柴油车尾气氮氧化物与颗粒物同时除去铈系催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车作为一种重要的交通工具所带来的严重尾气污染问题逐渐引起重视,利用催化技术来净化汽车尾气,降低其中有害物质的排放以满足人类的环境需求,解决严重的城市空气污染已成为汽车排放控制技术中的重要内容。
     汽车主要分为汽油车、柴油车和代用燃料车,以汽油车最为普及,但是随着石油资源的短缺,温室效应的加剧,燃油经济性好(比汽油机低30%左右)、温室气体CO2排放少(比汽油机低30%左右)、安全性能高的柴油车逐渐受到重视。由于排放温度低、氧含量高、含有大量的硫和颗粒物质等特点使柴油机尾气净化催化技术远不如汽油车三元催化技术成熟,富氧条件下NOx的选择催化还原以及颗粒物质的催化燃烧再生技术均是催化研究领域的重要课题。
     本论文主要以小块蜂窝陶瓷模拟整体蜂窝陶瓷进行催化剂的研究,在陶瓷上负载γ-Al2O3作为活性载体,以Cu-Ce-Zr氧化物为催化剂进行NOx与颗粒物同时除去的研究。并在此基础上加入Pd用以催化剂的改性。得出的结论:以20%的铝溶胶负载陶瓷,再以硝酸铈与硝酸锆配比为8:1,硝酸铜占铈锆摩尔比为15%的溶液浸渍得来的催化剂拥有最强的催化活性。其对NOx的还原效率为10%左右,并在低温区间内产生NOx的还原,颗粒物的起燃温度降低了近70℃。
     该研究同时为柴油车尾气处理的催化剂的生产提供了一定的试验基础和理论基础。
In recent years, along with population of increment and economy society of fast development, vehicle population increase continuously. Automobile exhaust pollution has become one of current world’s the most serious environmental pollution problem. It has direct impact to the living environment arriving at human being, blocks sustainable development of economy society.
     Diesel engines show both carbon monoxide and unburned hydrocarbons outlet concentrations much lower than those produced by spark-ignition engines. However, even the most recent diesel engines generate nitrogen oxides and carcinogenic particulate, whose size falls in the so-called lung-damaging range. The automotive industry is currently facing serious challenges to meet the specific requirements of future regulations concerning both NOx and particulate emissions. Recently the regulations on diesel engine emissions become more and more stringent, especially with respect to NOx and PM. To solve these problems, both the internal combustion techniques and the exhaust after treatment are needed. As a promising process, the simultaneously catalytic removal of NOx and soot was proposed.
     In this thesis we use small parts of whole honeycomb monolith to imitate the whole ones to study the issues on the simultaneous removal of soots&NOx.γ-Al2O3 as the active loading, Cu-Ce-Zr-O as the catalysts. At the same time, we put Pd in the catalysts to expect the better behavior. We conclude that the catalysts which made by Ce/Zr=8,15% mole rate of Cu(NO3)2 loading with 20% Al2O3 shows the best activity. The catalysts can reduced 10% of NOx all so and reduced 70℃of the burning temperature of the soots.
     This research also can provide the experimental and theoretical base for the research and application of filter and catalytic devices.
