复杂网络上神经动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Neural Dynamics on Complex Networks
  • 作者:王圣军
  • 论文级别:博士
  • 学科专业名称:理论物理
  • 学位年度:2009
  • 导师:汪映海
  • 学科代码:070201
  • 学位授予单位:兰州大学
  • 论文提交日期:2009-04-01
摘要
本文主要研究了复杂网络的拓扑属性对神经网络动力学的影响,神经网络中限制同步性的一种动力学机制,并且使用神经网络研究了复杂网络本身的一个普遍性问题:稀疏性特征的意义。具体内容包括下面几个部分:
     一、研究了复杂网络结构对于两层神经网络之间的同步的影响。在构建由两层神经网络构成的系统时,采用了三种耦合方式:在度大的节点对之间建立耦合,在随机选定的节点对之间建立耦合和在度小的节点对之间建立耦合。通过计算机模拟,发现度大节点之间的耦合在同步中起着重要的作用。使用度大节点之间耦合的方法,在随机网络和无标度网络中都仅需要少的耦合来实现同步;而切断两个网络之间以度大节点为端点的耦合可以有效的阻止网络的同步。解析的分析表明子系统度分布的差异将导致系统同步性的不同,验证了数值结果并解释了其产生原因。此外,还发现网络存在一个同步效率最高的稀疏连接密度,在此连接下系统可用最少的耦合实现同步。
     二、研究了神经元之间突触耦合的效能对于兴奋性神经网络中放电同步的影响。首先研究了单个神经元响应突触耦合电流的动力学,发现了一种新的动力学现象,即神经元的状态可以从极限环转变到固定点或一个绕着固定点运动的暂态。我们将这种现象称为放电熄灭。当突触耦合电流强度大且持续时间长时,在兴奋突触电流扰动下的神经元将表现出这种行为。这种转变的机制是,突触耦合电流的下降能够减弱放电所需要的离子通道电流正反馈,从而阻止神经元放电。进一步,我们发现这种动力学现象能够影响神经网络中的同步。在具有放电熄灭属性的神经网络中,神经元放电的同步程度更低并且对于神经元的差异不敏感。这种影响的机制是,神经元活动状态的转变打断了神经元振荡节律的调节,阻止了同步性的进一步升高。这是一种不同于以往的振子同步的新集体行为,并与相关实验相符合,从而丰富了同步动力学的研究。
     三、研究了度关联无标度吸引子网络对刺激的响应。许多真实的复杂网络同时具有无标度性和度关联性,我们发现了度关联无标度网络和度无关网络一样对于随机刺激具有鲁棒性。但是正匹配无标度网络对于定向刺激更加敏感,而反匹配无标度网络对定向刺激的敏感性下降。产生这种差异的机制是,度无关的网络作为一个整体响应刺激,而无标度网络的度关联性导致吸引子网络中系统状态收敛的动力学与度无关网络中不同。在定向刺激下度关联无标度网络可以不再以一个整体做出响应,而是一个部分先做出响应。这样的动力学变化是度关联影响敏感性的机制。
     四、使用吸引子网络模型作为例子研究复杂网络稀疏特征的功能意义。通过模拟研究了无标度网络上和随机网络上吸引子模型的计算性能的差异,和这个差异随着网络平均度的变化。模拟发现,随机网络和无标度网络上斑图稳定性的差异在一个稀疏的网络连接密度上有极大值。这个结果表明在一个稀疏的连接密度上网络的拓扑属性对于网络上动力学的影响最明显。使用信噪比分析,我们证明非单调的差异是由网络度分布的差异性和信号强度的竞争导致的。此工作有助于深刻理解具有网络结构的复杂系统往往是稀疏的这一普遍现象。
This thesis investigate the dynamics of neural networks. The main investigations are the influence of the topological properties of networks on the dynamics of neural networks, and the role of the sparse nature of complex networks in the functions of neural networks. Meanwhile, the dynamical origin of preventing the synchrony in neural networks is studied. Before the main investigations, from a nonlinear dynamics point of view, the features of the study on neural activities are introduced and the theory of complex networks invoked in this thesis is introduced. The studies in this thesis are as following:
     First, the effects of the degree distribution on mutual synchronization of two-layer neural networks are studied. In the study three coupling strategies are carried out: large-large coupling, random coupling, and small-small coupling. By computer simulations and analytical methods, it is find that couplings between nodes with large degree play an important role in the synchronization. For large-large coupling, less couplings are needed for inducing synchronization for both random and scale-free networks. In contrast, cutting couplings between nodes with large degree is very efficient for preventing neural systems from synchronization, especially when subnetworks are scale free. The analysis treatment shows that the degree distribution of subsystems affects the synchronization between two networks.
