新型红鳙生物学特征及其遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鳙鱼(Aristichthys nobilis)属鲤形目,鲤科,鲢亚科,鳙属。俗称大头鱼(bighead carp),是我国最主要的养殖鱼类之一。广泛分布于亚洲东部,我国各大水系均有此鱼。由于多年的人工繁殖,鳙鱼的种质资源大幅衰退,遗传多样性显著降低,对鳙鱼种质资源进行遗传改良和提纯复壮是一项紧迫的任务。新型红鳙是本实验室通过近十年的选育工作,从野生的鳙鱼种群中选育出一种体色鲜红,肉质鲜嫩,生长速度快的新类型鳙鱼,这是一种优良的养殖鱼种和很有的价值实验材料。为了保持其优良性状,通过异源雌核发育等生物技术手段对湘云红鳙群体进行种质纯化。本文对普通鳙鱼(BC)、红鳙(RBC)和雌核发育红鳙(GRBC)三个种群的生物学特征和遗传多样性进行了研究,主要内容如下:
     1.三个鳙鱼群体的可数性状和可量性状均处于种质异动标准之内。通过测量代表鳙鱼生物学特征的13个度量性状,处理9项比值并进行T值检验。实验结果表明,红鳙和雌核发育的红鳙的各项性状比值基本一致,这表明了雌核发育红鳙稳定地遗传了红鳙的优良性状。普通鳙鱼和两种红鳙在头长/吻长、体长/体高、尾柄长/尾柄高等性状比值上有着显著差异,尤其以体长/体高最为显著,红鳙具有体宽、尾柄短等优良的性状。
     2.对红鳙进行了遗传多样性的RAPD和微卫星分析(来自湘江流域的普通鳙鱼作为对照)。在优化RAPD检测条件基础上,从230个随机引物中筛选出来的45个扩增较好且多态性强的引物对这两个群体的DNA多态性及分子标记进行了分析。结果显示在45个随机引物的扩增谱带中找到了2个引物(S20、S46)的特异扩增谱带,可以作为这两个种群间的分子遗传标记。普通鳙鱼群体内个体之间的遗传距离范围从0.04-0.13,群体内的平均遗传距离为0.075,而红鳙群体内个体之间的遗传距离范围从0.02-0.35,群体内的平均遗传距离为0.139。这表明红鳙群体遗传多样性明显强于普通鳙鱼群体。从32对微卫星标记中筛选9对微卫星标记用于两个群体24个个体的扩增。平均每个微卫星位点在红鳙群体和普通鳙鱼群体中检测到的平均有效等位基因数分别为2.44和1.89。普通鳙鱼群体的平均杂合度期望值(0.34)和平均杂合度观测值(0.39)要比红鳙群体的平均杂合度期望值(0.51)和平均杂合度观测值(0.54)的小得多。由此可见,RAPD和微卫星这两种方法得出的结果是一致。
     3.对红鳙和雌核红鳙的mtDNA基因组全序列进行测序,并对其基因组结构进行了分析。两种红鳙的mtDNA基因组序列完全相同,全长均为16619 bp,其碱基比例如下:%A=31.64,%G=15.94,%T=25.32,%C=27.10,%A+T=56.96。这也表明了线粒体严格的母性遗传。本文得到的红鳙的线粒体基因组全序列结果可以为红金鳙及其近缘种的演化、生物地理学研究,为检验鱼类形态学、生理学和进化学等特征提供分子依据。
After the years been artificial breeding, the bighead carp (Aristichthys nobilis) had substantial decline in germplasm resources and significant reduction of genetic diversity. Purification and rejuvenation of the bighead-carp germplasm is an urgent task. Red bighead carp is a new type of special bighead crap be selected and bred by our laboratory form wild bighead crap in recent years and those red bighead carp been named XiangYun Golden Bighead-carp. That bighead crap in red color has fast growth, is good breeding species and valuable experimental material. At the same time we had gotten the offspring of those red bighead crap be bred by parthenogenesis. Three kinds of bighead crap——the normal bighead crap in black color (BC), XiangYun Golden Bighead-carp(RBC) and the offspring of those red bighead crap be bred by parthenogenesis(GRBC) were collected for use. The study is focus on the difference between three kings of bighead crap on morphological features and molecular biology.