引文
1沈迪新,陈宏德,田群.中国汽车尾气污染,污染控制与对策.环境科学进展. 1997,5(6)
    2王耀清译.柴油机排放控制的全球趋势——1997年最新评述.国外内燃机. 1998(5)
    3翁祖亮,翟俊鸣,楚梅森.中国机动车发动机排放控制面面观.国际车用柴油机技术研讨会. 2000, 12
    4童澄教.内燃机排放与净化.上海:上海交通大学出版社.1994,14
    5李疏松,李贞.柴油机排气颗粒的测定及分析.内燃机报. 1985, 3(1): 39~48
    6彭美春,季雨,刘巽俊.柴油机排气微粒物理特性的研究.内燃机学报. 1987 ,5(1):23~33
    7 E Robert Becker, J. Richard Watson. Future Trends in Automotive Emission Control. SAE 980413
    8许洪军,曹会智,刘伍权,陈军,朱先民.柴油机尾气氮氧化物的机外净化技术研究.内燃机报. 2004, 6
    9罗罕淑,何江华. NOx分解还原催化研究进展.土壤与环境. 2000, 9(1), 68-70
    10 Timothy V. Johnson. Diesel Emission Control in Review. SAE2001-01-0184
    11 Sung Mu Choi et al. Development of Urea-SCR System for Light-duty Diesel Passenger Car. SAE 2001-01-0519
    12 William R. Miller et al. The Development of Urea-SCR Technology for US Heavy-duty Trucks. SAE 2000-01-0190
    13 H. Liers et al. Aurea Lean NOx Catalyst System for Light Duty Diesel Vehicles. SAE 952493
    14谭宇新,王乐夫,纪红兵.贫燃条件下汽车尾气净化催化剂的研究.上海环境科学. 1999, 18(9):397–399
    15 M. Iwamoto and H. Hamada. Catalysis Today.17(1991)94
    16田英,郭灵姬.贫燃条件下汽车尾气净化催化技术的发展与展望.化学工程师. 2002, (4):39-41
    17张琳.催化脱除大气污染物NOx研究进展.低温与特气. 2000, 18(4):7-10
    18许守聪,王乐夫,李雪辉.贫燃条件下汽车尾气净化催化剂的研究现状分析与展望.广州化工. 2002, 30(1):1-4
    19 H. Klein et al. Hydrocarbon DeNOx Catalysis-System Development for Diesel Passenger Cars and Trucks. SAE 1999-01-0109
    20 Koichiro Nakatani et al. Simultaneous PM and NOx Reduction System for Diesel Engines. SAE 2002-01-0957
    21 Michel Molinier. NOx Adsorber Desulfurization Under Conditions Compatible with Diesel Applications. SAE 2001-01-0508
    22 Darrell Herling et al. Application of Non-thermal Plasma-assisted Catalyst Technology for Diesel Engine Emission Reduction. SAE 2000-01-3088
    23 John. Hoard Plasma-catalysis for Diesel Exhaust Treatment:Current State ofthe Art. SAE 2001-01-0185
    24 D. Fino, P. Fino, G. Saracco, et al. Applied Catalysis B:Environmental. 200343:243~259
    25 Liu S T, Obuchi A, Uchisawa J, et al. Applied Catalysis B:Environmental. 2002, 37:309~319
    26 Shangguan W F, Teraoka Y, Kagawa S. Applied Catalysis B:Environmental.1996, 8:217~227
    27 Teraoka Y, Nakano K, Shangguan W F, et al. Applied Catalysis B:Environmental. 1996, 27:107~113
    28 Hong S S, Lee GD. Catalysis Today. 2000, 63:397~404
    29 Teraoka Y, Kanada K, Kagawa S. Applied Catalysis B:Environmental. 2001,34:73~78
    30 Pisarello M L, Milt V, Peralta M A, et al. Catalysis Today. 2002, 75:465~470
    31 Milt V G, Pissarello M L, MiróE E, et al. Applied Catalysis B:Environmental. 2003, 41:397~414
    32 Carrascull A, Lick I D, Ponzi E N, et al. Catalysis Communications. 2003, 4:124~128
    33 Shibata J, Shimizul K, Satsuma A, et al. Applied Catalysis B:Environmental2002, 37:197~204
    34 Matsuoka K, Orikasa H, Itoh Y, et al. Applied Catalysis B:Environmental. 2000, 26:89~99
    35刘光辉,黄震,上官文峰等.科学通报.2002, 21:1620~1623
    36刘光辉,黄震,上官文峰等.内燃机学报. 2003, 21:40~44
    37薛屏,沈岳年,孙燕华等.分子催化. 1998, 12:424~428
    38 Teraoka Y, Nakano K, Kagawa S, et al. Applied Catalysis B:Environmental. 1995, 5:L181~L185