     Second, we investigate the influence of efficacy of synaptic interaction on firing synchronization in excitatory neuronal networks. We find spike death phenomena: namely, the state of neurons transits from the limit cycle to a fixed point or transient state. The phenomena occur under the perturbation of an excitatory synaptic interaction, which has a high efficacy. We show that the decrease of synaptic current results in spike death through depressing the feedback of the sodium ionic current. In the networks with the spike death property the degree of synchronization is lower and insensitive to the heterogeneity of neurons. The mechanism of the influence is that the transition of the neuron state disrupts the adjustment of the rhythm of the neurons oscillation and prevents a further increase of the firing synchronization.
     Third, the response of degree-correlated scale-free attractor networks to stimuli is studied. We show that degree correlated scale-free networks are robust to random stimuli as well as the uncorrelated scale-free networks, while assortative (disassortative) scale-free networks are more (less) sensitive to directed stimuli than uncorrelated networks. We find that the degree correlation of scale-free networks makes the dynamics of attractor systems different from uncorrelated ones. The-dynamics of correlated scale-free attractor networks results in the effects of degree correlation on the response to stimuli.
     Fourth, we use the Hopfield attractor networks as an example to study the role of sparse connection density in the difference of functional performance of complex networks. In simulations, we find that the stability of patterns between random and scale-free networks has a maximum difference with a specific sparse connection density. The result suggests that there exists a sparse density with which the dynamics of networks are affected most significantly by topological properties. Using the signal-to-noise-ratio analysis, we show that the non-monotonicity is induced by the competition between the distinction of degree distribution and the signal strength.
引文
[1]W.R.Ashby.Design for a Brain.Wiley,New York,second edition,1960.
    [2]H.D.Block.The perceptron:A model for brain functioning.i.Rev.Mod.Phys.,34(1):123-135,Jan 1962.
    [3]F.Rosenblatt.Principles of Neurodynamics:Perceptions and the Theory of Brain Mechanisms.Spartan Books,New York,1962.
    [4]W.Freeman.Progress in Theoretical Biology,volume 2.Academic,New York,1972.
    [5]W.Freeman.Neurodynamics:An Exploration in Mesoscopic Brain Dynamics.Springer,New York,2000.
    [6]Mikhail I.Rabinovich,Pablo Varona,Allen I.Selverston,and Henry D.I.Abarbanel.Dynamical principles in neuroscience.Reviews of Modern Physics,78(4):1213,2006.
    [7]A.Andronov.The first all-union conference on auto-oscillations.page 32-71,Moscow Leningrad,1933.GTTI.
    [8]A.A.Andronov and L.Pontryagin.Syst(?)mes grossiers.Dokl.Akad.Nauk.SSSR,14:247,1937.
    [9]A.Andronov,A.Vitt,and S.Khaikin.Theory of Oscillations.Princeton University Press,Princeton,NJ,1949.
    [10]H.Poincar(?). M(?)thodes Nouvells de la M(?)canique C(?)leste. Gauthier-Villars,Paris,1892.
    [11]D.Goroff,editor.New Methods of Celestial Mechanics.AIP,New York,1992.
    [12]A.Poinca(?).Le Valeur de la Science.Flammarion,Paris,1905.
    [13]A.L.Hodgkin and A.F.Huxley.A quantitative description of membrane current and its application to conduction and excitation in nerve. J.Physiol.(London),117:500,1952.