     The ordinary regulations and T value test were chose to study their morphological features. The results showed notable difference on the lateral-line scale, number of vertebra of the three stocks. The RBC and the gRBC almost had same morphological features. The difference of the ratio of head- length to snout- length, body-length to body-highness and caudal- peduncle- length to caudal- peduncle- highness between BC and RBC with gRBC was obvious.
     Genetic variation was comparatively analyzed between the Red bighead carp (RBC) population and the bighead carp (BC) population of aquaculture strains originating from xiangjiang river used as the control, using random amplified polymorphic DNA (RAPD) assay and microsatellite analysis. The specific fragments for RBC and BC population was detected by S20 and S46 respectively. The average genetic distances of BC ranged from 0.04 to 0.13 with a mean of 0.075. And the average genetic distances of RBC ranged from 0.02 to 0.35 with a mean of 0.139. The average genetic distances estimated by Lynch's index of BC population were significantly lower than those of RBC population. Where as the average genetic distances between BC and RBC ranged from 0.06 to 0.37 with a mean of 0.123. The mean number of alleles per microsatellite locus (1.89) in BC population was considerably lower than that (2.44) in RBC population. The average observed (0.34) and expected heterozygosis (0.39) in BC population were lower than those (0.54 and 0.51, respectively) in RBC population, indicating that the RBC presented higher genetic diversity than the BC. The results from RAPD assay and microsatellite analysis were in agreement with each other, that is to say, the BC presented lower level of polymorphism than RBC. Furthermore, as expected, microsatellite analysis revealed more detailed information on genetic diversity than RAPD assay.
     The complete mitochondrial DNA sequences from two kinds of of bighead carp (RBD and *RBD) were determined. The result showed that the complete mitochondrial DNA sequences of two kinds of bighead carp (RBD and *RBD) are resemble. The genome is a circular molecule with 16618 bp in length, and the overall base composition included 31.64% of Adenine (A),27.10% of cytosine (C),15.94% of Guanine (G), 25.32%, of thymine (T), and with 56.96% the A+T content.
引文
[1]Grozdicker T, Williams J, Sharps P, et al. Physical mapping of temperaturesensitive mutations of adenovirus. Cold Spring Harbor Syrup Quant Biol 1974,30:241-247
    [2]邱芳,伏健民,金德敏等.遗传多样性的分子检测[J].生物多样性,1998,6(2):143-150.
    [3]Williams J.G. et al. DNA Polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,1990, 18(22):6531-6535.
    [4]Welsh J, Michael M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res,1990,18(24):7213-7218
    [5]薛国雄,刘棘,刘洁.三江水系草鱼种群RAPD分析[J]中国水产科学1998,.01:1-5
    [6]孙景春、楼允东等.应用RAPD技术分析三种红鲤的遗传多样性[J]上海水产大学学报2001,4[3]:207-212
    [7]张云武,张亚平。微卫星及其应用[J]。动物学研究,2001,22(4):315—320
    [8]Schlotterer C. Slippage synthesis of simple sequence DNA. Nucleic Acids Res.1992,20(2):211-5
    [9]Beckmann J.S… Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Biotechnology (N Y).1990,8(10):930-2.
    [10]Tautz D. Hyperiability of simple sequence as a general source of polymorphic DNA markers. Nucleic Acid Res,1989,17: 6463-6471.
    [11]张艳,张树义.微卫星方法简介[J].动物学杂志,1999,34(2):42-45.
    [12]鲁翠云,孙效文,梁利群.鳙鱼微卫星分子标记的筛选[JJ.中国水产科学,2005,12(2):192—196
    [13]孟宪红,孔杰等.微卫星技术对黄、渤海海域7个不同地理群体中国对虾的遗传结构和遗传分化研究海洋水产研究,200829(5): 1-10
    [14]Dianne B. et al. Microsatellite from rainbow trout(Oncorhynchus mykiss) and their use for genetic study of salmonids. Can. J. Fish. Aquat.Sci,1996,53:120-126.