    39 Liu Z, Zhenping H, Huiping Z, et al. Chemical Technological Biotechnolology. 2002, 77:800~804
    40 Liu Z, Ha Z, Guo Y, et al. Journal of Environmental Sciences. 2002, 14:289~295
    41 PaNeeft J P, Makkee M, Moulijn J A. Applied Catalysis B:Environmental. 1996, 8 :57~78
    42 S. Tanaka, F. Mizukami, S. Niwa, et al. Preparation of Highly Dispersed Silica Supported Palladium Catalysts by a Complexing Sgent-Sssisted Sol-Gel Method and Their Characteristics. Applied Catalysis A:General. 2002, 229(1~2), 165~174
    43 Perez Victor, Miachon Sylvain, Dalmon JeanAlain, et al. Peparation and Characterisation of a Pt/Ceramic Catalytic Membrane. Separation and Purification Technology. 2001, 25(1~3), 33~38
    44 Kim Ki Young, Park Seung Bin. Preparation and Property Control of Nano-Sized Indium Tin Oxide Particle. Materials Chemistry and Physics. 2004, 86(1), 210~221
    45 Conde, A. Duran, J. J. Damborenea. Polymeric Sol-Gel Coatings as Protective Layers of Aluminium Alloys. Progress in Organic Coatings. 2003, 46(4), 288~296
    46 L. Francioso, D. S. Presicce, A. M. Taurino, et al. Automotive Application of Sol-Gel Ti02 Thin Film-Based Sensor for Lambda Measurement. Sensors and Actuators B:Chemical. 2003, 95(1~3), 66~72
    47 Hideaki Muraki, Geng Zhang. Design of advanced automotive exhaust catalysts. Catalysis Today. 63(2000), 337–345
    48龚大国,袁崇宣.等离子体汽车尾气治理技术.重庆环境科学.第25卷第2期:28~30
    49船曳正起.汽车排气净化的技术动向.小型内燃机与摩托车. 1990, (3):60~65
    50李建勇.堇青石质蜂窝陶瓷.陶瓷工程. 1995, 29(3):25-29
    51 Dougas M. beall, Matin J. Murtagh. Fabrication of Ultral Low Thermal Expantion Cordierite Structures. US Patent.2002/0010073:2002-1-24
    52 Thomas H.Elmer. Ultral Low Thermal Expantion Ceramics Articels. US Patent. 958058, 1976-5-18
    53 Albert N. Shigapov, George W. Graham, Robert W. Maccabe, et al. The Preparation of High-surface-area Cordierite Monolith by Acid Treatment. Applied Catalysts A:General. 1999, 182:137-146
    54 D. C. Mohindwe, L. H. W. William, S. G. Haren. U S:4992405. 1991
    55段忠善,段君伟,宏寿等. CN:1129146A. 1996
    56 Muraki H. Industrial Engineering and Chemical Products Research Development. 1986, 25:202~208
    57顾其顺,陈宏德,况荣祯等.环境化学. 1993, 12 (2):81~85
    58雷勒·J,洛克斯·E,恩格尔·E等. CN:10777661A. 1993
    59肖宾·T,图尔特·O,威尔敏·G.. CN:1116965A.1996
    60 C. F. Peter, S. E. Wanke. Catalysis. 1975, 37:432~448
    61赫崇衡,张文敏,汪仁.物理化学学报. 1996, 12(11):971~975
    62 J. C. Schlatter, P. J. Mitchell. Industrial Engineering and Chemical Products Research Development. 1980, 19:288~293
    63 R. D. Monte, J. Kaspar. On the role of oxygen storage in three-way catalysis. Topics in Catalysis. 2004, 28(1-4):47-57
    64洪维民.三效催化剂用CexZr1-xO2固溶体合成技术与储放氧性能研究进展.稀土. 2004, 25(2):59-64
    65 F. Defaanello, A. Martorana. Phase Analysis and Oxygen Storage Capacity of Ceria-lanthana-based TWC Promoters Prepared by Sol-gel Routes. Journal of Solid State Chemistry. 2002, 163:527-533