    [14]C.Koch.Biophysics of Computation.Oxford University Press,New York,1999.
    [15]T.Vogels,K.Rajan,and L.Abbott.Neural network dynamics.Annual Review of Neuroscience,28:357,2005.
    [16]A.Selverston,M.Rabinovich,H.Abarbanel,R.Elson,A.Sziics,R.Pinto,R.Huerta,and P.Varona.Reliable circuits from irregular neurons:A dy-namical approach to understanding central pattern generators.J.Physiol.(Paris),94:357,2000.
    [17]A.Selverston.A neural infrastructure for rhythmic motor patterns.Cell Mol.Neurobiol.,25:223,2005.
    [18]A.Loebel and M.Tsodyks.Computation by ensemble synchronization in recurrent networks with synaptic depression.J.Comput.Neurosci.,13:111,2002.
    [19]Mounya Elhilali,Jonathan B.Fritz,David J.Klein,Jonathan Z.Simon,and Shihab A.Shamma.Dynamics of Precise Spike Timing in Primary Auditory Cortex.J.Neurosci.,24(5):1159-1172,2004.
    [20]Erez Persi,David Horn,Vladislav Volman,Ronen Segev,and Eshel Ben-Jacob.Modeling of synchronized bursting events:The importance of inhomogeneity.Neural Computation,16(12):2577-2595,2004.
    [21]J.J.Hopfield.Brain,neural networks,and computation.Rev.Mod.Phys.,71(2):S431-S437,Mar 1999.
    [22]J.J.Hopfield.Neural networks and physical systems with emergent collective computational abilities.Proc.Natl.Acad.Sci.USA,79(8):2554-2558,1982.
    [23]M.A.Cohen and S.Grossberg.Absolute stability of global pattern formation and parallel memory storage by competitive neural networks.IEEE Trans.Syst.Man Cybern.,13:815,1983.
    [24]F.R.Waugh,C.M.Marcus,and R.M.Westervelt.Fixed-point attractors in analog neural computation.Phys.Rev.Lett.,64(16):1986-1989,Apr 1990.
    [25]Simona Doboli,Ali A.Minai,and Phillip J.Best.Latent attractors:A model for context-dependent place representations in the hippocampus.Neural Comput.,12(5):1009-1043,2000.
    [26]M.A.Arbib,P.(?)rdi,and J.Szent(?)gothai.Neural Organization:Structure,Function,and Dynamics.Bradford Book/MIT,Cambridge,MA,1997.
    [27]H.R.Wilson.Spikes,Decisions,and Actions.Oxford University Press,New York,1999.
    [28]D.O.Hebb.The Organization of Behavior.Wiley,New York,1949.
    [29]S.J.Martin,P.D.Grimwood,and R.G.M.Morris.Synaptic plasticity and memory:An evaluation of the hypothesis.Annual Review of Neuroscience,23(1):649-711,2000.PMID:10845078.
    [30]M.E.J.Newman.The structure and function of complex networks.SIAM Review,45:167,2003.
    [31]S.H.Strogatz.Exploring complex networks.Nature,410(6825):268-276,March 2001.
    [32]R(?)ka Albert and Albert-L(?)szl(?)Barab(?)si.Statistical mechanics of complex networks.Rev.Mod.Phys.,74(1):47-97,Jan 2002.
    [33]S.N.Dorogovtsev and J.F.F.Mendes.Evolution of networks.Advances in Physics,51(4):1079-1187,June 2002.
    [34]S.Boccaletti,V.Latora,Y.Moreno,M.Chavez,and D.-U.Hwang.Com-plex networks:Structure and dynamics.Physics Reports,424(4-5):175-308,2006.
    [35]T.H.Cormen,C.E.Leiserson,R.L.Rivest,and C.Stein.Introduction to Algorithms.MIT University Press,Cambridge,2001.
    [36]M.E.J.Newman.Scientific collaboration networks.ⅱ.shortest paths,weighted networks,and centrality.Phys.Rev.E,64(1):016132,Jun 2001.
