    [192] Tomasz Witula,Krister Holmberg.Use of different types of mesoporous materialsas tools for organic synthesis[J].Journal of Colloid and Interface Science,2007:1-10.
    
    [193] ZHANG Bo,WANG Jing.Synthesis and properties of mesoporous alumina withpoly-amidoamine dendrimer as template[J].Functional Materials,2006,7 (37):1138-1141.
    
    [194] Qian Liu,Aiqin Wang,Xiaodong Wang,Tao Zhang.Morphologically controlledsynthesis of mesoporous alumina[J].Microporous and Mesoporous Materials,2007,100:35-44.
    
    [195] Sarkar,M S,Qiu,Huili,Jin,Myung-Jong.Encapsulation of Pd complex in ionic liquid on highly ordered mesoporous silica MCM-41[J].J Nanosci Nanotechnol 2007, 7 (11): 3880-3883.
    [196] Grosshans-Vieles, S, Author Grosshans-Vieles S. Grosshans-Vieles.Direct synthesis of mesoporous silica containing cobalt: A new strategy using a cobalt soap as a co-template.Micropor Mesopor Mat 2007,106 (1-3): 17-27
    [197] Mavrodinova, V, Author, Reprint Author Mavrodinova V. Mavrodinova. Influence of the structure characteristics of ordered mesoporous silica materials on their properties as supports for Ni-modified hydrogenation catalysts.J Porous Mat 2007,14 (2): 213-218
    [198] Xinghua Liu, Yan Wei, Danliang Jin, et al. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid[J]. Materials Letters, 2000,42:143- 149.
    [199] Zhao Ruihong, Guo Fen, Hu Yongqi, Zhao Huanqi. Self-assembly synthesis of organized mesoporous alumina by precipitation method in aqueous solution[J]. Microporous and Mesoporous Materials, 2006,93:212-216.
    [200] Ismail, AA. A selective optical sensor for antimony based on hexagonal mesoporous structures[J]. J Colloid Interf. 2008, 317 (1): 288-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700