    66 Zheng Xiu-cheng, Wang Shu-ping, Wang Shu-rong, et al. Preparation of Characterization and Catalytic Properties of CuO/CeO2 System. Materials Science and Engineering C. 2005, 25:516-520
    67 A. Pintar, J. Batista, S. Hocevar. TPR, TPO and TPD Examinations of Cu0.15Ce0.85O2-y Mixed Oxides Prepared by Co-precipitation, by the Sol-gel Peroxide route, and by Citric Acid-assisted Synthesis. Journal of Colloid and Interface Science. 2005, 285:218-231
    68 M. L. Church, B. J. Cooper, P. J. Willson. Catalysts in Automobiles:aHistory. Automotive Engineering. 1989, 96(6):67
    69 K. C. Taylor. Catalysts in Cars. Chemtechnology. 1990, (Sep):551
    70 V. Perrichon, A. Laachir, et al. Study on Ceria-based Catalysts. Chemical Society Faraday Trans. 1994, 90(5):773
    71 P. Fornasiero. Rh-loaded CeO2-ZrO2 Suliod Solations as Highly Efficient Oxygen Exchangers:Dependence of the Reduction Behavior and the Oxygen Strogen Capacity on the Structural Properties. Catalysis. 1995, (1):168
    72 A. E. C. Palmqvist, E. M. Johansson, S. G. Jaras, et al. Total Oxidation of Methane over Doped Nanophase Cerium Oxides. Catalysis Letters. 1998, 56(1):69-75
    73 P. Bera, S. T. Aruna, K. C. Patil, et al. Studies on Cu/CeO2:a New NO Reduction Catalyst. Journal of Catalysis. 1999, 86:36-44
    74 G. Avgouropoulos,T. Ioannides, H. K. Matralis, et al. CuO-CeO2 Mixed Oxide Catalysts for the Selective Oxidation of Carbon Monoxide in Excess Hydrogen. Catalysis Letters. 2001, 73(1):33-40
    75 X. Y. Jiang,L. P. Lou, G. H. Ding, Y. X. Chen, et al. The Active Species and Catalytic Properties of CuO/CeO2-TiO2 Catalysts for NO+CO Reaction. Journal of Materials Science. 2004, 39:4663-4667
    76 H. Zhu, M. Shen, F. Gao, et al. A Study of CuO/CeO2/Al-Zr-O in“NO+CO”. Catalysis Communications. 2004, 5:453-45
    77 Shan Wenjuan (单文娟), Li Zhonglai (李忠来), Lei Zhibin(雷志斌), et al. Characterization and Catalytic Activity of Nanosized Ce1-xCuxOy Solid Solutiongs for Auto-thermasteam Reforming of Methanol. Journal of Fudan University:Natural Science(复旦学报:自然科学版). 2003, 42(3):295-301
    78蒋平平,张顺海,郭杨龙,等.汽车尾气净化三效催化剂研究新进展[EB/OL]. http:∥www.chemistrymag.org
    79 Hideo Sobukawa. Development of Ceria-zirconia Solid Solutions and Future Trends. R&D Review of Toyota CRDL
    80汪文栋,林培琰,孟明,等.用Pr修饰的(CeZr)O2固溶体在三效催化剂中的作用.中国稀土学报. 2002, 20(3):265-269
    81田久英,袁书华,林之恩,等.添加稀土氧化物助剂的CeO2-ZrO2固溶体的储氧性及热稳定性研究.化学研究与应用. 2000, 12(5):543-546
    82彭新林,龙志奇,崔梅生,等.共沉淀法合成铈锆复合氧化物及表征.中国稀土学报. 2002, 20(专辑):104-107
    83温斌,何鸣元,宋家庆等.催化学报. 2000, 1(1):31234
    84 Z. Hu, C. Z. Wan, Y. K. Liu, et al. Catalysis Today. 1996(1-3), 30:83289
    85 S. Matsumoto. Catalysis Today. 2004, 90(3-4):1832190
    86 T. Kobayashi, T. Yamada, K. Kayano. Applied Catalysis B:Environmental. 2001, 30(3-4):2872292
    87吴世华,等.化学工业与工程, 1995, (8):15-191
    88王碧玉,等.钯炭催化剂用于蒎烯常压加氢制蒎烷的研究.福建化工. 1997, (4):14-151
    89陈一飞,等.钯系催化剂的制备及其在催化氢化中的应用.化学研究与应用. 1995,7(4):451-4551
    90周仁贤,等.γ-Al2O3为基体的Pt、Pd双金属催化剂氧化性能的研究.科技通报. 1995, (7):193–1971

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700