    [15]Motohiro Takagi. et al. Isolation and characterization of Microsatellite loci from Rea Bream Pagrus major and detection in closely related species. Fisheries Science,1997,63(2):199-204.
    [16]Ratu Siti Aliah et al. Inheritance of Microsatellite Markers in the Common Carp Cyprinus carpio. Fisheries Science,1999,65(2): 235-239.
    [17]O'Connell M. et al. Microsatellite DNA in fishes. Reviews in Fish Biology and Fisheries,1997,7:331-363.
    [18]L.David. Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite markers. Mol Genet Genomics,2001,266:353-362.
    [19]Brooker A. L. Organization of microsatellites differs between mammals and cold-water teleost fishes. Can. J. Fish. Aquat. Sci., 1994,51:1959-1966.
    [20]P.T. O'Reilly et al. Isolation of twenty low stutter di- and tetranucleotide microsatellites for population analyses of walleye Pollock and other gadoids. J. Fish Bio.,2000,56(5):1074-1086.
    [21]K.A. Naish et al. tetranucleotide microsatellite loci for Indian major carp. J. Fish Bio.,1998,53:886-889.
    [22]K.M.Miller et al. Characterization of microsatellite loci in Sebastes alutus and their conservation in congeneric rockfish species. Molecular Ecology,9:237-244.
    [23]Phillip C. Watts. Polymorphic microsatellite loci in the European plaice, Pleuronectes platessa, and their utility in flounder, lemon sole and Dover sole. J.Mar.Biol.Ass.U.K.,2001,81:367-368
    [24]葛伟,蒋一珪.鱼类的天然雌核发育[J].水生生物学报,1989,13(3): 274-286.
    [25]Hubbs, C.L. Apparent arthenogenesis in nature in a form of fish of hybrid origin. Science,1932,76:628-630.
    [26]Lieder, U. Mannchenmanged and naturtiliche Partheno genese bei silberkarausche carassius auratus gibelio (Bloch) (Vertebrate, Pisces). Naturwissenchaften,1955,142(21):590.
    [27]Schultz, R.J. Gynogenesis and tripoid in the viviparious fish Pociliopsis. Science,1967,157(3797):1564-1567.
    [28]孙景春.我国水生动物雌核发育研究的进展[J].水产.学杂志,2000,13(2):86-91.
    [29]Cimino, M.C. Meiosis in triploid all-female of fish(Poeciliopsis Poeciliidae).Science(Wash.),1972,175(4029):1484-1486.
    [30]杨兴棋译(小林弘著).鲫鱼的分类以及银鲫中所见到的雌核发育的细胞遗传学研究[J].淡水渔业,1981,1:36-40.
    [31]周嘉申,沈俊宝,刘明华.黑龙江一种银鲫(方正银鲫)、雌核发育的细胞学初步探讨[J].动物学报,1983,29(1):11-16.
    [32]Romasov, D.D.On radiation induced diploid gynogenesis in fishes. Dokl. Akad. Nauk. Biol. Sci.,1964,157(1-6):503-566.
    [33]Cherfas, N.B. Natural triploid in females of the unisexual form of goldfish(Carassius,auratus,gibelio). Genetica,1966,(5):16-24.
    [34]舒琥,张海发,陈湘麟.彭泽鲫雌核发育的细胞学研究[J].动物学杂志,2000,35(5):26-31.
    [35]崔悦礼,昝瑞光.滇池高背鲫鱼雌核发育的研究[J].动物学研究,1982,3卷(增刊):237-242.
    [36]桂建芳,肖武汉,梁绍昌等.静水压休克诱导水晶彩鲫三倍体和四倍体的细胞学机理初探[J].水生生物学报,1995,22(增刊):16-25.
    [37]丁军,谢岳峰.异育银鲫及其人工杂交体中外源遗传物质的检测分析[J].水生生物学报,1993,17(1):22-26.