    [37]S.Wasserman and K.Faust.Social Networks Analysis.Cambridge University Press,Cambridge,1994.
    [38]D.J.Watts and S.H.Strogatz.Collective dynamics of 'small-world' networks.Nature,393:440-442,June 1998.
    [39]P.Erd(o|¨)s and A.R(?)nyi.On random graphs.Publ.Math.Debrecen,6:290,1959.
    [40]Klaas E.Stephan,Claus-C.Hilgetag,Gully A.P.C.Burns,Marc A.O'Neill,Malcolm P.Young,and Rolf Kotter.Computational analysis of functional connectivity between areas of primate cerebral cortex.Philosophical Transactions of the Royal Society of London.Series B:Biological Sciences,355(1393):111-126,2000.
    [41]O.Sporns,G.Tononi,and G.M.Edelman.Theoretical Neuroanatomy:Relating Anatomical and Functional Connectivity in Graphs and Cortical Connection Matrices.Cereb.Cortex,10(2):127-141,2000.
    [42]Olaf Sporns and Jonathan D.Zwi.The small world of the cerebral cortex.Neuroinformatics,2(2):145-162,Jun 2004.
    [43]Claus C.Hilgetag and Marcus Kaiser.Clustered organization of cortical connectivity.Neuroinformatics,2(3):353-360.
    [44]Orit Shefi,Ido Golding,Ronen Segev,Eshel Ben-Jacob,and Amir Ayali.Morphological characterization of in vitro neuronal networks.Phys.Rev.E,66(2):021905,Aug 2002.
    [45]Luis F.Lago-Fern(?)ndez,Ram(?)n Huerta,Fernando Corbacho,and Juan A.Sig(u|¨)enza.Fast response and temporal coherent oscillations in small-world networks.Phys.Rev.Lett.,84(12):2758-2761,Mar 2000.
    [46]Bethany Percha,Rhonda Dzakpasu,Michal Zochowski,and Jack Parent.Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy.Phys.Rev.E,72(3):031909,Sep 2005.
    [47]Albert-L(?)szl(?)Barab(?)si and R(?)ka Albert.Emergence of Scaling in Random Networks.Science,286(5439):509-512,1999.
    [48]R(?)ka Albert,Hawoong Jeong,and Albert-L(?)szl(?)Barab(?)si.Internet:Diameter of the world-wide web.Nature,401(6749):130-131,Sep 1999.
    [49]Albert-L(?)szl(?)Barab(?)si,R(?)ka Albert,and Hawoong Jeong. Scale-free characteristics of random networks:the topology of the world-wide web.Physica A:Statistical Mechanics and its Applications,281(1-4):69-77,2000.
    [50]Andrei Broder,Ravi Kumar,Farzin Maghoul,Prabhakar Raghavan,Sridhar Rajagopalan,Raymie Stata,Andrew Tomkins,and Janet Wiener.Graph structure in the web.Computer Networks,33(1-6):309-320,2000.
    [51]S.Redner.How popular is your paper? an empirical study of the citation distribution.European Physical Journal B,4:131-134,Aug 1998.
    [52]P.O.Seglen.The skewness of science.J.Amer.Soc.Inform.Sci.,43:628-638,1992.
    [53]Q.Chen,H.Chang,R.Govindan,S.Jamin,S.J.Shenker,and W.Willinger.The origin of power laws in internet topologies revisited.In Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies.IEEE Computer Society,2002.
    [54]Michalis Faloutsos,Petros Faloutsos,and Christos Faloutsos.On powerlaw relationships of the internet topology.SIGCOMM Comput.Commun.Rev.,29(4):251-262,1999.
    [55]Alexei V(?)zquez,Romualdo Pastor-Satorras,and Alessandro Vespignani.Large-scale topological and dynamical properties of the internet.Phys.Rev.E,65(6):066130,Jun 2002.
    [56]H.Jeong,S.P.Mason,A.L.Barab(?)si,and Z.N.Oltvai.Lethality and centrality in protein networks.Nature,411(6833):41-42,May 2001.