    [38]陈洪,朱立煌,杨靖等.R A P D技术在异精激发方正银鲫比较研究中的作用[J].科学通报,1994,39(7):661-663
    [39]李冰霞,罗琛.热休克法抑制第一次卵裂实现草鱼雌核发育的细胞学观察.水生生物学报[J].2003(2),36-39.
    [40]刘筠.中国养殖鱼类繁殖生理学[M],农业出版社.1993,135-143.
    [41]吴清江等.鲤鱼人工雌核发育及其作为建立近交系新途径的研究[J].遗传学报,1981,8(1):50-55.
    [42]Colihueque, N. P. Further evidence of chromosome abnormalities in normal and haploid gynogenesis of rainbow trout, Oncorhynchus mykiss. J. Exp. Zool,1996,276:70-75.
    [43]吴清江,桂建芳.鱼类遗传育种工程[M].上海科技出版社.1999, 94-109.
    [44]楼允东.鱼类育种学[M].农业出版社,1999,153-195.
    [45]A. Felip. Induction of triploid and gynogenesis in teleost fish with emphasis on marine species. Genetica,2001,111:175-195.
    [46]Edwige Quillet. Analysis of the production of all homozygous lines of rainbow trout by gynogenesis. The Journal of experimental Zoology,1999,257:367-374.
    [47]Streisinger, G. et al.. Production of clone of homozygous diploid zebrafish (Braxhydanio,rerio). Nature,1981,291:293-296.
    [48]Naruse, K.. The production of cloned fish in the medaka (Oryzias latipes). J. Exp. Zool.,1985,236:335-341.
    [49]Komen J. Gynogenesis in common carp (Cyprinus carpio L.)Ⅱ. The production of homozygous gynogenetic clones and F1 hybrids. Aquaculture,1991,92(2-3):127-142.
    [50]Quillet, E.. Analysis of the production of all homozygous lines of rainbow trout by gynogenesis. J.Exp.Zool.1991,257:815-819.
    [51]Peter Galbusera. Gynogenesis in African catfish Clarias gariepinus (Burchell,1822)Ⅲ. Induction of endomitosis and the presence of residual genetic variation, Aquaculture,2000,185:25-42.
    [52]Varadi. L. I.. Induction of diploid gynogenesis using interspectific sperm and production of tetraploids in African catfish, Clarias gariepinus Burchell(1822). Aquaculture,1999,73:401-411.
    [53]Paschos,I. Induction of Gynogenesis and Androgenesis in Goldfish Carassius auratus (var. oranda), Reproduction in Domestic Animals,2001,36(3-4):195.
    [54]岳振宇,单仕新.雌核发育和两性融合发育鱼卵调控精核受精发育的生化特性研究[J].水生生物学,1996,20(2):164-172.
    [55]罗琛,刘筠.人工诱导草鱼和鲫鱼雌核发育的研究[J].湖南师范大学自然科学学报,1991,14(2):154-159.
    [56]Chen,H.. Studies on multilocus fingerprints, RAPD markers, and mitochondrial DNA of a gynogenetic fish (Carssius aruatus gibelio). Biochemical Genetics,1995,33(9-10):297-306.
    [57]Liu, Z. P. Random amplified polymorphic DNA markers:usefulness for gene mapping and analysis of genetic variation of catdish. Aquaculture,1999,174:59-68.
    [58]Peruzzi, S. Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.:relative dfficiency of methods and parental variability. Aquaculture,2000,189:23-37.
    [59]Allen, S. K. Flow cytotometry:assaying experimental polyploid fish and shellfish. Aquaculture,1983,33:317-328.
    [60]Felip, A.. AFLP analysis confirms exclusive maternal genomic contribution of meiogynogenetic sea bass (Dientrarchus labrax L). Mar.Biotech.1991,2:301-306.
    [61]邓岳松.草鱼人工雌核发育受精细胞学研究[J].湖南师范大学硕士论文[D].1997,26-35.
    [62]邓岳松,罗琛.草鱼人工雌核发育的细胞学观察[J].激光生物学报[J],1998,7(3):207-211.
    [63]刘祖洞.遗传学[M].高等教育出版社.1991,129-143.
    [64]范兆廷,寮苏祥鱼类的雌核发育、雄核发育和杂种发育[J].水产学报,1993,17(2):179-187.
    [65]Howell, B. R.. Progress towards the identification of the sex-determining mechanism of the sole, Solea solea (L.) by the induction of diploid gynogenesis. Aqua. Res.1995,26:135-140.
    [66]Muler. Sex determination in tilapia (Oreochromis niloticus) sex rations in homozygous gynogenetic progeny and their offspring. Aquaculture,1995,37(1-4):57-65.
    [67]Katsutoshi Arai. Chromosome manipulation in aquaculture:recent progress and perspective.Japan Aquaculture Society,1998,48(2): 295-303.
    [68]殷名主编,鱼类生态学[M].中国农业出版社,2000,9
    [69]张建社鳙鱼卵子成熟过程的细胞学研究湖南师范大学自然科学学报,Journal of Natural Science of Hunan Normal University,1987年04期
    [70]王武.鱼类增养殖学[M].中国农业出版社,2000,123-237
    [71]刘焕亮水产养殖学概论[M].青岛出版社,2000,8:159-196
    [72]姜建国鳙鱼不同组织的同工酶研究华南理工大学学报(自然科学版),1998年03期
    [73]杨治国,何涛,李白荣等南湾鳙鱼肌肉成分的初步分析水利渔业[J], Reservoir Fisheries,2006年04期
    [74]周爱梅,龚杰,邢彩云等.罗非鱼与缩鱼鱼糜蛋白在冻藏中的生化及凝胶特性变化[J].华南农业大学学报,2005,26(3):103—107
    [75]A.K.RAI Evaluation of natural food for Planktivorous fish in Lakes Phewa, Begnas and Rupa in Porkhara, valley, Nepal [J].The Japanese Society of Limnology 2000, (1):81—89
    [76]牛艳东;周毅等鳙鱼(Hypophthalmichthys nobilis)促性腺激素p亚基的克隆、表达和序列分析湖南师范大学自然科学学报,Journal of Natural Science of Hunan Normal University,2008年02期89-97
    [77]单淇,董仕,3个群体鳙鱼]mtDNA D-loop区段的限制性片段长度多态性分析,中国水产科学2006年02期31-45
    [78]耿波, 孙效文,梁利群等,利用17个微卫星标记分析鳙鱼的遗传多样性,遗传[J] Heredities,2006年06期46-49
    [79]张德春.鳙鱼人工繁殖群体遗传多样性的研究[J].三峡大学学报,2002,24(4):379-381
    [80]王忠卫,叶玉珍,周建峰等.快速建立鲢、鳙纯系的初步研究[JJ.自然科学进展,2003,13(10):1104-1107
    [81]楼允东.我国鱼类育种研究五十年回顾[J].淡水渔业,1999,(09):1-3
    [82]伍献文等。1964《中国鲤科鱼类志》上卷人民教育出版社
    [83]杜荣骞编著-2版高等教育出版社2003.4 ISBN 7-04-02167
    [84]中国农业标准汇编一水产养殖卷[M].中国标准出版社2000,11(1):95—100
    [85]J.S.Nelson 1966,“Hybridization between two cyprinid fishes, hybopsis plumbea and rhinichthys catarctae” Covnadion[J],2(01,VOL 44:936-968
    [86]B cherassus,1983,“Hybridization in Fish”, Aquacultrue,33(1983):245-262
    [87]Sambrook, J., Fritsch, E.F., Maniatis, T.,1989. Molecular Cloning: A Laboratory Manual,2nd edn. Cold Spring Harbor Laboratory, New York, pp.463-468.
    [88]Crooijmans et al. Microsatellite markers in common carp (cyprinus carpioL.). Animal Genetics,1997,28:129-134.
    [89]Sanguinetti, C.J., Dias, N.E., Simpson, A.J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques,1994,17(5):914-21.