    [57]H.Jeong,B.Tombor,R.Albert,Z.N.Oltvai,and A.L.Barab(?)si.The large-scale organization of metabolic networks.Nature,407(6804):651-654,Oct 2000.
    [58]R.Martin,M.Kaiser,P.Andras,and M.P.Young.Is the brain a scale-free network? In Abstr.31st Soc.Neurosci.Annual Meeting.
    [59]Victor M.Egu(?)luz,Dante R.Chialvo,Guillermo A.Cecchi,Marwan Baliki,and A.Vania Apkarian.Scale-free brain functional networks.Phys.Rev.Lett.,94(1):018102,Jan 2005.
    [60]M.E.J.Newman.Assortative mixing in networks.Phys.Rev.Lett.,89(20):208701,Oct 2002.
    [61]R.Milo,S.Shen-Orr,S.Itzkovitz,N.Kashtan,D.Chklovskii,and U.Alon.Network Motifs:Simple Building Blocks of Complex Networks.Science,298(5594):824-827,Oct 2002.
    [62]S.Itzkovitz,R.Milo,N.Kashtan,G.Ziv,and U.Alon.Subgraphs in random networks.Phys.Rev.E,68(2):026127,Aug 2003.
    [63]Shalev Itzkovitz and Uri Alon.Subgraphs and network motifs in geometric networks.Phys.Rev.E,71(2):026117,Feb 2005.
    [64]N.Kashtan,S.Itzkovitz,R.Milo,and U.Alon.Topological generalizations of network motifs.Phys.Rev.E,70(3):031909,Sep 2004.
    [65]Erzs(?)bet Ravasz and Albert-L(?)szl(?)Barab(?)si.Hierarchical organization in complex networks.Phys.Rev.E,67(2):026112,Feb 2003.
    [66]Filippo Radicchi,Claudio Castellano,Federico Cecconi,Vittorio Loreto,and Domenico Parisi.Defining and identifying communities in networks.Proc.Natl.Acad.Sci.USA,101(9):2658-2663,2004.
    [67]J(o|¨)rg Reichardt and Stefan Bornholdt. Detecting fuzzy community structures in complex networks with a potts model.Phys.Rev.Lett.,93(21):218701,Nov 2004.
    [68]M.E.J.Newman and M.Girvan.Finding and evaluating community structure in networks.Phys.Rev.E,69(2):026113,Feb 2004.
    [69]M.E.J.Newman.Detecting community structure in networks.The European Physical Journal B,38(2):321-330,mar 2004.
    [70]Leon Danon,Albert Diaz-Guilera,Jordi Duch,and Alex Arenas.Comparing community structure identification.Journal of Statistical Mechanics:Theory and Experiment,2005(09):P09008,2005.
    [71]Arkady Pikovsky,Michael Rosenblum,and Jurgen Kurths.Synchronization:A universal concept in nonlinear sciences.Cambridge University Press,Cambridge,2001.
    [72]Alex Arenas,Albert D(?)az-Guilera,Jurgen Kurths,Yamir Moreno,and Changsong Zhou.Synchronization in complex networks.Physics Reports,469(3):93-153,2008.
    [73]Wolf Singer.Neuronal synchrony:A versatile code for the definition of relations? Neuron,24:49-65,Sep 1999.
    [74]Peter J.Uhlhaas and Wolf Singer. Neural synchrony in brain disorders:relevance for cognitive dysfunctions and pathophysiology.Neuron,52(5):155-168,Oct 2006.
    [75]Luis G.Morelli and Dami(?)n H.Zanette.Synchronization of stochastically coupled cellular automata.Phys.Rev.E,58(1):R8,Jul 1998.
    [76]D.H.Zanette and A.S.Mikhailov.Mutual synchronization in ensembles of globally coupled neural networks.Phys.Rev.E,58(1):872-875,Jul 1998.
    [77]Qi Li,Yong Chen,and Ying Hai Wang.Coupling parameter in synchronization of diluted neural networks.Phys.Rev.E,65(4):041916,Apr 2002.