    [90]Barral, V., This, P., Imbert-Establet, D., Combes, C., Delseny, M., Genetic variability and evolution of the Schistosoma genome analysed by using random amplified polymorphic DNA markers. Mol. Biochem. Parasitol.1993,59:211-222
    [91]Nei, M., Li, W.H., Mathematical modeling for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. (U.S.A.) 1979,76:5269-5273.
    [92]Wachira, F.N., Waugh, R., Hackett, C.A., Powell, W., Detection on genetic diversity in tea(Camellia sinensis) using RAPD markers. Genome 1995,38:201-210.
    [93]Lewis, P.O., Zaykin, D., Genetic Data Analysis:Computer Program for the Analysis of Allelic Data:http://lewis.eeb.uconn.edu/lewishome/software html/.2000.
    [94]Arranze J J, Bayon R, San Primitivo F. Genetic variation of five microsatellites loci in four breeds of cattle. J Agri Sci, 1996,27:533~538.
    [95]Streisinger, G., Walker, C., Dower, N., Knauber, D., Singer, F., 1981. Production of clones of homozygous diploid zebra fish. Nature 291,293-296.
    [96]吴清江,桂建芳.鱼类遗传育种工程.上海科学技术出版社,1999
    [97]Marco Crimi,Roberta Rigolio.(2008)The mitochondrial genome, a growing interest inside an organelle International Journal of Nanomedicine:3(1) 51-57
    [98]Gissi, F Iannelli,G Pesole. (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101,301-320
    [99]肖武汉,张亚平。鱼类线粒体DNA的遗传与进化。水生生物学报,Vol.24. NO.4. July,2000.
    [100]张亚平.从DNA序列到物种树.动物学研究.1996,17(3):252
    [101]Rafael Zardoya and Monica Suarez. Sequencing and Phylogenomic Analysis of Whole Mitochondrial Genomes of Animals. Methods in Molecular Biology:Phylogenomics
    [102]Lowe TM, Eddy SR (1997) tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955-964
    [103]Mathews D H, Sabina J, Zuker M, Turner D H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure? Journal of Molecular Biology,1999,288:911~940.
    [104]Wong T W, Clayton D.A. In vitro replication of human mitochondrial DNA:Accurate initiation at the origin of light-strand synthesis. Cell,1985,42:951-958.
    [105]Rafael Z, Amando G P, Jos M B. The Complete Nueleotide Sequence of the Mitochondrial DNA Genome of the Rainbow Trout, Oncorhynchus mykiss. J Mol Evol,1995,41:942-951.
    [106]Foury F, Roganti T, Lecrenier N, Purnelle B. The complete sequence of the mitochondrial genome of Saccharo mycescerevisiae. FEBS Letters,1998,440:325-331.
    [107]Koszul R, Malpertuy A, Frangeul L, Bouchier C, Wincker P, Thierry A, Duthoy S, Ferris S, Hennequin C, Dujon B. The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) Rlabrata. FEBS Letters,2003,534:39-48.
    [108]Kim K S, Lee S E, Jeong H W, Ha J H. The complete nucleotide sequence of the domestic dog(Canis familiaris) mitochondrial genome. Mol Phylogenet Evol,1998,10(2):210-220.
    [109]Lin C S, Sun Y L, Liu C Y, Yang P C, Chang L C, Cheng I C, Mao S J T, Huang M C. Complete nucleotide sequence of pig (Susscrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene,1999,236:107-114.
    [110]Andrews R M, Kubacka I, Chinnery P F. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Cenet,1999,23:147.
    [111]Nakao M, Yokoyama N, Sako Y, Fukunaga M, Ito A. The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidae, Taeniidae). Mitochondrion,2002,1: 497-509.
    [112]Yamauchi M M, Miya M U, Nishida M. Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panuhrus japonicus (Crustacae, Decapoda). Gene,2002,295:89-96.
    [113]袁娟,张其中,罗芬.鱼类线粒体DNA极其在分子群体遗传研究中的作用。生态科学2008,27(4):272-276
    [114]Anderson S, Bankier A T, Barrell B G, Bruijn M H L. Sequence and organization of the human mitochondrial genome. Nature,1981, 290:457-465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700