    [78]D.Stauffer,A.Aharony,L.da Fontoura Costa,and J.Adler.Efficient hopfield pattern recognition on a scale-free neural network.The European Physical Journal B,32(3):395-399,Apr 2003.
    [79]Yaneer Bar-Yam and Irving R.Epstein.Response of complex networks to stimuli.Proc.Natl.Acad.Sci.USA,101(13):4341-4345,2004.
    [80]Y.Kuramoto.Chemical Oscillations,Waves,and Turbulence.Springer-Verlag,Berlin,1984.
    [81]Juan A.Acebr(?)n,L.L.Bonilla,Conrad J.P(?)rez Vicente,F(?)lix Ritort,and Renato Spigler.The kuramoto model:A simple paradigm for synchronization phenomena.Rev.Mod.Phys.,77(1):137-185,Apr 2005.
    [82]Theoden I.Netoff and Steven J.Schiff.Decreased Neuronal Synchronization during Experimental Seizures.J.Neurosci.,22(16):7297-7307,2002.
    [83]S.Feldt,H.Osterhage,F.Mormann,K.Lehnertz,and M.Zochowski.Internetwork and intranetwork communications during bursting dynamics:Applications to seizure prediction.Phys.Rev.E,76(2):021920,2007.
    [84]Hidetsugu Sakaguchi.Instability of synchronized motion in nonlocally coupled neural oscillators.Phys.Rev.E,73(3):031907,2006.
    [85]R(u|¨)diger Zillmer,Roberto Livi,Antonio Politi,and Alessandro Torcini.Desynchronization in diluted neural networks.Phys.Rev.E,74(3):036203,2006.
    [86]Umit Sayin and Paul A.Rutecki.Group i metabotropic glutamate receptor activation produces prolonged epileptiform neuronal synchronization and alters evoked population responses in the hippocampus.Epilepsy Research,53(3):186-195,2003.
    [87]W.van Drongelen,H.C.Lee,M.Hereld,Zheyan Chen,F.P.Elsen,and R.L.Stevens. Emergent epileptiform activity in neural networks with weak excitatory synapses.IEEE Trans.Neural Syst.Rehabil.Eng.,13:236-241,June 2005.
    [88]Wulfram Gerstner and Werner M.Kistler.Spiking Neuron Models:Single Neurons,Populations,Plasticity.Cambridge University Press,Cambridge,2002.
    [89]Hideo Hasegawa.Responses of a hodgkin-huxley neuron to various types of spike-train inputs.Phys.Rev.E,61(1):718-726,Jan 2000.
    [90]Xiao-Jing Wang and Gyorgy Buzsaki.Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model.J.Neurosci.,16(20):6402-6413,1996.
    [91]Sentao Wang,Wei Wang,and Feng Liu.Propagation of firing rate in a feed-forward neuronal network.Phys.Rev.Lett.,96(1):018103,2006.
    [92]D.Hansel,G.Mato,and C.Meunier.Synchrony in excitatory neural networks.Neural Computation,7(2):307-337,1995.
    [93]D.Hansel,G.Mato,and C.Meunier.Phase dynamics for weakly coupled hodgkin-huxley neurons.EPL (Europhysics Letters),23(5):367-372,1993.
    [94]Jonathan Drover,Jonathan Rubin,Jianzhong Su,and Bard Ermentrout.Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies.SIAM J.Appl.Math.,65(1):69-92,2004.
    [95]A.Levina,J.M.Herrmann,and T.Geisel.Dynamical synapses causing self-organized criticality in neural networks.Nat.Phys.,3(12):857-860,Dec 2007.
    [96]G(?)rard Weisbuch. Complex systems dynamics:an introduction to automata networks.Addison-Wesley,Redwood City,CA,1991.
    [97]汪志诚.热力学统计物理(第二版).高等教育出版社,北京,1993.
    [98]David Sherrington and Scott Kirkpatrick.Solvable model of a spin-glass.Phys.Rev.Lett.,35(26):1792-1796,Dec 1975.
    [99]K.H.Fischer and J.A.Hertz.Spin Glasses.Cambridge University Press,Cambridge,1991.
    [100]I.Kanter and H.Sompolinsky.Associative recall of memory without errors.Phys.Rev.A,35(1):380-392,Jan 1987.
    [101]Daniel J.Amit,Hanoch Gutfreund,and H.Sompolinsky.Information storage in neural networks with low levels of activity. Phys.Rev.A,35(5):2293-2303,Max 1987.
    [102]Alfredo Braunstein and Riccardo Zecchina.Learning by message passing in networks of discrete synapses.Phys.Rev.Lett.,96(3):030201,2006.
    [103]H.Gutfreund.Neural networks with hierarchically correlated patterns.Phys.Rev.A,37(2):570-577,Jan 1988.
    [104]R.Kree and A.Zippelius.Continuous-time dynamics of asymmetrically diluted neural networks.Phys.Rev.A,36(9):4421-4427,Nov 1987.
    [105]Fernando J.Pineda.Generalization of back-propagation to recurrent neural networks.Phys.Rev.Lett.,59(19):2229-2232,Nov 1987.
    [106]I.Kanter.Asymmetric neural networks with multispin interactions.Phys.Rev.A,38(11):5972-5975,Dec 1988.
    [107]Patrick N.McGraw and Michael Menzinger.Topology and computational performance of attractor neural networks.Phys.Rev.E,68(4):047102,Oct 2003.
    [108]Hiraku Oshima and Takashi Odagaki.Storage capacity and retrieval time of small-world neural networks.Phys.Rev.E,76(3):036114,2007.
    [109]Mari(?)n Bogu(?)(?)and Romualdo Pastor-Satorras.Epidemic spreading in correlated complex networks.Phys.Rev.E,66(4):047104,Oct 2002.
    [110]R.Xulvi-Brunet and I.M.Sokolov.Reshuffling scale-free networks:From random to assortative.Phys.Rev.E,70(6):066102,Dec 2004.
    [111]Marc Barth(?)lemy,Alain Barrat,Romualdo Pastor-Satorras,and Alessandro Vespignani.Velocity and hierarchical spread of epidemic outbreaks in scale-free networks.Phys.Rev.Lett.,92(17):178701,Apr 2004.
    [112]Romualdo Pastor-Satorras and Alessandro Vespignani.Epidemic spreading in scale-free networks.Phys.Rev.Lett.,86(14):3200-3203,Apr 2001.
    [113]Romualdo Pastor-Satorras and Alessandro Vespignani.Epidemic dynamics and endemic states in complex networks.Phys.Rev. E,63(6);066117,May 2001.
    [114]Brian Hassard.Bifurcation of periodic solutions of the hodgkin-huxley model for the squid giant axon.Journal of Theoretical Biology,71(3):401-420,1978.
    [115]Yuguo Yu,Wei Wang,Jiafu Wang,and Feng Liu.Resonance-enhanced signal detection and transduction in the hodgkin-huxley neuronal systems.Phys.Rev.E,63(2):021907,Jan 2001.
    [116]Per Bak,Chao Tang,and Kurt Wiesenfeld.Self-organized criticality:An explanation of the 1/f noise.Phys.Rev.Lett.,59(4):381-384,Jul 1987.
    [117]Donald L Turcotte.Self-organized criticality.Reports on Progress in Physics,62(10):1377-1429,1999.
    [118]John M.Beggs and Dietmar Plenz.Neuronal Avalanches in Neocortical Circuits.J.Neurosci.,23(35):11167-11177,2003.
    [119]Gregory A.Worrell,Stephen D.Cranstoun,Javier Echauz,and Brian Litt.Evidence for self-organized criticality in human epileptic hippocampus.NeuroReport,13(16):2017-2021,Nov 2002.
    [120]Anna Levina,J.Michael Herrmann,and Theo Geisel.Phase transitions towards criticality in a neural system with adaptive interactions.Phys.Rev.Lett.,102(11):118110,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700